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“Think how hard physics would be if particles could think.” 
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be summed up as an inadequate theory of flexure, an erroneous theory of torsion, an unproved 

theory of vibrations of bars and plates, and the definition of Young’s modulus.” 

A Treatise on the Mathematical Theory of Elasticity. 
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RESUMEN 

Los simuladores quirúrgicos, estudios biomecánicos y algunas aplicaciones 
de realidad virtual requieren emplear el comportamiento mecánico de 
diferentes tipos de tejidos biológicos. Cada tipo de tejido reacciona de 
diferente manera ante la acción de las fuerzas externas aplicadas. En 
particular, el diseño de modelos mecánicos que representen fielmente el 
comportamiento de los tejidos blandos supone un reto. 

Se han propuesto numerosos modelos de sólidos deformables para 
aproximar la respuesta de tejidos vivos blandos. Sin embargo, es difícil 
cumplir con dos requerimientos simultáneamente: cálculo rápido de las 
deformaciones y resultados precisos. Este reto es aun mayor cuando el 
entorno de trabajo requiere resultados en tiempo real como es el caso de los 
simuladores interactivos de cirugía. 

En esta tesis se proponen dos nuevos métodos para diseñar Modelos 
Masa-Muelle (MMM) rápidos y precisos, especialmente concebidos para la 
simulación de tejidos deformables. El primero de ellos permite modelar el 
comportamiento lineal elástico en régimen de pequeñas deformaciones. En 
concreto, se basa en un análisis comparativo entre el sistema de ecuaciones 
linealizado de un MMM y un Modelo de Elementos Finitos (MEF) elástico 
lineal. Para ello se emplea el estudio de vectores y valores propios de los 
modelos correspondientes. 

El segundo método permite diseñar modelos de tejidos blandos en el 
rango de las grandes deformaciones. El método se basa en el hecho de que 
los MMMs responden intrínsecamente de manera no lineal ante grandes 
deformaciones. En particular, se realiza un ensayo de tracción uniaxial para 
obtener los parámetros del MMM a partir de modelos de material o ensayos 
reales. 

Finalmente, los modelos desarrollados en esta tesis se han 
implementado en prototipos de simuladores médicos. Los resultados 
indican que los MMM pueden ser una alternativa interesante a otros 
modelos como los MEF cuando el requerimiento de eficiencia 
computacional es superior al de la precisión. 

 

 





 

 xvii 

ABSTRACT 

Surgery simulators, biomechanical studies and some virtual reality 
applications require the handling of the mechanical behaviour of different 
biological tissue types. Each tissue type reacts in different ways to the action 
of the external loads applied onto the object. In particular, designing 
suitable mechanical models to represent the behaviour of soft tissue is a 
challenging task.  

Many models for deformable bodies have been proposed to 
approximate the behaviour of living deformable tissues. However, it is 
difficult to fulfil simultaneously two basic requirements: fast computation of 
the deformations and accuracy in the results. This challenge is even greater 
when the working environment requires real-time results, like in the case of 
interactive surgical simulators. 

In this thesis two new methods to design fast and accurate Mass-
Spring Model (MSM) are proposed. The methods are specifically focused 
on the simulation of deformable tissues. The first method allows modelling 
the linear elastic behaviour under small deformations. In particular, it is 
based on the comparative analysis of the linearized system of equations of 
the MSM and a linear elastic Finite Element Method (FEM). This is 
performed by studying the eigenvalues and eigenvectors of the 
corresponding models. 

The second method allows designing soft-tissue models valid in the 
range of large deformations. This method is based on the fact that MSMs 
intrinsically behave nonlinearly under loads that lead to large deformations. 
In particular, a uniaxial tensile test is made to obtain the parameters of the 
MSM from material models or experimental data. 

Finally, the models proposed in this thesis have been implemented in 
medical simulators prototypes. The results suggest that MSMs can be an 
interesting alternative to other models such as FEM when the requirement 
on the computation efficiency is more important than model accuracy. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 MOTIVATION 

Medicine is an extremely challenging field of research since it is of 
fundamental importance in human existence. The variety and inherent 
complexity of unsolved medical problems has made it a major driving force 
for many natural and engineering sciences. 

One of the most exciting specialities in the medical field is surgery. Its 
relevance is increasing as life expectancy increases. According to the 
estimations made by Weiser et al. (Weiser2008) analyzing information 
provided by the World Health Organization, more than 230 million major 
surgical procedures are undertaken every year worldwide. 

Surgery is concerned with the treatment of injuries, diseases, and 
disorders to help improve bodily function or appearance by changing the 
body with an operative procedure. Each of the existing operation methods 
combined with the different areas of the human body where the treatment 
is provided has resulted in many surgical specialties. 

The progress in these procedures has been characterized by a 
continuous cycle of innovation thanks to the convergence of technical 
advances and creative surgeons whose major goal has been fighting against 
sickness. Indeed, the exhaustive study of the variety of procedures has 
turned the artisanal first operations with bone needles performed 30,000 
years ago into the complex robotic-based surgeries of today (see figures 1.1 
and 1.2). 



2 Chapter 1 Introduction 

 

 

Figure 1.1. (a) Trepanation made by Inca surgeons in ancient Peru. (b) Illustration of a 

trepanation in France in the XVIII century. 

Thus, modern surgery has nothing to do with prehistoric operations. 
Gone are the days when Lord Thurlow in 1811 in a Parliamentary debate 
on the establishment of a Royal College of Surgeons stated that “There is no 
more science in surgery than in butchering.” 

 

Figure 1.2. Modern surgery room (DaVinci). 



Motivation 3 

 

The modern concept of surgery, on the contrary, is more clearly 
reflected in the words of Mark M. Ravitch “Surgery is not a place, not an event-
rather it is fundamentally an intellectual discipline, frequently involving a surgical 
procedure, but most importantly characterized by an attitude of responsibility toward the 
care of the sick. The closed reduction of a fracture is part of orthopaedic surgery, the 
nonoperative management of a splenic injury or of gallstone pancreatitis is still clearly 
within the purview of the field of surgery and the surgeon’s care” (Krummel2006). 
These words capture concisely the modern concept of surgery where the 
idea of a careless surgical procedure has moved to an integral medical 
service given by highly qualified professionals to the patient, the focus of 
the surgical activity. 

Until the end of the 20th century the thrust of surgeon was how they 
could do more and more, safely and effectively, to extend the quantity and 
quality of life. However, in the past two decades the emphasis has shifted to 
how much less can surgeons do to achieve their goal of treatment 
(Johnson2005). In consequence, any technological tool that helps obtaining 
the same result but simplifying the surgical procedure is very welcome. 

In modern surgery, the procedure itself is enclosed by some essential 
processes. In the first place, certain questionnaires, explorations and probes 
are made to give the doctor enough information about the patient. The 
medical data can be manifold, from simple blood analysis to complex 
medical images. Then, the doctor analyses the available information and 
makes a diagnosis. The following step corresponds to the selection of the 
specific treatment that better overcomes that specific medical problem. 

At this stage, if the treatment includes surgical procedures, a surgical 
treatment planning is designed to better accomplish the operation and the 
actual surgery is performed. 

 

Figure 1.3. The standard tasks involved in an integral surgical service. 
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Finally, a recovery and rehabilitation phase comes where the patient is 
monitored, in order to follow the evolution, and check the effectiveness of 
the treatment. Obviously, all these steps depend totally on the type of 
intervention, since the range of operations goes from minor outpatient 
procedures as biopsies to major procedures such as a heart transplant. The 
sequence of the whole process can be seen summarized in figure 1.3. 

The ideal surgery consists on a detailed plan of the intervention, an 
execution exempt of complications and a short recovery time of the patient. 
However, the everyday practice of surgeons is very different. Usually, the 
quality of the medical images is not as high as they wish to be, and the 
surgery cannot be optimally planed since the simulator does not have 
enough information. Furthermore, during the surgery it is inevitable to 
come up against unexpected situations as lesions that do not appear in the 
medical images, worse conditions of a tear than the expected one, poor 
tissue quality, bleeding, etc. These issues make the work of surgeons to be 
full of risk situations where their skills are put to test. 

Consequently, the professionals involved in surgical procedures 
require the last technology to overcome these difficulties and practice with 
safe tools. For this reason, their demands can be brought together into 
three groups: learning process, surgery planning tools and instrumentation 
for the surgery room. 

The outcome of surgical procedures is closely related to the skills that 
are being developed over years of surgical training. Therefore, surgeons 
demand typically training to get used to the organization of an operating 
room before facing up a real surgery, reduce the learning curve, learn 
surgical procedures and physical ergonomics, and simulate with a model as 
close to the patient as possible. 

In the pre-surgery stage, physicians demand from technology 
developers an increase and improvement of the information acquiring 
methods, and the development of new tools to better plan and simulate 
surgical procedures. On the other hand, during the surgery, they request 
advanced passive and active instrumental to reduce patient invasion, 
complication rate, intervention cost and hospital stay. Additionally, virtual 
reality and robotics are also welcome to the surgery practice, since they 
increase or improve the capabilities of the surgeons. Usually, this kind of 
technology provides additional information channels and new data 
manipulation tools. 
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Therefore, engineering specialities related to surgery have a wide 
range of challenges where the cooperation between different disciplines is 
mandatory. Figure 1.4 displays some of the typical elements present in the 
above mentioned three groups, namely, learning process, pre-surgery phase, 
and actual surgery. Some of these elements can also be shared with other 
groups however, they are only included in the most common stage. 

 

Figure 1.4. The different elements present in the learning, pre-surgery and during surgery 

stages. 

1.2 SURGERY LEARNING, PLANNING AND SIMULATION 

In the learning process of any surgical skill, even a task as simple as tying a 
knot, goes through different stages. First, the learner must understand the 
mechanics of the skill; that is, how to hold the tie, how to place the throws, 
and how to move the hands. With practice and feedback, knowledge is 
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translated into appropriate motor behaviour and the learner is able to 
execute the task more fluidly and with fewer interruptions. However, the 
trainee is still thinking about how to move the hands and hold the tie. In the 
final stage, practice gradually results in smooth performance and the learner 
no longer needs to think about how to execute this particular task and can 
concentrate on other aspects of the procedure. 

Other fundamental issues cannot be forgotten in the teaching 
program like organ identification, distinction of different healthy tissue 
types, or tumour tissue localization. Usually, the images shown in academic 
books are properly enhanced in order to better explain certain aspects of 
the subject. However, during an actual surgery the information is not so 
clear. For this reason, the teaching programs should include specific 
visualization tools that allow the trainee the immersion in a real surgery 
context. 

This knowledge acquisition process can be hard and the learner needs 
to be relaxed and concentrated into the task. However, real-life operations 
are complex and it is difficult to focus on one single task of the procedure. 
Thus, in the early stages of the learning process, it is better to learn and 
practice some basic skill in controlled environments before getting into the 
operating room experience. The solution to study these technical 
procedures until automaticity is achieved can be to practice with physical 
models or to train with virtual surgery simulators. 

Most surgical training programs make use of a variety of models, 
including inanimate models, virtual reality, live animals, and human 
cadavers, to simulate living human tissue and anatomy, as well as high-
performance patient simulators for critical-incident and team training. 
Although human cadavers most closely approximate reality, their cost and 
limited availability, and the poor compliance of cadaveric tissue limit their 
use. Working with live animals is also problematic because of ethical 
concerns and high costs. 

In contrast, inanimate models are generally safe, reproducible, 
portable, readily available and more cost-effective than animals or cadavers. 
Additionally, virtual reality based teaching provides better measurements of 
trainee performance than it is possible in the real world (Darzi2001). 
However, the main drawback relies on the difficulty of this technique to 
represent realistically both, visual elements and mechanical responses. 
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Even though the previous techniques have their own advantage and 
disadvantages, all of them can be useful during the process of learning 
certain procedures. For instance, learning how to make knot can be 
performed using a piece of a dead animal, a mattress or a virtual reality 
based simulator (see figure 1.5). 

 

Figure 1.5. Three different techniques to learn suturing: (a) a leg of a dead animal, (b) 

horizontal mattress and (d) virtual reality based simulator (LapSim®, Surgical Science). 

Some of the advantages and disadvantages of various models used in 
surgery learning, planning and simulation are summarized in the following 
table 1.1 (table taken from Reznick2006). 

(a) (b) 

(c) 
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Simulation Advantages Disadvantages Best use 

Bench models Cheap, portable, 

reusable, minimal 

risks 

Acceptance by 

trainees, low fidelity, 

basic tasks not 

operations 

Basic skills for 

novice learners, 

discrete skills 

Live animals High fidelity, 

availability, can 

practice haemostasis 

and entire 

operations 

Cost, special 

facilities and 

personnel required, 

ethical concerns, 

single use, 

anatomical 

differences 

Advanced 

procedural 

knowledge, 

procedures in which 

blood flow is 

important, 

dissection skills 

Cadavers High fidelity, only 

“true” anatomy 

simulator currently, 

can practice entire 

operations 

Cost, availability, 

single use, 

compliance of 

tissue, infection risk 

Advanced 

procedural 

knowledge, 

dissection, 

continuing medical 

education 

Human 

performance 

simulators 

Reusable, data 

capture, minimal 

setup time 

Cost, maintenance, 

and downtime; 

limited “technical” 

applications 

Team training, crisis 

management 

Virtual reality 

surgical 

simulators 

Reusable, data 

capture, minimal 

setup time 

Cost, maintenance, 

and downtime, 

acceptance by 

trainees, 3D not 

well simulated 

Basic laparoscopic 

skills, endoscopic 

and transcutaneous 

procedural skills 

Table 1.1. Some of the advantages and disadvantages of various models used in surgery 

learning, planning and simulation. 
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Surgery planning and simulation require very different strategies to 
training. Training does not need a patient specific model; thus, animal and 
dead bodies are valid to practice. However, in the case of rehearsal it is 
necessary to use a realistic model of the patient. The main difference 
between virtual models designed for planning and training purposes is that 
the objective of the first one is to be as accurate and realistic as possible 
while the second one has to be appropriate to transfer certain skills. When 
designing a brain intervention for instance, it can be more important to 
define the path for reaching a tumour than simulating accurately the needle 
suturing. However, in the early steps of surgery learning it can be more 
interesting to acquire precise skills of suturing a wound. 

There are two possibilities for the creation of patient specific models: 
physical and computer-based models. Physical models are time consuming 
and costly, since they need to be manufactured with the required precision 
and fidelity. Additionally, in most of the cases, they are valid for one unique 
trial. On the contrary, computer-based simulation models do not have those 
limitations. Furthermore, the information obtained in computer-based 
models can be used during the procedure. Some of their drawbacks, 
however, are the way of interacting with them and how close to reality is the 
perception of the procedure. 

Virtual reality and three-dimensional representation of pathologies 
embedded in surgery simulators may facilitate screening, training, planning 
interventions or diagnosis, in addition to the practice and evaluation of 
clinicians in the performance of procedures for certification. Therefore, 
these tools are very appropriate for overcoming important problems and 
limitations commonly found in nowadays surgery. 

Bringing forward some of the objectives that are going to be 
explained in the following sections, in this thesis the attention has been 
focused on overcoming some of the limitations of virtual reality based tools. 
Particularly, the main objective is to build realistic deformable virtual 
models to be used in learning engines, and in surgery planning and 
simulation tools. 

1.3 GENERAL SURGERY SIMULATORS 

Surgical simulators can be useful in training as well as in procedure planning 
and simulation. The main difference is that in the training phase the 
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simulation does not need to be patient specific and it can be focused in a 
certain task rather than in the whole surgery (see figure 1.6). 

On the other hand, surgery simulation can be seen as a natural 
extension of the intervention planning process. In this case, it is mandatory 
to use patient specific data and usually requires simulators that are more 
complex than those used in learning programs. This kind of simulator 
allows the study of the effects of the planning, prevents unexpected 
situations, and prepares the surgeon to proceed in the most secure manner. 

 

Figure 1.6. (a) Learning simulator that uses synthetic data (LapSim®, Surgical Science) and 

(b) patient-specific virtual neurosurgery simulator (source: National Research Council1). 

Every surgery simulation process can be divided, basically, into four 
steps: medical image acquisition and geometric model generation, virtual 
deformable model building, user interaction management, and deformation 
simulation (see figure 1.7). 

1.3.1 DATA ACQUISITION AND GEOMETRICAL MODEL GENERATION 

Depending on the objective of the simulator, the source data to build a 
virtual model is twofold: synthetic data and patient specific medical data. 
For basic skill learning purposes, such as suturing, it can be enough to use 
synthetic data. However, using a simulator for planning a real case of 
surgery requires specific data pertaining to the patient. 

                                                 
1 http://www.nrc-cnrc.gc.ca/eng/projects/ghi/virtual-reality/video.html 

(a) (b) 

http://www.nrc-cnrc.gc.ca/eng/projects/ghi/virtual-reality/video.html
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Figure 1.7. Modular structure of a generic surgical simulator. 

In some cases both types of information are combined to develop 
suitable simulators. Some learning simulators, for instance, use synthetic 
data that comes from combining different medical information from 
different patients. In other words, they use average patient models. Alcañiz et al. 
(Alcaniz2003), for instance, developed a surgery simulator that allows the 
user to select the tools and the organs needed for the simulation of the 
operation. The organs loaded in the simulator can be real or synthetic and 
with or without pathologies. 

SIMULATOR 
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Medical imaging is the principal source of information for creating 
this kind of model. New image acquisition devices, apart from offering 
enhanced representations of the reality, allow applying three-dimensional 
and virtual reality techniques to generate detailed models of biological 
tissues. These geometrical models are the visual objects that the surgery 
simulator will use. Therefore, high resolution acquisitions are desired. 

The most common medical image acquiring techniques are Computer 
Tomography (CT) and Magnetic Resonance Imaging (MRI). Both are based 
on different physical principles and produce different image characteristics. 
CT provides images with sharp contours of bones since they have high 
contrast between bones and soft tissue. On the contrary, MRI is more 
suitable for obtaining images with greater contrast between the different 
soft tissues of the body. Neither imaging modality can produce clear 
contours of both the bone and the surrounding soft tissues, even though 
they provide complementary information. 

In modern medicine there are many other medical imaging 
approaches apart from CT and MRI like photoacoustic, ultrasound, 
termography, and nuclear medicine based imaging. 

After acquiring the medical images it is necessary to process them in 
order to transform those data into useful information. The objective of a 
simulator is to show and interact with different organs and tissues; thus, the 
image processing tools has to be able to extract the corresponding 
information. This information may include geometric data, structure of 
organs or identification of material type. To achieve this objective, the 
normal procedure is to use image segmentation, registration and 
reconstruction methods. 

 

Figure 1.8. Example of a segmentation of CT scan of the head. 

Segmentation 
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Segmentation is the process of identifying and classifying data found 
in a digitally sampled representation. It allows defining the limits of each 
type of tissue (see figure 1.8). 

 

Figure 1.9. Example of the registration of different brain images. 

Registration is the task of aligning or developing correspondences 
between data. For example, a CT scan may be aligned with a MRI scan in 
order to combine the information contained in both (see figure 1.9). 

 

Figure 1.10. Example of the 3D reconstruction of a set of head images. 

As the segmented and registered images usually are 2D slices, it is 
necessary to combine them in order to generate 3D geometries. There are 
many techniques to build these geometries; the easiest one is to assign to 

Reconstruction 
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each pixel of the slices a height and transform them into voxels (see figure 
1.10). Afterwards, there are several ways to convert this cubical geometry 
into smooth triangular meshes, for instance, the marching cubes method 
(Lorensen1987). Both the triangle meshes and the voxel information can be 
used to represent the anatomy of the patient in a 3D interactive virtual 
model. 

1.3.2 VIRTUAL DEFORMABLE MODEL BUILDING 

Once the different regions captured with the medical imaging devices are 
identified, the 3D objects have to be translated into virtual mechanical 
objects so that the computer can simulate their physical behaviour when the 
user interacts with them in the virtual environment in a realistic way. In 
particular, it is important to represent realistically how the different soft 
tissues deform under the virtual forces applied in the interaction. 

There are different techniques to create deformable models and each 
of them allows specific ways of simulation. Some models are based on 
geometric approaches while others are physically-based. In surgical 
applications geometrical approaches are hardly seen since they do not 
provide accurate results and do not allow computing mechanical measures 
such as forces. Physically-based approaches, in turn, are widely adopted in 
mechanical simulation field as they are much more versatile and accurate. 

Those models that are simulated using geometrical constraints and 
keyframe interpolations belong to the group of geometric approaches. 
Although it is not mandatory, they typically define the deformable object as 
a surface and only look for a visually satisfactory result. The weakest point 
of this sort of models is that they provide very poor interaction experiences 
since they cannot calculate any feedback force to return to the user. 
Additionally, as they cannot simulate the physical behaviour of the body, it 
is impossible to apply them to make realistic procedure learning or 
simulation. Therefore, their use is mainly limited to the production of 
didactic videos (see figure 1.11). 

On the other hand, deformable bodies based on physical laws are able 
to simulate closely the behaviour of living tissues since they evaluate also 
the mechanical response of the matter. In this context, there are two main 
approaches: the continuum and the discrete point of view. The Finite 
Element Method (FEM) is the most relevant continuum-based method 
while the gold method for the discrete approaches is the Mass-Spring 
Model (MSM). 
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Figure 1.11. An image from a didactic video about cervical surgery (courtesy of 

SpineUniverse.com, a Vertical Health Web Property). 

Physically-based deformable models have two important 
characteristics: mechanical behaviour and topologic configuration. As each 
region belongs to different types of tissue it can show different behaviour 
and has to be characterized using different parameters even material 
models. Since most simulation models are built up using simple geometrical 
figures, the 3D bodies are tessellated adopting, usually, cubes or tetrahedra. 

The information contained in the medical images allows transforming 
the geometrical model into a deformable model by assigning some 
parameter values to each region (see figure 1.12). 

 

Figure 1.12. The geometrical model is transformed into a virtual deformable model. 
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Mechanical parameters depend on the tissue type, deformation 
velocity and the extent of the deformation. In general, biological soft tissues 
have very complex behaviour. However, they are usually taken as linear 
elastic in the case of small deformations and hyperelastic in the case of big 
deformations. In both cases, material properties can be either uniform or 
non-uniform. 

Apart from using medical images of a certain patient to build up the 
virtual model it is also possible to use synthetic data. If the objective of the 
deformable model is to develop a simulator to learn suturing it can be 
enough to build a model in which the mechanical properties are essential 
but the geometry is not so important. In this case, the behaviour of the 
tissue can be obtained from mechanical tests such as indentation, 
compression, aspiration or shear testing (Mazza2007). 

1.3.3 USER INTERACTION 

There are different interaction modalities depending on the objective of the 
simulation. If the aim of the simulation is to design a surgery plan it may be 
interesting to show the outcome of the procedure. However, if the objective 
is the training of certain surgical techniques, it might be more interesting to 
develop a simulator that reacts interactively in real time and provides the 
user with feedback information of the deformations and forces. 

In the practice of surgery, there are many mechanical instruments 
such as forceps, needles and scissors, and they produce numerous 
interactions types: palpation, punctuation, injection, suction, grasping, 
pulling, gripping, clamping, etc. All of them change the initial state of the 
subject generating geometrical and mechanical modifications. Thus, the 
surgery interaction module has to analyze the interaction type and its 
magnitude to transform it into mechanical parameters. 

The deep analysis of some of the issues that arise during interaction is 
very complex but in most of the surgical applications they are simplified in 
order to make computationally efficient simulations. Typical interaction 
routines include collision detection algorithms and collision response 
computation, which usually involves collision reaction and friction force 
calculus (see figure 1.13). 
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Figure 1.13. The interaction management involves detecting and computing collisions. 

1.3.4 SIMULATION 

The aim of the simulation consists in studying the effects of the user 
interactions over the deformable body. That is, the simulation routine has 
to evaluate the mechanical effects of the net forces applied on the body or 
specific parts of the body. As all the biological tissues have certain mass, 
those forces cause accelerations to each element of the body that lead to 
displacements, rotations and deformations (see figure 1.14). 

 

Figure 1.14. The simulation module computes the deformed state and may return force 

feedback due to the change of the conditions of the primary interaction. 

The simulation module computes a new deformation state which can 
involve changing the conditions of the interactions. Therefore, in some 
simulators this module also returns some force information that may 
modify the force computed in the user interaction module. 
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To update the state of the model it is necessary to evaluate the 
deformation making kinetic and kinematic analysis. As these approaches 
usually require using time integration methods, the most common problems 
that accompany these procedures are mathematical convergence and 
stability issues. 

1.4 OBJECTIVES AND SCOPE 

Once the overall structure of a surgical simulator has been seen and taking 
into account the requirements and challenges suggested by the medical 
community involved in surgical treatments, three different main areas of 
research can be distinguished: development of innovative medical imaging 
techniques, development of realistic surgery planning and simulation 
modules, and design of new surgical instruments (including devices for 
robotised procedures). 

In particular, this thesis is focused on the second category, that is, the 
interactive surgery planning and simulation stages. In this field, the 
designers of medical simulators have to tackle with two major challenges: 
reproducing with accuracy the deformations of real biological tissues and 
giving realistic feedback to the user of the surgical interactions. 

This thesis will focus on the first of these challenges, and its main 
objective is the characterization of virtual deformable bodies for the realistic 
and accurate simulation of medical procedures. 

1.4.1 SCOPE 

As deformable models need a platform to be tested a generic interactive 
simulator is going to be developed whose purpose is to give a context to the 
proposed deformable model and evaluate its usability. In the previous 
sections it has been shown that in a simulator many processes are involved. 
However, the effort is going to be focused in the deformable model 
building process. The rest of the components of the simulator are out of the 
scope of this thesis. Therefore, those issues related to image acquisition and 
analysis, collision detection, and specific simulation problems like 
instabilities will not be addressed. 

According to the input data, as it has been mentioned previously, 
there are two types of medical information used for generating medical 
models, namely, synthetic and patient-specific data. Thus, it is desirable to 
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design generic deformable models suitable for adapting their parameters to 
both kinds of data. 

Additionally, the outcome of this research work has to fulfil some 
requirements that concern the description of the behaviour of the model, 
the characteristics of the interactions, and the feedback information with 
which the user is provided. 

Although a high variety of elements are present in the human body, 
the studied models will be limited to solid deformable bodies. Fluids and 
gases will be excluded from the modelling process. Even though they 
suppose the highest percentage of the volume of the human body in many 
cases their mechanical effects can be simplified substantially. Assuming that 
nonsolid materials are confined in a closed space or their flow is fairly 
constant; then, their modelling can be similar to that of the solid bodies. 

The non-homogeneous group of solid bodies includes, among others, 
muscles, ligaments and tendons. Although their properties are radically 
different it is usual to suppose that their behaviour is linear elastic under 
small deformations and nonlinear when high deformations are involved 
(Taylor2009). For this reason, following the generic view of this thesis it is 
necessary to consider both material models. 

Another well-known complexity of the human body is that it is 
continuously changing and adapting itself to the external conditions. 
Studying living processes like bone growth, platelet activity in a wound or 
the muscle elasticity variations due to temperature changes requires very 
specific virtual models. As this research work is focused on developing 
generic models for deformable tissues in virtual reality simulation this sort 
of processes will not be considered. 

The user interactions that will handle the developed generic simulator 
are limited to palpation-like tasks since they are enough to test the model 
and study its usefulness. For this reason, the specific study of mechanical 
effects concerning the interactions with medical instruments such as 
scalpels, scissors and needles remain out of the scope of this work. 

1.4.2 OBJECTIVES 

The main objective of this thesis is to study and analyse deformable models 
specifically designed for the simulation of biological tissue manipulation. 
Specifically, the aim of this work is to characterize models suitable for 
realistic, accurate and fast simulations of the deformations of living tissues. 
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In particular, special attention will be paid to one of the most critical points 
of the deformable model design, namely, the process of deriving the 
parameters of these models. 

The following points summarize the particular objectives of this 
research work and specify the characteristics that the simulation model has 
to fulfil: 

- As stated in previous sections, surgery planning and simulation 
tools usually need to calculate the mechanical response in real time. 
Therefore, the deformable model has to allow fast computation of the 
mechanical behaviour in order to guarantee real-time response in 
interactive simulations. 

- To guarantee a reliable performance during the simulation, the 
methods proposed to characterize the models have to ensure their 
accurate behaviour. 

- The feedback of the simulation model cannot be limited to visual 
information of the model deformation. In turn, it has to give 
mechanical feedback. These results can be either deformation or 
force values. 

- In many previous works, to achieve real-time performance, the 
living tissues have been modelled using simplified linear elastic and 
homogenous material models. In this research work, a more realistic 
and complex behaviour is sought. That is, the proposed model has to 
be able to describe non-homogeneous and nonlinear behaviour. 

- In order to develop a simulation model as flexible as possible, the 
algorithms proposed to generate the models have to be suitable to 
build generic as well as patient-specific models. 

- The simulation model has to be capable of dealing with user 
interactions such as palpation. The considered mechanical 
interactions will be limited to palpation manoeuvres using stick-like 
medical instruments. 

- The final software implementation of the proposed method is out 
of the scope of this work. Therefore, the real-time performance 
capability of the proposed approach has to be tested using 
existing commercial or freely available simulation software. 
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1.5 DOCUMENT ORGANIZATION 

The contents of this memory are divided into 7 chapters. The first chapter 
has presented the motivations for this thesis. The second chapter outlines 
the most relevant methods proposed in literature for the simulation of 
deformable bodies, such as the FEM or the MSM. In this chapter it will be 
seen that MSMs provide a general framework that fulfils many of the 
requirements for this work. 

The derivation of the parameters of a MSM is still an open research 
question. Chapter 3 shows an overview of the methods used for the 
derivation of the parameters of MSMs and proposes two new different 
methods that will be described in more detail in the following chapters: 

- Chapter 4: a new method valid for small deformations that uses 
linear material models as input data. This method is based on the 
linearization of the nonlinear equations of MSMs; thus, its usability is 
limited to specific circumstances. 

- Chapter 5: As the generic behaviour of biologic living tissues is 
hyperelastic, a new method is proposed to generate such models. This 
method takes advantage of the nonlinear nature of traditional MSMs 
and is valid for large deformations. 

Chapter 6 shows two medical applications implemented using the 
proposed methods. Chapter 7 presents the conclusions derived from this 
work and proposes some future research lines. 
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CHAPTER 2 

2 STATE OF THE ART IN 

SOFT-TISSUE 

DEFORMABILITY 

MODELLING 

The development of deformable models for the simulation of living tissues 
gained great importance in the middle of the 1990’s due to the emergence 
of the simulation of surgical procedures. This was part of the paradigm shift 
in the field of medicine that brought concepts such as telepresence surgery, 
virtual reality based surgical simulators, medical informatics and 
rehabilitation. The main precursor of these techniques was the American 
Department of Defence who considered surgery simulation a fundamental 
part of emergency medicine (Satava1994). 

The need of virtual deformable models for these applications caused 
the study of many different approaches, which, consequently, lead to the 
development of many types of simulation algorithms, such as MSMs, or the 
adaptation of other approaches present in other fields of research, such as 
the FEM. All of these methods share the objective of finding a model that 
is capable of reproducing or predicting the outcome of the interaction with 
real soft tissues for a given set of start conditions using mathematical and 
computational modelling tools. 

In contrast to the behaviour of other typical elements present in 
computer simulations such as rigid body simulation, the behaviour of soft 
tissue is usually more complex and requires different approaches. The direct 
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application of the classical laws of Continuum Mechanics mostly leads to 
mathematical formulations that cannot be solved analytically and whose 
numerical solutions are time-consuming and difficult or even impossible 
due to numerical instability. To overcome these problems, a variety of 
simplifications and other approaches have been proposed. Some of them 
are referred to as physically-based, such as MSMs, whereas others can clearly 
be associated with animation techniques, parametric surfaces for instance. 
On the other hand, the approximated simulations based on the constitutive 
laws used in soft-tissue modelling include linear and corotational FEM. 

 

Figure 2.1. The different tasks that take place during the modelling process. 

No matter which category a particular model might fall into, the 
process of finding a model always includes similar set of tasks. In general, 
modelling real biological tissues requires following the next sequence of 
steps (see figure 2.1): 

1. Observe the domain of the problem and try to find regularities that 
can be used for a model. 

2. Find an idealization for the problem that is capable to reproduce 
the observed regularities. 

1. Observe 

2. Idealize 3. Model 

4. Predict 

6. Correct 5. Validate 

MODELLING 
PROCESS 
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3. Construct a model that reflects the observed regularity, generally 
using a mathematical formulation. 

4. Make some simulations to predict certain performance. 

5. Validate the predictions with experiments. 

6. Correct the model and start the process all over until the validation 
meets the acceptance conditions. 

Frequently, the resulting mathematical formulation has the problem 
of being too complex. In those cases, it is a common procedure to make 
some simplifications that limit the framework of the model but making it 
more suitable to the everyday practice. 

In this chapter, first, the different techniques applied to obtain the 
mechanical parameters of soft tissue are presented. Then, the main 
characteristics of biological soft tissues will be addressed and some of the 
typical simplifications adopted when describing their behaviour will be 
presented. Afterwards, the most common deformable models will be 
introduced. This review will not limit itself only to soft-tissue simulation but 
it will also deal with other related topics such as cloth simulation and 
character animation, because those fields suppose an interesting source of 
ideas, which, in some cases, can be directly applied to medical simulation. 

2.1 MECHANICAL PROPERTIES OF SOFT TISSUE 

There are different environments in which medical data is obtained. They 
can be roughly divided into three types: in vivo, ex vivo and in vitro. The 
experiments made using a whole, living organism are called in vivo 
experiments. Ex vivo, in turn, is related to the studies made in an artificial 
environment outside an organism. Finally, in vitro corresponds to those 
analyses performed in a test tube outside an organism. 

There are many studies on the mechanical properties of biological 
soft tissues, however very limited data are available of the in vivo behaviour 
of soft tissues associated with human organs. 

The main reason for this deficiency is the severe technical and ethical 
problems related to this kind of experiments. Usually, these techniques 
require direct access to the internal organs of a patient, leading to 
interference and disruption of the primary surgical procedure. Additionally, 
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the standard methods of material testing, such as tensile or bending 
experiments, are not appropriate for in vivo procedures. 

Many different approaches have been proposed for in vivo analysis 
such as indentation (Samur2007, Kim2008) and aspiration (Nava2008, 
Schiavone2009) (see figure 2.2). The two main drawbacks of most of in vivo 
approaches are the difficulty to impose well-defined boundary conditions 
and the requirement of opening the patient for the characterization of inner 
organs. 

 

Figure 2.2. Two different in vivo approaches for the characterization of soft tissues: (a) a 

robotic indenter for minimally invasive measurement (Samur2007) and (b) human brain 

elasticity measurement using a light aspiration device (Schiavone2009). 

On the contrary, when analyzing inner organs, ultrasound and 
acoustic wave propagation based measurements are also in vivo but not 
invasive. For instance, acoustic radiation force imaging (ARFI) modalities 
are being studied to non-invasively characterize the liver without the need 
for liver biopsy (Palmeri2008). Another interesting approach is 
elastography, which is a non-invasive method that uses stiffness or strain 
images of soft tissue to detect or classify tumours (Iglesias-Garcia2009). 

The most important limitation of non invasive in vivo approaches is 
that they can be used to obtain some behavioural information but in general 
they do not allow defining load-deformation curves. Moreover, as the 
measurements are taken from the exterior it is fairly impossible to obtain 
detailed data about the change of these properties along the different 
locations and directions. 

(a) (b) 
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On the other hand, ex vivo and in vitro experiments need extracting a 
tissue sample of the patient. In practice, these techniques are applied to 
derive general mechanical behaviour of some tissues, obtain information 
about the constitution of a sample or detect the presence of certain 
substance or disease. As these techniques are invasive and require extracting 
a sample, if there is not a justified reason, they are not applied to 
characterize the mechanical response of the tissue of a particular patient for 
patient-specific surgery. 

Let us take as an example the study of the mechanical properties of 
the brain to show how difficult is to obtain mechanical parameters and their 
variability from one another experiment. 

Most authors propose to simplify the modelling hypothesis by relying 
on a small deformation linear elastic constitutive equation to characterize 
the mechanical behaviour of the brain tissue. Even in this quite restrictive 
framework, parameter values selected to define the mechanical behaviour 
vary significantly, with a Young’s modulus (E) between 0.6 kPa (Clatz2005) 

and 180 kPa (Kyriacou1999), and Poisson’s ratio () between 0.4 
(Skrinjar2002) and 0.499 (Miller2000). 

The variety of the results found for the specific case of the 
mechanical properties of the brain cannot be generalized. In some cases, it 
is possible that obtaining those properties is easier because the region is 
very accessible, skin for example, and the results might be more similar. 
However, characterizing a whole organ which is not easily accessible is very 
hard because punctual measurements may not obtain directional 
information of tissues such as reinforced fibres of muscles, for instance. 

The direct consequence of this issue is that surgical simulators have 
limited input data. Ideally, surgery planning and simulation tools require 
accurate information about the behaviour of the whole region of interest of 
a surgery, under different loading conditions and preoperatively. Generally 
speaking, with the current techniques it is difficult to have accurate data 
before the surgery and during the surgery there is not enough time to make 
useful simulations that may change the operation strategy. 

2.2 CHARACTERIZING SOFT LIVING TISSUES 

The mechanical properties measured using the previously presented 
techniques have to be analyzed and a mathematical formulation has to be 
developed to model them. The characterization of the behaviour of 
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deformable bodies is one of the most complex aspects in continuum 
mechanics because the existing mathematical theories are, in general, 
incomplete and are not able to characterize soft living tissues completely. 

However, some approximated material models have been developed 
from experimental observations and are useful to predict their behaviour. 
These models must be viewed simply as idealizations of regimes of material 
response under specific types of loading and environmental conditions. 

While studying the living tissue biomechanics, the common practice 
has typically been to use engineering methods and models, known from 
classic material science. However, living tissues have properties that make 
them very different from typical engineering materials. They permanently 
consume energy and exchange matter with their environment to maintain 
the essential metabolic processes. For example, living tissues have self-
adapting and self-repairing abilities, which enable wound healing and stress 
relaxation of loaded tissue. 

The diversity of mechanical properties encountered in soft biological 
tissues is huge. Numerous experimental and theoretical studies in the field 
of tissue biomechanics have been carried out in recent years (Fung1993, 
Maurel1998, Oezkaya1999). Summarizing the facts observed in different 
experiments with different tissue types, soft tissues generally exhibit quasi-
incompressible, nonlinear plastic-viscoelastic material properties. 
Additionally, they often have a layered or an even more complicated 
structure and non-homogeneous distribution of the constituents. This 
causes the mechanical properties to be anisotropic and non-uniform. 

The properties listed above are briefly described in order to help 
better understanding the characteristics of living tissues and posterior 
analysis of the techniques used to model them: 

- Non-uniformity, anisotropy: Soft tissues are multi-composite 
materials containing cells, intracellular matrix, fibrous and other 
microscopical and macroscopical structures. This means that the 
mechanical properties of living tissues vary from point to point within 
the tissue. Essential for modelling are the spatial distribution of 
material stiffness and the organization of fibrous structures such as 
collagen and elastin fibres, which have frequently some preferential 
orientation. The dependence on coordinates along the same spatial 
direction makes the properties to be non-uniform. If a material property 
depends on the direction, such material is called anisotropic. Although 
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properties of most of the living tissues are non-uniform and 
anisotropic, there are few quantitative data about them. 

- Stress-strain: stress () is a measure of the average force per unit 
area of a surface within a deformable body on which internal forces 

act. Strain (), in turn, is the geometrical measure of deformation 
representing the relative displacement between particles in the 
material body. It measures how much a given displacement differs 
locally from a rigid-body displacement. In general, the mechanical 
behaviour of a tissue is given in terms of stress-strain diagrams or 
constitutive equations.  

- Elasticity: it is the physical property that describes the tendency 
of an object to deform along an axis when opposing forces are 
applied along that axis. It is commonly characterized by the slope of 
the stress-strain curve. 

- Material nonlinearity: The stress-strain relationship of general 
soft tissues is nonlinear. Usually, the nonlinear stress-strain curve (see 
figure 2.3) is divided into three phases (Fung1993). In the first part 
(phase I), the load increases exponentially with increasing elongation. 
In the second part (phase II), the relationship is fairly linear. In the 
third part (phase III) the relationship is nonlinear and ends with 
rupture. The toe region (phase I) is usually the physiological range in 
which the tissue normally functions. 

 

Figure 2.3. Typical nonlinear stress-strain curve of soft tissue (Fung1993). 

Stress 

Strain 

I II III 
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- Viscoelasticity and hysteresis: viscoelastic materials are those 
for which the current deformation is a function of the entire history 
of loading, and conversely, the current stress is a function of the 
entire history of straining. After the stress is removed the material 
recovers the original state. However, the resulting loading and 
unloading stress-strain diagrams are different. This phenomenon is 
known as hysteresis. 

- Viscoplasticity: it is the permanent, or plastic, deformation 
produced by a cyclic deformation process that does not return the 
material to its initial state, even after relaxation. This occurs when 
processes in the material that respond to a change in stress or strain 
result in irreversible changes. This prevents the material from 
assuming its initial state after restoration of the mechanical 
magnitudes to their original values.  

- Force-relaxation (or stress-relaxation): it is a phenomenon that 
occurs in a tissue stretched and held at a fixed length. Over time the 
force present within the tissue continually declines. 

- Quasi-incompressibility: a material is called incompressible if its 
volume remains unchanged by the deformation. Soft tissue is a 
composite material that consists of both incompressible and 
compressible ingredients. Tissues with high proportion of water, like 
brain for instance, are usually modelled as incompressible materials, 
while tissues with low water proportion are assumed quasi-
incompressible. 

Observing the complexity of the mechanical characteristics of living 
soft tissues, it results evident that it is mandatory to make some 
assumptions in other to simplify the observed behaviour and propose useful 
models. These idealizations depend on the working context; thus, some 
tissue may have different models in different situations. 

Material models used in soft-tissue simulation do not describe 
materials themselves. Rather they describe the behaviour of materials under 
well-defined working conditions. A very common example of this idea is 
water since there is not a unique constitutive relation for it. There are a least 
three different material models for water in its solid, liquid, or gaseous 
states. This means that, for the same tissue, there are different material 
models that are valid for the specific conditions of deformation, 
temperature and pressure. 
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Therefore, it is unreasonable to expect that any single constitutive 
relation should describe totally a particular tissue. In other words, diverse 
constitutive relations can be equally useful for describing the behaviour of 
individual tissues depending on the conditions of interest. 

In the particular case of biological soft tissues, there is no tissue that 
exhibits a truly elastic response. However, there are many conditions under 
which the assumption of elasticity is both reasonable and useful. Toward 
this end, one of the most interesting observations with regard to the 
behaviour of many soft tissues is that they can be preconditioned under 
cyclic loading. That is, as a biological tissue is alternatively loaded and 
unloaded, the stress versus stretch curves tend to shift to the right, with 
decreasing hysteresis, until a near-steady-state response is obtained (see 
figure 2.4). Fung (Fung1993), for instance, suggested that this steady-state 
response could be modelled by separately treating the loading and unloading 
curves as nearly elastic or pseudo-elastic. 

 

Figure 2.4. An example of the preconditioning effect: (a) load-elongation and (b) relaxation 

curves of the first two cycles (Fung1993). 

In practice, except in the case of muscular tissues, the hysteresis is 
often small. Thus, it is possible to approximate reasonably well the mean 
response between the loading and the unloading responses using a single 
elastic descriptor, similar to what is done to describe rubber elasticity. Many 
parallels between tissue and rubber elasticity likely result from the long-
chain polymeric microstructure of both classes of materials, thus these 
fields can borrow ideas from one another (Treloar2005). 
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Whereas a measured linear stress-strain response implies a unique 
functional relationship, the nonlinear, anisotropic stress-strain responses 
exhibited by most soft tissues typically do not suggest a specific functional 
relationship. In other words, one must decide whether the observed 
characteristics are best represented by polynomial, exponential, or more 
complex stress-strain relations. Common forms of stress-strain relations in 
rubber elasticity and soft-tissue modelling are those who represent 
accurately hyperelastic behaviours, for example, neo-Hookean (Wu2001, 
Harders2003, Martins2006), Mooney-Rivlin (Hirota2001, Wu2001, Hu2004, 
Martins2006), and Ogden (Hu2004, Martins2006, Gao2010) material 
models. 

For this reason, it is generally accepted that considering the behaviour 
of soft tissues as linearly elastic, in the case of small deformations, and 
hyperelastic for large deformations is enough to characterize them in the 
surgery simulation field. Even more, if the behaviour of the tissue is 
assumed to be similar for the whole model, then it is acceptable to use 
uniform properties. However, some applications require more detailed 
models and in those cases it can be more realistic to use non-uniform 
properties. 

2.3 INTRODUCTION TO MODELLING METHODS 

The characteristics observed and idealized in a behaviour model have to be 
incorporated into a mathematical framework. In general, real processes in 
nature are continuous with respect to space and time. Modelling continuous 
processes using computers necessarily leads to problems that use data that 
computers can represent, that is, discrete data. This involves working with 
limited accuracy. Therefore all problems have to be parameterized in a 
discrete state vector. The problem is then generally solved with a numerical 
integration technique that approximates the solution at discrete time steps. 

A discrete problem representation as necessary for the computer can 
be achieved in two ways: (1) a continuous problem formulation can be 
discretized or (2) the problem itself can be formulated in a discrete way. 
Both approaches are common in biomechanical modelling. 

2.3.1 CONTINUOUS APPROACH 

The continuous approach requires special mathematical formulations to 
solve the deformation field since the object can hardly ever be studied with 
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a finite number of parameters. Until the arrival of the FEM continuous 
systems were solved analytically, but this was affordable only when the 
geometry or the boundary conditions were simple. FEM formulation caused 
a big change in the way the continuum problems were solved since it allows 
finding approximate solutions of partial differential equations as well as 
integral equations. 

Several branches of computational mechanics can be distinguished 
depending on the focus of attention. A typical classification of static analysis 
is based on the discretization method by which the continuous 
mathematical model is subdivided in space. This classification leads to three 
methods: FEM, Boundary Elements Method (BEM) and Finite Differences 
Method (FDM). 

For linear elastic problems FEM currently dominates the scene and 
BEM, although it is less used, is steadily gaining ground in some application 
fields. For nonlinear problems the dominance of FEM is overwhelming. 
FDM achieves efficiency and accuracy when the geometry of the problem is 
regular, but they are not well suited to study solids with complex contours. 
Thus, FDM in deformable body study has virtually disappeared from 
practical use except for a few simple problems. 

The main advantage of BEM approach is that it only requires a mesh 
on the surface of the model but do not a volumetric inner mesh. However, 
BEM techniques have several disadvantages over FEM. The most limiting 
issue is that BEM makes strong hypotheses about the nature of the elastic 
material: only homogeneous and isotropic linear elastic materials can be 
modelled. Another important point is that BEM cannot compute the 
displacement of any interior point, which can be a limitation when data 
about internal structure displacements are needed. 

As computing internal deformations can be necessary and the 
nonlinear material models are very common in soft-tissue simulation, in this 
thesis only the FEM has been considered. 

2.3.2 DISCRETE APPROACH 

The discrete approach considers the deformable object as a finite collection 
of elements interconnected to each other at specific points. The essential 
characteristic of these systems is that their deformation can be exactly 
defined using a finite number of parameters, namely, the displacements of 
the points where the different elements are connected. Therefore, the 
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equilibrium of the system can be represented using the equations of 
equilibrium in the directions of the deformations. 

There are few discrete approaches used in medical applications. The 
most popular ones are the MSM, Discrete Element Method (DEM) and 
Smoothed-Particle Hydrodynamics (SPH). DEM and SPH are mesh-free 
methods that study inter-particle interactions. This makes them especially 
suitable for the simulation of solids at atomic-scale and fluids. In turn, 
MSMs have network organization and are able to define complex structures 
such as non-homogeneous and layered models. Therefore, the MSM is 
preferable to DEM and SPH when simulating soft-tissue deformations. 

As DEM and SPH are not very common in soft-tissue simulation, in 
this thesis only the MSM has been considered. 

2.4 FINITE ELEMENT METHOD (FEM) 

The FEM is a numerical analysis technique for obtaining approximate 
solutions to a wide variety of engineering problems. Although it was 
originally developed to study stresses in complex structures, it has been 
extended and applied to the broad field of continuum mechanics. One of 
these fields being the study of soft-tissue mechanics. 

The objective of the FEM applied to deformable body simulation is 
to solve the differential equations provided by the theory of elasticity. This 
theory will not be explained since its details are out of the scope of this 
thesis. Just say that this theory defines the material law as a relation between 
the stress and the strain, which can be linear or nonlinear depending on 
properties of the material. For further information on the theory of 
elasticity the reader is referred to the work of Zienkiewicz et al. 
(Zienkiewicz2005). 

In the continuum based approach, the continuous medium replaces 
discrete arrays of atoms and molecules with a continuous distribution of 
matter. Fields and properties defined at every mathematical point in the 
medium are continuous, with continuous derivatives, except at a finite 
number of surfaces separating regions of continuity. To work with the 
continuum, the fundamental concept applied by FEM to study mechanical 
response is the spatial discretization of this continuous medium. 

The body being analysed is divided into a finite collection of 
contiguous and disjointed regions called elements. These elements are 
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connected to each other at a finite number of points known as nodes. In 
this way, the unknown displacements that are necessary to calculate the 
deformation become a finite set of parameters to be solved: de 
displacement of the nodes. 

Each finite element has associated some interpolation functions that 
define the displacement of any internal point in function of the 
displacement of the nodes of that finite element. Consequently, solving the 
mechanical problem just in the nodes of the finite elements gives the 
approximated displacement field of the whole continuous solid. This idea 
can be applied because the equations that govern the global object also 
govern the behaviour of the elements. 

In this way, it is possible to transform the initial continuum object 
with an infinite number of degrees of freedom that is governed by 
differential equations into a system with a finite number of degrees of 
freedom. The way that the discretized object describes the behaviour of the 
original body is by a system of equations that can be either linear or 
nonlinear. 

2.4.1 LINEARITY IN THE MATHEMATICAL FORMULATION OF FEM 

One frequent source of confusion in the formulation of FEM is its linear or 
nonlinear nature. It is important to distinguish between material model 
nonlinearity and mathematical nonlinearity. The former refers to the 
material law, that is, the relation between the stress and strain that shows a 
certain body. While the latter corresponds to the type of equations found 
during the resolution of a specific problem. 

There are different sources of mathematical nonlinearity. Then, 
having nonlinear material models leads to nonlinear mathematical equations 
but the contrary is not necessarily true. That is, having nonlinear equations 
does not mean that the behaviour of the body is nonlinear. 

The behaviour of a body is governed by an equation that relates the 

stress () with the strain (): 

  εσ f  2.1 

For an isotropic linear elastic material operating under small 
deformations and displacement this relation is defined by an elasticity 
matrix (D) whose coefficients are constant: 
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 Dεσ   2.2 

And the corresponding system of static equilibrium equations 
obtained applying the FEM is: 

 KUF   2.3 

where F is the vector that contains the forces caused by the interaction 
between the body and its surrounding, K is the stiffness matrix and U is the 
vector that contains the nodal deformations. 

However, this linear behaviour is just an idealization. In general, 
during the deformation of a body caused by certain loads its stiffness 
changes. There are two fundamental factors that make stiffness nonlinear: 
material and geometry. Without analyzing these concepts in depth, just say 
that stiffness changes with the deformation state if the relation between the 
stress and strain of the material is not constant (material nonlinearity) or if 
the deformations are large enough to consider the effects of the 
modification of the shape of the body (geometric nonlinearity). 

On the other hand, if the change in stiffness is small enough, it makes 
sense to assume that neither the shape nor material properties change at all 
during the deformation process. This assumption is the fundamental 
principle of linear elastic analysis. 

That means that throughout the entire process of deformation, the 
analyzed model retained whatever stiffness it possessed in its undeformed 
shape prior to loading. Regardless of how much the model deforms, 
whether the load gets applied in one step or gradually, and no matter how 
high may be the stresses that develop in response to that load, the model 
retains its initial stiffness. 

This behaviour changes upon entering the world of nonlinear 
analysis, because it involves abandoning the assumption of constant 
stiffness. Instead, stiffness changes during the deformation process and the 
stiffness matrix must be updated as the nonlinear solver progresses through 
an iterative solution process. Those iterations increase the amount of time it 
takes to obtain accurate results. 

A key component of nonlinear FEM is the solution of the nonlinear 
algebraic systems of equations that arise upon discretization. Frequently, 
dealing with this kind of system leads to convergence problems. This 
difficulty is overcome by the use of an incremental analysis. Briefly 
speaking, the analysis starts from an easily computable solution, for 
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example, the linear solution, and then goes on by trying to follow the 
behaviour of the system as actions applied to it are changed by small steps 
called incrementa. The previous solution is used as a starting point for the 
iterative solution-search procedure. 

Considering the huge difference that exists between linear and 
nonlinear FEM, it can be useful to divide the state of the art related to FEM 
in two different groups. Therefore, the following sections will present the 
most relevant works related to soft body modelling taking into account the 
linearity of the resulting FEM formulation. 

2.4.2 LINEAR FEM IN SOFT BODY MODELLING 

In the section where the characteristics of soft living tissues were analyzed 
(see section 2.2) it was mentioned that linear elasticity, isotropy and 
homogeneity are not frequently observed properties in real biological 
tissues. Moreover, their assumption can lead, in some cases, to serious 
errors in the estimated mechanical behaviour. However, it is the simplest 
material model definition and it has been widely applied (Bro-Nielsen1998, 
Müller2002, DiMaio2003, James2003, Berkley2004, Hauth2004, Wu2004, 
Lee2006, Georgii2008). 

Adopting this material model and considering that the deformations 
and the displacement that are suffering the deformable bodies are small 
simplifies dramatically the mathematical formulation of the FEM. As the 
stiffness matrix depends on the material properties, geometry and restraints, 
under the linear analysis assumption the study of the behaviour of the body 
becomes as simple as solving a linear system of equations (see equation 2.3). 

 That is, the stiffness of the model never changes. Consequently, 
those equations are assembled and solved just once, with no need to update 
anything while the model is deforming. Thus, linear analysis follows a 
straight path from problem formulation to completion and it produces 
results in a matter of seconds or minutes, even for very large models. 

Many authors (DiMaio2003, James2003, Berkley2004, Wu2004, 
Lee2006) simplify as much as possible the behaviour of deformable bodies 
in order to apply the linear elasticity approach. In this kind of models the 
deformations vector and the forces vector are related by constant matrices 
either in the quasi-static or static case (see equation 2.3), where there is just 
a stiffness matrix, as in the dynamic case (see equation 2.4), where 



38 Chapter 2 State of the Art in soft-tissue deformability modelling 

 

additionally there is an influence of the mass matrix (M) and the damping 
matrix (C): 

 KUUCUMF    2.4 

Regarding the numerical resolution scheme applied to solve these 
systems using static, quasi-static or dynamic formulations depends on the 
application and interactive-time requirements. For example, simulating 
cutting and tearing generally requires a dynamic model to accurately capture 
the viscoelastic properties of soft tissue when topology changes. On the 
other hand, simulating large deformations or stress-relaxation may only 
require at most a nonlinear static model owing to the well-damped nature of 
soft tissue (Sundaraj2004). 

There are several techniques based on computation optimization to 
help solving faster the linear FEM. Focusing the attention on the quasi-
static approach, the preferred optimization strategies are preprocessing and 
condensation. In simulations where external forces are deforming a body 
without changing its topology, it is easy to set out a preprocessing strategy 
by calculating previously the LU decomposition of the stiffness matrix 
(Zhuang1999, Berkley2004, Delingette2004). This way, calculating the 
system deformations is reduced to a simple backward-forward substitution 
operation. 

One important point to consider in linear FEM is that, in some cases, 
only the deformation of the visible surface nodes is of interest, while 
knowing the evolution of internal nodes is not needed. This idea was first 
exploited by Bro-Nielsen (Bro-Nielsen1998) and later on used by other 
researchers (DiMaio2003, Berkley2004, Delingette2004, Wu2004, Lee2006) 
(see figure 2.5). Bro-Nielsen showed that the linear system of equations (see 
equation 2.3) can be simplified by means of condensation, or the 
elimination of internal nodes from the system of equations, leading to a 
smaller system. The first step consists in decomposing the displacement and 
load vector as well as the stiffness matrix according to external (e subscript) 
and internal (i subscript) nodes: 

 

























i

e

iiie

eiee

i

e

U

U

KK

KK

F

F
 2.5 

Then, assuming that in typical applications the external forces acting 
over internal nodes (Fi) are null and combining both blocks of equations it 
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is possible to calculate the displacements of the external nodes without 
computing the internal ones: 

   eieiieieee UKKKKF
1  2.6 

This kind of computation is specifically useful when there is not 
topology modification and the stiffness matrix does not change. In this 
case, the factorization of the condensed matrix that multiplies the Ue vector 
can be preprocessed. 

Although this strategy is focused on solving the displacements of the 
external surface, it also allows studying the interior of the body. If it is 
necessary to know the evolution of the internal nodes their displacements 
can be computed as follows: 

 eieiii UKKU
1  2.7 

 

Figure 2.5. A sequence of an interactive cutting process using a hybrid condensed FEM 

with GPU acceleration (Wu2004). 

The combination between the previously enumerated hypotheses 
needed for linear analysis with preprocessing and condensation strategies 
allows developing very computationally efficient simulations. However, 
those advantages come at the expense of two important limitations. The 
first one is accuracy. As mentioned in previous sections soft tissue can be 
hardly assumed to be linear elastic. The second limitation is that linear 
models that use the infinitesimal strain tensor are not invariant with respect 
to rotations. That is, when a deformable model undergoes a rigid solid 
rotation, the computed deformation changes even though no forces are 
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applied (see figure 2.6). In the case of a global rotation of the object, the 
problem can be solved with a specific change of the reference frame. 
However, the effectiveness of this solution is lost when only one part of the 
object undergoes a rotation, which is the case in general. 

 

Figure 2.6. Volume variation of a linear elastic model under pure rotations (wireframe). 

To eliminate the artificial forces that appear in this kind of models 
some authors have proposed using the corotational method (Müller2002, 
Hauth2004, Nesme2005, Georgii2008). Basically it consists in rotating the 
finite elements into a configuration that best matches its reference 
configuration, such that the rigid body motions of the elements are 
eliminated before the strain is computed. This way, the elimination of the 
geometrical nonlinearity is achieved. 

To consider element rotations in the FEM, some modification have 
to be introduced to the previous equations. These modifications maintain 
the linearity of the mathematical formulation. However, the difficulty relays 
on the computation of the rotations of the elements in an accurate and 
stable way. 

 

Figure 2.7. Simulation of deformable models by representing the object with a rigid core 

covered by a deformable layer (Galoppo2006). 

Another interesting approach was proposed by Galoppo et al. 
(Galoppo2006) who derived an implicit yet highly parallelizable solution to 
dynamic deformations using linear elasticity theory (with separation of rigid 
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motion), continuum Lagrangian mechanics, FEM discretization, and 
constraint-based contact response with Lagrange multipliers. They assumed 
that a simulated object can be modelled as a rigid core covered by a layer of 
deformable material, and that the deformation field of the surface can be 
expressed as a function in two-dimensional, parametric atlases (see figure 
2.7). 

2.4.3 NONLINEAR FEM IN SOFT BODY MODELLING 

As mentioned before, nonlinear FEM can have different sources of 
nonlinearity. In any case, the mathematical formulation is much more 
complex than in the case of linear analysis. This complexity has made 
difficult the use of nonlinear FEM formulations to interactive virtual reality 
tools that require topology changes. However, in the last years, taking 
advantage of the computer evolution, some interesting solutions have been 
proposed. 

Most of the nonlinear material models used in tissue simulation 
belong to the group of hyperelastic materials. A hyperelastic or Green 
elastic material is a type of constitutive model for ideally elastic material for 
which the stress-strain relationship derives from a strain energy density 
function. The hyperelastic material is a special case of a Cauchy elastic 
material. 

Hyperelastic material models are well suited to describe the behaviour 
of materials whose stress-strain relationship can be defined as nonlinearly 
elastic, isotropic and incompressible. These properties match with the main 
characteristics of most of living tissues. 

One alternative to solve the problem that appears in linear elasticity 
during rotations (see figure 2.6) is to adopt the Saint Venant-Kirchhoff 
elasticity. This model is the simplest hyperelastic model since it is just an 
extension of the linear elastic material model to the nonlinear regime. It 
works well under large displacements but it is limited to small strains. As the 
strain-energy function is no longer a linear function of the displacement 
field the relation between strain and stress is no more linear. Other 
hyperelastic material models such as Neo-Hookean, Mooney-Rivlin, Ogden 
and Arruda-Boyce, are able to simulate soft body deformations under large 
displacements as well as large strains. 

In the field of computer graphics, Wu et al. (Wu2001) proposed using 
nonlinear FEM for the realistic simulation of deformable objects for 
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applications such as surgery training (see figure 2.8). They particularly 
focused on Neo-Hookean and Mooney-Rivlin models. To achieve real-time 
simulations they suggested applying mass-lumping to diagonalize the mass 
matrix in the dynamic equilibrium equation (see equation 2.4). Additionally, 
they implemented an adaptative mesh algorithm to provide sufficient detail 
where required while minimizing unnecessary computation. 

 

Figure 2.8. Tetrahedral liver model simulated using nonlinear FEM (Wu2001). 

At the same time Hirota et al. (Hirota2001) adopted Mooney-Rivlin 
and Veronda models to simulate contact with human body. They 
introduced a novel penalty FEM based on the concept of material depth, 
the distance between a particle inside an object and the boundary of the 
object. By linearly interpolating precomputed material depths at node 
points, they analytically integrated contact forces over contact surfaces 
without raising computational cost. 

In view of the limitations corresponding to previous FEM algorithms, 
some researchers (Miller2007, Taylor2007, Comas2008, Joldes2009) 
propose using the Total Lagrangian Explicit Dynamics algorithm (TLED) 
for nonlinear models (see figure 2.9), where all variables are referred to the 
original configuration of the system. This approach, unlike the updated 
Lagrangian formulation, allows the preprocessing of all the derivatives 
respect to the original configuration and eliminates the necessity to rotate 
(Cauchy) incremental stresses before addition. Although the simulation of 
nonlinear bodies using this approach is faster, computation remains 
complex and its capability for solving deformations in real-time applications 
has been only demonstrated using relatively small models (Joldes2009). 
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Figure 2.9. Cataract surgery simulation: (a) global view of the operating scene and (b) 

illustration of the complexity of the meshes involved in the simulation (Comas2008). 

An important drawback of traditional FEM has been their 
computational cost when making topology changes. This limitation has 
usually made many authors prefer other simulation models such as MSMs 
to the FEM. Recently, the Extended Finite Element Method (XFEM) has 
been proposed to simulate interactive cuttings of deformable objects in 
virtual environments (Jeřábková2009). This method can be implemented 
with any kind of FEM in order to perform cuts. However, the improvement 
in the cutting calculation is accompanied by an increase in the evaluation of 
the deformations where no cuts are present because they use enriched 
elements. In particular, the tests published by Jeřábková et al. 
(Jeřábková2009) show that this technique is between 2.2 and 4 times slower 
when simulating deformable models without topology changes than the 
standard FEM approach. 

 

Figure 2.10. Simulation of large cloth deformations using nonlinear FEM (Volino2009). 
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Apart from medical applications, other disciplines have also adopted 
nonlinear FEM. For instance, Volino et al. (Volino2009) proposed adapting 
strain-stress laws to simulate large deformations of cloth (see figure 2.10). 
Their model can be viewed as a particle system, through simple explicit 
relationships relating material strains and stresses to particle positions and 
forces. It avoids intermediate computations as much as possible, such as the 
coordinates transformations used in the corotational approach. 

The mathematical development of the nonlinear FEM is quite 
complex and needs to introduce many concepts related to strain-energy 
functions, and stress and strain tensors. As these concepts are out of the 
scope of this thesis, for an extensive discussion on the underlying issue, the 
reader is referred to the book written by Holzapfel (Holzapfel2000) about 
nonlinear solid mechanics. 

2.4.4 FINAL REMARKS 

The FEM is a mathematical tool that allows solving a wide range of 
problems, from deformation studies to heat transfer. Its formulation 
depends on the underlying physical laws of the problem and the 
corresponding framework. Concerning the field of soft-tissue simulation, 
the formulation becomes increasingly complex and more computationally 
costly when more detailed material and geometrical models are used. 

The simplest framework corresponds to the linear elasticity 
assumption (see section 2.2), which gives the advantage of applying well-
known techniques to accelerate the computation and work in real time 
(Bro-Nielsen1998, DiMaio2003, Berkley2004, Wu2004, Lee2006). As linear 
elasticity gives unrealistic solutions under relevant rotations some authors 
have proposed the corotational approach (Müller2002, Hauth2004, 
Nesme2005, Georgii2008). However, realistic surgical simulators require 
handling large displacement and deformations as well as stress-strain 
relations closer to the real behaviour of living tissues. 

Nonlinear FEM approaches are more suitable but with the drawback 
that their formulation is more complex and the techniques adopted to 
accelerate linear FEM are no longer valid when accurate results are desired. 
Recently, an efficient algorithm called TLED (Miller2007, Taylor2007, 
Comas2008, Joldes2009) has been applied to soft-tissue simulation, which 
allows the development of real-time applications by using preprocessing and 
parallelization techniques. However, this approach is not unconditionally 
stable and therefore is not suitable for certain simulation applications. 
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Although a keen effort has been done to develop real-time 
applications using nonlinear FEM, they still face the problem of handling 
topological changes in real time because, in some cases, this makes avoiding 
the advantages of preprocessing and evaluating new integrals. In this sense, 
XFEM (Jeřábková2009) could be a good solution but still has not been 
demonstrated its ability to work in real time with nonlinear material models. 

2.5 MASS-SPRING MODEL (MSM) 

MSMs are physically based models with simple structure and relatively small 
computational cost. Consequently, many operations like large deformations 
and topology modifications can be simulated easily. These characteristics 
make them suitable for interactive-time applications and parallel computing. 
Therefore, it is very common to find them in many applications involving 
facial animation (Platt1981, Waters1987, Terzopoulos1990, Kähler2003, 
Wang2009a), artificial animal animation (Miller1988, Tu1994) ,cloth 
simulation (Terzopoulos1988, Lafleur1991, Breen1994, Provot1995, 
Baraff1998, Desbrun1999, Garcia2007, Kaldor2008), biomechanical analysis 
(Nedel1998, Bourguignon2000, Hong2006), and surgery simulation 
(Meseure2000, Teschner2000, Brown2001, Choi2004, Teschner2004, 
Steinemann2006, Vafai2010). 

In this kind of models the object is modelled as a collection of point 
masses linked by springs in a lattice structure (see figure 2.11). That is, their 
representation is discrete, contrarily to continuum based approaches. 

 

Figure 2.11. A schematic representation of a regular 2D MSM. 

Following the idea of classical mechanics, MSMs represent a body by 
a single or multiple point masses that have no extension and hold the 
complete mass of the body. The external forces applied to the body are 
concentrated in the point masses as well. In this way, every continuous 
body can be transformed into a system of distributed point masses. 
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These models include a mesh of springs that interconnect those point 
masses representing the elastic behaviour of the bodies. The spring mesh 
can have many different configurations depending on the geometry of the 
object and the topology selected to represent the elasticity properties. There 
are mainly two types of meshes: polyhedral meshes and nearest neighbour 
meshes. The polyhedral meshes fill the volume of the body with 
polyhedrons that can be regular or not. In some applications, regular 
meshes are preferable since they allow controlling better the elastic response 
of the body. Irregular meshes, on the contrary, have the advantage of 
allowing mesh refinement in those areas where the required resolution is 
higher. On the other hand, nearest neighbour meshes (see figure 2.12) make 
the elastic connections with a fixed number of nearest neighbours or with 
all the neighbours that are closer than a certain distance. 

 

Figure 2.12. A schematic representation of 2D MSM where the connectivity is governed by 

an influence distance. 

Regardless of the mesh type, when the model interacts with the 
environment new boundary conditions appear on the surface of the body. 
Generally, depending on the interaction type, the new surface conditions 
can be expressed in two ways: a set of forces exerted over some point 
masses or a collection of displacements imposed to some point masses. In 
any case, this new conditions cause the change of the length of the springs 
inducing forces that act over each point mass of the MSM. 

Typically, the elastic connection between the point masses is 
modelled using Hookean or linear springs, that is, the force exerted by the 
spring that connects two generic nodes i and j is proportional to the 
elongation of the spring, k(i,j) being the corresponding stiffness coefficient 

r 
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and l(i,j)
0 its rest length. Calling xi=(xi, yi, zi)

T and xj=(xj, yj, zj)
T to the position 

of the i-th and j-th particles the resulting connection force is: 
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In some few cases, this relation is not directly proportional and the 
force adopts other type of expressions. For instance, Cooper et al. 
(Cooper1997) proposed the following expression: 
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Teschner et al. (Teschner2000) and Wang et al. (Wang2009a) also 
modified the equation 2.8 and proposed several expressions by assuming 
that the stiffness value could vary in function of the elongation. 

Given any of those force definitions the equilibrium shape of the 
deformable body is always reached when the sum of all forces acting over 
each node are null. If only the final equilibrium state of the MSM is required 
then, it is enough to define the stiffness values of the springs. 

However, if the transition from rest state to the deformed state is also 
required then, it is necessary to study the dynamic evolution of the body 
and usually a damping factor is added to the model in order to improve the 
stability and performance of the system. The ways to consider the effect of 
damping are manifold: including dampers aligned with the springs 
(Nogami2004), introducing forces as if the point masses where immerse in a 
fluid that makes a resisting force to motion directly proportional to the 
velocity of the particles (Kähler2003) or changing in an ad-hoc manner the 
time integration expression (Rasmusson2008). The models that consider 
damping are called Mass-Spring-Damper Models (MSDMs). 

When some point mass is moved the springs attached to it are 
strained and forces are exerted on adjacent point masses. In the dynamic 
simulations these forces induce acceleration to those point masses and 
change their positions accordingly. The acceleration of a generic point mass 
i with mass mi is governed by Newton’s Second Law: 

     ext
i

s
jiiiii cm Ffxx ,

  2.10 



48 Chapter 2 State of the Art in soft-tissue deformability modelling 

 

where c is the damping coefficient, f(i,j)
s the force of the spring that connects 

particle i and j and Fi
ext the external forces acting over the i-th particle. Note 

that the term of the damping effect can be different because some authors 
consider just the velocity of the particle (Baraff1998, Brown2001, 
Bhasin2006, Rasmusson2008) while others the relative velocity with respect 
to the neighbour particles (Cooper1997, Nogami2004, Zerbato2007). 

As solving these systems might be impossible, it is typical to use the 
following numerical integration methods: explicit (e.g. forward Euler, 
Runge-Kutta, and Verlet), implicit (backward Euler, and Baraff and Witkin 
method), and combined methods (e.g. Gear predictor-corrector). Generally 
speaking the explicit methods are simple but need small time steps for 
stability while the implicit methods are more complex and stable. These 
methods are valid for solving MSMs as well as FEM. 

2.5.1 EQUILIBRIUM COMPUTATION 

As in the case of continuum-based approach, the resolution scheme applied 
to solve discrete systems can be static, quasi-static or dynamic. The selection 
of the method depends on the application and its interactivity requirements, 
and has to take into account the stability and efficiency of the resolution 
during the entire simulation. 

In some static problems, just the final state of the simulation needs to 
be considered; it is not necessary to calculate the real transition of the body 
from the rest state to the final deformed state. An example of such 
application is the simulation of the final appearance of a patient after 
undergoing maxillofacial surgery. In this case, it is not necessary to simulate 
the whole surgical process. Instead, it is sufficient to specify the changes 
suffered by the bone due to the surgery and study directly the final state of 
the different layers of soft tissue in order to evaluate the aesthetic effects on 
the skin. 

In the case of considering dynamic simulations, if the change in the 
external conditions is slow enough to achieve the equilibrium almost 
immediately, the dynamic evolution of the simulation can be considered as a 
succession of static states. Consequently, time integration can be avoided 
and the static solution can be applied in every time step. In other words, the 
deformation evaluation becomes into a quasi-static study when dynamic 
inertial and damping forces can be neglected. This assumption is reasonable 
when displacements are not fast and the deforming soft objects have 
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relatively high damping parameters, which is usually the case for most 
biological tissues (Sundaraj2004). 

When quasi-static formulation cannot be applied, it is necessary to 
compute the deformations by solving the dynamic equations. The easiest 
way is to solve them numerically using time integration methods based on 
finite differences (Haile1992) like Euler, Runge-Kutta, Verlet, and Gear’s 
predictive-corrective methods. 

Apart from these approaches, Brown et al. (Brown2001) proposed a 
scaling factor of the force acting over a point mass to approximate the 
solution of the dynamic problem (see equation 2.11). In this way, the 
particle moves along the resulting force to a position where, theoretically, 
the sum of the forces is smaller. Ideally, the value of the scaling factor 
should be chosen as large as possible such that the solving method 
converges rapidly. The value of this factor depends on the specific 
characteristics of the simulation and requires experimental trials. 

        ttt s
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Another way to compute the equilibrium state is by studying the 
problem from an energetic point of view. Instead of focusing the attention 
on the forces acting over the point masses it concentrates the study on the 
energy of the springs connected to each particle (Es). This energy, for the 
case of a linear spring, is proportional to the quadratic value of the 
elongation: 
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Usually this kind of approach includes additional energy terms that 
refer to constrains that penalize some unnatural behaviours like volume 
change or external surface change (Teschner2004). In those cases the most 
common technique to calculate the equilibrium is to find the minimal value 
of the accumulated energy in the model. 

2.5.2 MSM IN SOFT BODY MODELLING 

Probably, one of the first applications using MSMs was facial animation. 
Platt et al. (Platt1981) and Waters (Waters1987) developed facial animation 
tools using static approaches. Soon after, Terzopoulos et al. 
(Terzopoulos1990) improved this application by representing the cutaneous 
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tissue, subcutaneous tissue, and muscle layer with a dynamic trilayered 
model. Similarly, Chadwick et al. (Chadwick1989) developed dynamic 
models to model skin, fat and muscle of computer generated characters. 

 

Figure 2.13. A facial animation example using MSMs (Wang2009a). 

The MSMs adopted in facial animation were increasingly becoming 
more complex. Kähler (Kähler2003) for instance developed MSMs based 
on anatomic data and included human head growth models. On the other 
hand, Wang et al. (Wang2009a) proposed nonlinear spring constants and 
extended the muscle model of Waters to improve the combination of 
multiple muscle actions and to generate realistic expressions (see figure 
2.13). 

 

Figure 2.14. Artificial worm locomotion simulation using MSMs (Miller1988). 

Artificial animal animations appeared a little bit after than facial 
animations. It began with studies about locomotion of simple artificial 
animals as snakes, worms (see figure 2.14) and fishes (Miller1988, Tu1994). 
In these models, spring rest lengths vary over time to simulate muscle 
actuation. Besides, they identified the most common problem associated 
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with the simulation of deformable objects using MSMs namely, stiffness 
parameter identification. 

The cloth modelling field has also benefited by the development of 
MSMs. Lafleur et al. (Lafleur1991) combined the method proposed by 
Terzopoulos et al. (Terzopoulos1988) with a collision response algorithm to 
simulate realistic cloth movements. Provot (Provot1995) also developed a 
physically based modelling technique by introducing constraints to the 
classical MSM based on the rate of deformation to solve the problem of 
excessive deformation when simulating a hanging cloth. 

Breen et al. (Breen1994) presented a particle system to model cloth. 
They suggested that, as cloth is a mechanism of warp and weft fibres, 
MSMs are more appropriate than FEM techniques for modeling cloth. 
Using measured data from the Kawabata Evaluation System, they proposed 
specific energy functions for stretching, bending and trellising to improve 
the animation of static drape of real materials. 

 

Figure 2.15. Fast simulation of cloths using MSMs (Baraff1998). 

Few years later Baraff et al. (Baraff1998) described a cloth simulation 
system that was able to take large time-steps without numerical instabilities. 
They used implicit integration to enforce constraints on individual cloth 
particles and applied a modified conjugate gradient method to solve the 
sparse linear system of equations. This approach improved significantly the 
previous cloth simulation formulations (see figure 2.15). Desbrun et al. 
(Desbrun1999) also focused their attention on the time integration scheme. 
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They proposed alleviating the need to solve the linear system through the 
use of a predictor-corrector approach. 

More recently, García et al. (Garcia2007) presented a MSM based 
approach to simulate the interaction of a hyperelastic textile tissue with a 
forming body. The fabric was represented by rectangular meshes of springs 
to enable the model behaving orthotropically and therefore making possible 
to simulate realistically the warp and weft properties. Kaldor et al. 
(Kaldor2008) presented a cloth modelling method specifically developed for 
knitted fabric simulation which considered energetic terms equivalent to 
spring energies. They studied in depth the behaviour of knits and the 
interactions of yarns and they propose an implicit-explicit integrator, with 
yarn inextensibility constraints imposed using efficient projections (see 
figure 2.16). 

 

Figure 2.16. Simulation of the falling of a scarf modelled at the yarn level (Kaldor2008). 

Apart from facial animation and cloth simulation, many medical 
branches such as biomechanics and surgery have adopted discrete models 
to make simulations. In biomechanical modelling, MSMs were used by 
Nedel et al. (Nedel1998) to simulate muscle deformations. Muscles were 
represented at two levels: action lines and muscle shape. Their shape was 
deformed using a MSM. Apart from linear springs, angular springs were also 
introduced in order to control the volume of muscles during deformation 
and smooth out mesh discontinuities. 
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As realistic simulation of biological tissues requires more accurate 
results than pure animation approaches a lot of research work has been 
done on MSMs to improve various aspects of the material being simulated. 
Bourguignon et al. (Bourguignon2000), for instance, proposed controlling 
isotropy or anisotropy of elastic tissues such as heart and liver. They 
allowed the user to specify the mechanical properties of the material, 
everywhere in the model, independently from the mesh geometry and 
topology. 

Other authors have focused their work on the volume preservation 
problem. Hong et al. (Hong2006) proposed a fast volume preservation 
method to improve the simulation of incompressible models. They applied 
their method, for instance, to the simulation of muscle deformations when 
flexing the forearm at the elbow joint (see figure 2.17). 

 

Figure 2.17. Simulation of muscle deformations when flexing the forearm at the elbow 

joint (Hong2006). 

In surgical simulation, Meseure et al. (Meseure2000) proposed a 
deformable body model in order to simulate the dynamic behaviour of 
human organs in surgical simulators. It was based on a spring surface mesh, 
fitted with a virtual rigid component which did not interact with the 
environment and provided the structure with a rigid behaviour. Brown and 
Montgomery (Brown2001) developed an efficient algorithm to solve MSM 
for microsurgery simulation. Assuming that the deformations are local they 
reduced calculations by using a wave-propagation technique that 
automatically stops computation when deformations become below a 
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threshold. Using this algorithm, they achieved real-time performance in a 
suturing vessel surgery. A similar approach was proposed by Choi et al. 
(Choi2004) to accelerate the simulation computation and achieve the frame 
rate required for haptic interaction. 

MSMs are also applied in craniofacial surgery. Teschner et al. 
(Teschner2000) presented a patient specific model taking into account the 
nonlinear and incompressible behaviour of living tissues. The system was 
able to simulate bone cutting and bone realignment with integrated 
interactive collision detection. Additionally, it handled soft-tissue 
deformation and cutting due to the application of surgical instruments. 
Later on they proposed an energy based approach with which they could 
simulate elastic and plastic deformations at interactive rates (Teschner2004). 
Their model was able to handle a large variety of material properties ranging 
from stiff to fluid-like behaviour. The key point of their approach was to 
incorporate volume and surface area preservation energy terms. 

 

Figure 2.18. Ablating a polyp in a hysteroscopy simulator where the deformable objects are 

represented by tetrahedral meshes and simulated by a MSM (Steinemann2006). 

Within the framework of a hysteroscopy simulator (see figure 2.18), 
Steinemann et al. (Steinemann2006) developed a hybrid cutting approach 
for tetrahedral meshes. With their method, they closely approximated 
arbitrary, user-defined cut surfaces while avoiding the creation of small or 
badly shaped elements, thus strongly reducing stability problems in the 
subsequent deformation computation. 

Other simulation tools such as interactive virtual dissections 
(Vafai2010) have also adopted MSMs. In this case they used a surface MSM 
enriched with home springs that pulled the surface to its rest state. 
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2.5.3 FINAL REMARKS 

Generally speaking, MSMs are easy to construct, physically based models. 
They allow real-time simulations even when the model has to handle user 
interactions that involve topology changes. Another well-known advantage 
is their ability to deal with both large displacements and large deformations. 
Additionally, their discrete formulation permits adopting easily parallel 
computing and implementing them in multiprocessor computers and 
graphics processing units (GPUs) (Georgii2005a, Tejada2005, 
Rasmusson2008). 

As it has been shown in the previous section, these characteristics 
have caused the fast propagation of MSMs to all of the simulation fields 
related to graphical and interactive applications. They are widely used in 
character animation, cloth simulation, biomechanical studies and, more 
recently, surgery simulation. 

They have shown to be very flexible since they have adapted their 
parameters and topology to fit the increasing level of the requirements of 
new applications. For instance, some authors have adopted multiphasic 
(Keeve1998, Garcia2007, Wang2009a) and nonlinear expressions of the 
stiffness (Cooper1997, Teschner2000, Chen2007, Basafa2008, Cui2009, 
Wang2009a) in order to make more realistic models or have implemented 
energy based formulations (Teschner2004) to preserve some properties. 
When well tuned, they have been able to define properties such as non-
homogeneity (Morris2008), anisotropy (Bourguignon2000, Bianchi2004, 
Choi2004), surface preservation (Teschner2004) and volume preservation 
(Teschner2004, Georgii2005, Hong2006). 

However, MSMs have also some drawbacks. These models are tuned 
through their spring parameters and it is difficult to find methods to assign 
proper values for these constants. Only a few works have derived directly 
the MSMs parameters from measured material properties. Furthermore, 
although it has been done for particular cases, it is difficult to express 
certain constraints (like incompressibility and anisotropy) in a natural way. 

2.6 DISCUSSION 

Along the discussion of the following points important decisions about the 
deformable model will be taken. First, the level of accuracy that a simulator 
can achieve will be discussed in order to select models according to that 
level. Secondly, the material model will be selected taking into account 
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accuracy and linearity issues. To finish, the deformable body model itself 
will be selected considering the previous decisions. The decisions taken in 
these three points will be totally conditioned by the objectives mentioned in 
section 1.4. 

2.6.1 ACCURACY 

When defining the accuracy needed for a medical simulator, it is important 
to specify whether the application requires using accurate patient-specific 
data or just approximate properties. 

Accurate patient-specific data can be interesting when the 
information obtained from the simulation may be decisive in the definition 
of a real surgery. In the case of the resection of several brain tumours, for 
instance, the surgeon needs to plan ahead performing the actual surgery 
which is the best area to perform a craniotomy to better access the 
unhealthy tissues with the smaller risks and potential damages. In some 
cases the spatial location of the tumours can be enough to decide the path 
to follow during the intervention but in other cases simulating previously 
the whole surgery can help in the planning. 

On the other cases, the objective of the simulation can be to take 
some decisions that do not specifically depend on the mechanical properties 
of the tissue of particular patients, but only based on the specific 
geometrical properties. Then, the simulator can offer friendly tools where 
tissues are deforming but that use generic approximated properties. This 
can be the case of surgical training programs or simulations whose only 
objective is to define the sequence of the operation. 

Certainly, the most critical case is the first one, when patient-specific 
data is needed, because in this case surgery planning and simulation can be 
decisive. As discussed in section 2.1 the best approach to obtain specific 
data is to make in vivo measurements. Non invasive techniques, such as 
ARFI and ultrasounds, can be applied before surgery and provide the 
surgeons with useful information to plan the intervention. However, they 
usually give punctual information and do not provide the whole necessary 
stress-strain curve since the studied range of deformations may not be as 
wide as the deformations that take place during surgery. That is, they are 
not accurate when defining the whole response of the tissue. 

Invasive techniques, in turn, provide information of the behaviour of 
the studied tissue with two main drawbacks: only the physically accessible 
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area can be tested and the data can be only collected from the surface. Even 
more, invasive methods can only be applied during the surgery, which limits 
dramatically its usefulness in the surgery planning and simulation process, 
and increases the risk of causing injuries to patients. 

Additionally, a real surgery is anything but predictable. During the 
operation the body of the patient is suffering an attack that causes physical 
and physiological reactions. In theory physical reactions might be predicted 
using accurate material models, but the problem is that physiological 
changes modify the mechanical properties of living tissues. 

The mechanical properties of brain, for instance, change due to 
known and unknown physical and physiological phenomena 
(Schiavone2009). Therefore, using very accurate models makes only sense 
when the physiological reactions can be evaluated and predicted. 

However, it is not justified developing such accurate models when 
relevant uncertainties are originated by some of the following issues: 

- Physiological reaction will change substantially the mechanical 
properties and can not be predicted. 

- The tissue is non-homogeneous and mechanical parameters can be 
calculated only in a certain small area of the whole region of interest. 

- Time elapsed between the mechanical properties acquisition and 
the intervention (in some cases even months) can vary substantially 
those values. 

- The available instruments do not allow obtaining accurate values. 

- In an ex vivo measurement, the layered and non-homogeneous 
nature of the tissue makes impossible to obtain useful information 
about the mechanical response of a whole organ from the extracted 
sample. 

- The only available data are medical images such as MRI and CT 
which do not give mechanical response information (in most of the 
cases) and low geometrical resolution. 

- The simulation needs to be made before the surgery which 
eliminates the possibility to use in vivo measures during surgery. 

In these cases, it is hard to define reliable patient-specific mechanical 
properties and, frequently, it is necessary to use data sets of other patients. 
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For this reason, the quality of the simulation is always determined by the 
quality of the available input data apart from the accuracy of the deformable 
model itself. 

2.6.2 MATERIAL MODEL 

Although obtaining patient-specific data has been proved to be hard, the 
model has to be able to adapt its behaviour to the available data. In some 
cases there will be detailed information while in other cases the information 
will be partial. Moreover, in some situations it is necessary to use generic 
data sets to define the mechanical response of the virtual body. 

As mentioned in previous sections, most of the mechanical 
experiments performed to obtain the behaviour of biological tissues show 
that they generally exhibit non-uniform, anisotropic, quasi-incompressible, 
nonlinear plastic-viscoelastic material properties. However, these 
characteristics are usually simplified due to the lack of real data obtained 
using in vivo experiments (see section 2.1). 

Taking into account the conclusions reached in section 2.2, it is 
reasonable to consider that the behaviour of living tissues is linearly elastic 
only when small deformations are considered, while hyperelastic material 
models are preferable when working under larger deformations. Therefore, 
the proposed model has to be able to describe linear elastic responses as 
well as hyperelastic behaviours such as those defined by neo-Hookean, 
Mooney-Rivlin, and Ogden material models. In addition, handling different 
compressibility rates is also a requirement since not all the tissues are 
incompressible. 

2.6.3 DEFORMABLE MODEL 

Two main approaches have been presented in previous sections: FEM and 
MSM. The wide presence of both formulations in medical field shows that 
both are good candidates. Logically, each one of them has its own 
advantages and disadvantages. The decision of which one is most suitable 
for a particular task has to be driven by analyzing the objectives defined in 
the first chapter. Summarizing, those objectives were: real-time simulation, 
accurate response, mechanical feedback, nonlinear and non-homogeneous 
material model, generic and patient-specific model and admit user 
interaction such as palpation and cutting. 
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Concerning the response of the model, both approaches can simulate 
deformations and provide mechanical feedback to the interactions of the 
user such as palpation and cutting. 

In relation with the material model, in the previous sections has been 
shown that both models can approximate linear and nonlinear behaviour as 
well as uniform and non-uniform properties. Those characteristics can be 
either generic or patient-specific. 

Thus, the key points for the selection are the computation time 
required to compute those simulations and whether they fulfil the condition 
of real-time performance, and the accuracy of the model when simulating 
the behaviour of actual living tissues. 

With regards to the computation time constraint, approximating 
linear or nonlinear elastic behaviours using MSMs leads to the same model 
in both cases but with different spring coefficients. However, the 
formulation can change significantly when considering the FEM. Therefore, 
it is better to study separately both cases in order to compare their 
performance. 

In the simulations performed by Zhou et al. (Zhou2009) with linear 
elastic FEM models working under small deformations, the computation 
times were 45% larger than the ones observed in the MSM approach. When 
they considered large deformations the MSM is at least 2.5 times faster. 
They performed this comparison without making cuts to the deformable 
model. Taking into account topological changes would probably increase 
the difference between both approaches, since the linear FEM needs 
recalculating the stiffness matrices that define the behaviour of the 
deformable model. 

Although it is very hard to find two equivalent implementations of 
MSMs and nonlinear FEM, there are two works that can be assumed to be 
very similar because they were published the same year, both are 
implemented in GPU and they show their performance using a similar 
number of degrees of freedom. 

Rasmusson et al. (Rasmusson2008) presented a MSDM of a heart 
with 88347 degrees of freedom. Their implementation in the GPU reached 
5515 fps. On the other hand, Comas et al. (Comas2008) presented a GPU 
implementation of a TLED using a cube with 89373 degrees of freedom 
(considering also the fixed nodes which probably reduces the unknowns in 
2883) and obtained a simulation performance of 1000 fps. This means that 
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MSDM simulated five times faster than the nonlinear FEM under similar 
conditions. 

Regarding accuracy, the FEM formulation is much more robust and 
versatile. It allows defining explicitly properties such as compressibility 
ratio, complex stress-strain relations, anisotropy, etc. In turn, MSMs have 
provided good results only in particularly tuned models. Given some 
behaviour laws it is not straightforward how to obtain the corresponding 
MSM. Apart from the contribution of Lloyd et al. (Lloyd2007) for designing 
MSMs from linear FEM there has been little work done in this field. Even 
less bibliography can be found about how to approximate hyperelastic 
behaviours using MSMs. 

However, as it has been seen above (see sections 2.1 and 2.6.1), 
independently of the deformable model, the accuracy of the simulations is 
always constrained by the capability of obtaining reliable data of living 
tissues, with which to feed a model. 

Taking into account the differences in the computation times and 
considering that in this kind of simulations the real-time performance is the 
most important constraint (Delingette2004), in this thesis the MSM is 
selected to model soft tissues. 

2.7 CONCLUSIONS 

The behaviour of living tissues is very complex and several detailed material 
models have been proposed to describe them (Fung1993). However, in the 
everyday practice of surgery simulation, these mechanical properties are 
hard to obtain for many reasons. For instance, their value changes during 
surgery, technology applied to obtain them only provides data of a limited 
area, there is no way to analyze the behaviour of the tissue accurately or 
data are not available on time since they can only be obtained during 
surgery. 

The consequence is that using complex formulations that sacrifice 
computation velocity can lead to simulations that are not more accurate 
than those achieved with simpler models. 

On the other hand, real-time performance is a mandatory 
requirement for interactive surgery simulators. If this condition is not 
satisfied it does not matter if the model is accurate or not, since the 
perception of the surgery will be unnatural. Thus, knowing the limitations 
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for the acquisition of the mechanical properties of the tissue, real-time 
performance becomes the most important requirement and accuracy is 
subordinated to it. The MSM provides a computationally less expensive 
model for elastic models than other approaches such as them FEM. This 
means that MSM are more likely to achieve real-time performance and for 
this reason, the MSM has been adopted as the deformable model in this 
thesis. 

The main drawback of MSMs is the difficulty of obtaining the right 
parameter values that make the model behave accurately. As it will be 
explained in the following chapter, there are several methods to calculate 
the stiffness coefficients of MSMs but none of these techniques is suitable 
for fulfilling the objectives of this work. Therefore, the efforts in this thesis 
will be focused on proposing new methods to design MSMs that provide 
fast and realistic simulations in the field of medical applications. 
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CHAPTER 3 

3 STUDY AND PROPOSALS 

OF MSM DESIGNING 

METHODS 

MSMs are the most popular discrete models and they can be an interesting 
alternative to continuum-based simulations since they avoid many of the 
difficulties that have other simulation techniques. There are three major 
advantages that make these models attractive: simple mathematical 
formulation, great versatility for topological changes, and a computation 
structure well-suited for parallelizing in multicore computers and graphics 
processing units (GPUs). 

 

Figure 3.1. Example of a virtual laparoscopic nephrectomy simulator (Zhou2009). 

One of the main drawbacks of these models is that it is difficult to 
design them to describe with accuracy the mechanical behaviour of actual 
deformable bodies. The main reason is that their formulation usually does 
not offer an easy way to express the constitutive relations of the material. 

(a) Kidney and vessels (b) Mesh (c) Local hilum section 
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However, the parameter versatility of MSMs allows choosing suitable 
parameters to develop realistic simulators (Zhou2009) (see figure 3.1). 

Many authors have presented improvements in the MSM designing 
field in order to make realistic simulations. Some of them have proposed 
new methods to obtain the stiffness coefficients of the springs while others 
have suggested modifying the traditional model, for example, by including 
external forces or considering nonlinear springs. 

A detailed review of the existing approaches will be presented in the 
following section. After analyzing their virtues and drawbacks, new MSM 
designing strategies will be proposed. To finish the chapter, some generic 
information related to the considered MSM will be presented: node 
numbering, point mass evaluation, spring nomenclature and some 
guidelines for assembling cubical MSMs. 

3.1 STATE OF THE ART IN MSM DESIGN 

Obtaining parameters like stiffness coefficients still remains a big challenge 
in MSM design. There are many methods to find the stiffness values and the 
topological configuration that allow describing certain behaviour in a 
satisfactory way. The main contributions in this area come from the fields 
of cloth simulation, surgical simulation, and body animation. 

An interesting classification of MSM derivation methods was 
proposed by Lloyd et al. (Lloyd2007). They divided these methods into two 
groups: data-driven techniques and analytical derivation methods. The 
former methods estimate the model parameters using deformations 
measured in experiments, real or virtual, as reference data. The latter 
approaches obtain analytical expressions for the spring coefficients using a 
physical model as a reference. 

In data-driven strategies a second subdivision can be made attending 
to the available knowledge of the body whose behaviour must be 
reproduced. According to this idea, three different approaches stand out 
when designing MSMs: pure data-driven approach, nonlinear and piecewise 
linear springs, and constraint-based simulation. Likewise, analytical 
derivation can be subdivided into two different strategies: estimation from 
material science and derivation from discretized formulation of continuum. 

The next sections will describe the state of the art in realistic 
parameter derivation using this classification. 
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3.1.1 DATA-DRIVEN STRATEGIES 

Data-driven MSM design strategies are based on the fitting of the 
deformation of the MSM to some reference data by modifying the stiffness 
coefficients and, in some cases, the topology as well. It is typically used 
when the only available information about the behaviour of a body comes 
from a set of mechanical tests. These data can be obtained measuring 
experimentally the deformations of a real body or by taking as a reference 
the deformations of another simulation model, such as FEM model. 

 

Figure 3.2. The process of obtaining the parameters of a MSM in the data-driven strategies. 

The pure data-driven approach does not require any previous 
information about the intrinsic behaviour of the body apart from the test 
data (see figure 3.2). In other words, it does not matter if the body is linear 
elastic or hyperelastic; compressible or incompressible; the parameter 
derivation method will obtain the constants and configuration best-suited 
for the specific input-data. Thus, the attention is focused on the parameter 
optimization method. 

Object 
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However, since most biological soft tissues have a nonlinear 
mechanical response, some authors have tried to incorporate this behaviour 
into the traditional MSM using nonlinear springs and piecewise linear 
springs. That is, considering that the force of a spring is not linearly related 
with its elongation or, at least, not with a constant coefficient. Thus, the 
difference of this approach with a pure data-driven strategy is that the 
behaviour of the body is analyzed before establishing the MSM type. 

Another data-driven approach is based on the definition of 
constraints that control the behaviour of the simulation. The knowledge of 
how a certain body behaves and which are its natural characteristics allows 
extending traditional MSM with constraints that simulate these observed 
properties. The additional information can be just a qualitative description 
that comes from plain observation or it can have a quantitative meaning 
obtained through experimental studies. Some bodies, for instance, do not 
change their volume during the deformation process, thus, incompressibility 
constraints can be used to enrich the model. As this information cannot be 
explicitly included in the initial virtual deformable model it is considered in 
the simulation stage. 

Usually, in constraint-based simulations the deformation computation 
is formulated from an energetic point of view. For this reason, solving this 
kind of models usually requires a minimization of the total energy of the 
system. 

3.1.1.1 Pure Data-driven Approaches 

One of the first pure data-driven approaches was proposed by Louchet et 
al. (Louchet1995). They adopted genetic algorithms for the identification of 
the internal parameters of physically-based fabric models. These heuristic 
methods are inspired by evolutionary biology and consist of a set of model 
parameters that evolve using three main processes: selection, mutation, and 
crossover. In this particular case, they considered a MSM simulation based 
on fixed parameters as the reference deformation. 

Later, Nogami et al. (Nogami2004) extended the traditional MSM 
with two additional dampers and identified the parameters using genetic 
algorithms as well as other randomized algorithms. Bianchi et al. 
(Bianchi2004) suggested an approach based on genetic algorithms where 
MSM derivation takes as a reference shearing and stretching tests of linear 
elastic FEM models. Their main contribution was the simultaneous 
identification of mesh topology and spring stiffness values. A similar work 
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was presented by Völlinger et al. (Völlinger2009) who identified the spring 
constants and simultaneously optimize the topology of the mesh adopting 
evolutionary algorithms. Besides, Zerbato et al. (Zerbato2007) proposed a 
non-homogeneous model with great amount of degrees of freedom because 
the stiffness coefficients and viscosity values for each tetrahedron were 
different. Since their value depended on Young’s modulus, the goal of the 
genetic algorithm was the optimization of that modulus. 

Deussen et al. (Deussen1995), Choi et al. (Choi2004) and Morris et al. 
(Morris2008) suggested a method based on simulated annealing to identify 
the coefficients of the MSM. This technique is a generic probabilistic 
method that achieves a global optimization of the problem. The former 
used stretching and shearing tests based on linear elastic theory, while the 
latter takes as reference uniform and non-uniform elastic material 
deformations.  

 

Figure 3.3. Interactive stomach model obtained using simulated annealing (Choi2004). 

All methods presented above share the same basic idea. They identify 
the parameters of a MSM through an optimization process that tries to 
make the behaviour of the body match the general behaviour of the body. 
These methods are appropriate tools for solving complex nonlinear 
problems. However, their main disadvantage is that they usually require a 
long computation time. Simulated annealing has the additional problem of 
high sensitivity to the parameters of the optimization method 
(Deussen1995). 

3.1.1.2 Nonlinear and Piecewise Linear Springs 

An additional problem in the design of MSM is the definition of the spring 
behaviour. Usually these springs are modelled using linear springs. 
However, in some works the initial model of MSM with linear springs was 
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modified in order to obtain more realistic simulations. Cooper and 
Maddock (Cooper1997), for instance, suggested using nonlinear springs. 
They proposed a stiffness expression based on the idea that, as the spring 
length tends to zero, the spring exerts a reaction force which should tend to 
infinity. Although this expression does not usually have a polynomial form, 
their nonlinear springs have polynomial formulation. Teschner et al. 
(Teschner2000), for instance, proposed several polynomial coefficients to 
compute soft-tissue deformation caused by surgical procedures using multi-
layered spring configuration. More recently, some authors have proposed 
using nonlinear coefficients based on the Duffing’s equation (Chen2007, 
Cui2009) and the nonlinear behaviour of the skin (Wang2009a). 

Another interesting approach is to consider that the behaviour of the 
spring is piecewise linear. This type of springs has the advantage of keeping 
force computation simple but with behaviours closer to nonlinear bodies 
(Garcia2007, Keeve1998). This approach can also be combined with 
piecewise nonlinear formulation (Basafa2008). 

3.1.1.3 Constraint-based Simulation 

The simplest MSMs are based on the fact that most bodies respond with 
internal restitution forces that try to restore their shape to the initial stage 
when they are deformed by external forces. However, this does not in 
principle guarantee the correct behaviour of other mechanical properties, 
such as volume conservation. In addition to this inter-particle distance 
conservation, Gayle et al. (Gayle2005) relied on the ideal gas law in order to 
satisfy the volume preservation constraint. Likewise, Teschner et al. 
(Teschner2004) considered volume preservation energies and completed the 
model with external surface preservation condition. In a similar way, Hong 
et al. (Hong2006) included volume preservation forces acting on the surface 
of the body to obtain more realistic simulations. 

Breen et al. (Breen1994) proposed a physically-based technique for 
predicting the drape of woven fabrics taking as a reference various tests of a 
cloth sample in a Kawabata fabric testing device. The energy function that 
they propose does not take into account area and volume preservation. 
Instead, they consider the influence of two bending energies, repulsion and 
stretching (equivalent to the natural distance preserving term), and gravity 
effects. 

Another interesting contribution similar to other constraint-based 
simulations is the hybrid approach for tetrahedral meshes suggested by 
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Lloyd et al. (Lloyd2007). They extended the traditional MSM by adding 
volume preserving forces and obtained the stiffness parameters using a 
minimization strategy. In this way, they introduced additional degrees of 
freedom to the system in order to improve their initial approach. 

This kind of strategy can correct some unnatural responses and give 
visually plausible results but they will rarely give accurate values if they are 
designed using only trial and error techniques. Therefore, they have to be 
combined with other types of MSM designing methods. 

3.1.2 ANALYTICAL DERIVATION APPROACH 

As it has been shown above, data-driven approaches define the parameters 
of a MSM by simulating the model and comparing its resulting behaviour 
with external data, obtained from experiments or from other models. In 
contrast, analytical methods perform the derivation using analytical 
expressions of the behaviour of MSMs. 

One approach to model analytically a MSM is based on the analysis of 
the behaviour of the model as an actual material under specific loads, and 
therefore, closely matches the analysis of material science. In this case a 
parametric analysis of the behaviour of the MSM allows obtaining the 
relationship between the parameters of the mesh, such as spring stiffness, 
and the properties of the material to be simulated. 

Another analytical approach is based on a discrete formulation of the 
continuum. These techniques try to match the properties of the MSM to the 
properties of methods such the FEM, for example, by finding a linearized 
MSM model that produces elements with a stiffness matrix similar to that 
from linear FEM. 

3.1.2.1 Estimation from Material Science 

Following the material science approach, Maciel et al. (Maciel2003) obtained 
analytical expressions of the stiffness of hexahedral meshes from the elastic 
modulus and the uniaxial elongation test. Their parameters depend on the 
angular configuration of each deformed stage of the cube. 

In the cloth modelling field, Wang et al. (Wang2005) developed a 
model composed by preloaded springs for solving problems of bending, 
stretching and shearing of clothing. With that aim, they proposed starting 
from the mathematical formulation of a MSM that describes those 
mechanical behaviours and then obtaining the stiffness values of the model. 
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Similarly, Baudet et al. (Baudet2009) proposed designing 2D and 3D 
MSMs using elongation and shearing experiments. The objective of this 
method is to reliably represent the mechanical properties of deformable 
objects starting from their definition: Young’s modulus, Poisson’s ratio and 
shear modulus. Their model includes, apart from spring forces, some 
correction forces. 

3.1.2.2 Derivation from Discretized Formulation of Continuum 

The analytical reasoning strategy based on the FEM formulation was started 
by Gelder (Gelder1998) who proposed to derive a set of expressions from 
geometrical and physical restrictions. He attempted to find a MSM 
equivalent to a triangular linear FEM model linearizing the system of 
equations of the MSM. He concluded that there was no solution to equating 
the stiffness matrix of linear elastic triangular elements to the corresponding 
stiffness matrix of the linearized equations of MSM. 

 

Figure 3.4. Cloth simulation using particle systems derived from continuum mechanics 

(Etzmuss2003). 

However, Lloyd et al. (Lloyd2007) demonstrated that there was a 
particular case in which both stiffness matrices were equal: equilateral 
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triangles with Poisson’s ratio equal to 1/3. Although this case is just a 
particular case, they proposed a general method to obtain approximated 
stiffness values for any type of triangle even for rectangular meshes but 
maintaining Poisson’s ratio equal to 1/3. Additionally, they proposed the 
minimization of the distance between the stiffness matrices to derive 
approximated tetrahedral models with Poisson’s ratio equal to 1/4. 

Etzmuss et al. (Etzmuss2003) proposed the calculation of the forces 
that act over a particle system from continuum mechanics by linearization, 
the choice of a local reference frame, and successive finite difference 
discretization (see figure 3.4). Although the derivation is made starting from 
linearized Green’s strain tensor the resulting model is invariant under 
rotations. 

Delingette (Delingette2008) established a formal link between springs 
and continuum mechanics through the introduction of biquadratic springs. 
Furthermore, he showed that any isotropic hyperelastic membrane can be 
expressed as a function of the two invariants of the strain tensor and 
therefore can be expressed in terms of tensile and angular biquadratic 
springs. 

More recently, Xu et al. (Xu2010) proposed a modified MSM based 
on the 3D finite strain nonlinear anisotropic elasticity theory. Their model is 
able to describe typical behaviours of living tissues such as 
incompressibility, nonlinearity and anisotropy. They also incorporated into 
the soft-tissue model the nonlinear viscoelasticity by using numerical 
schemes. 

3.1.3 DISCUSSION AND CONCLUSIONS 

Data-driven methods adjust the parameters of a MSM to behave as close as 
possible to a reference model. In most of the cases, the resulting parameters 
are not exportable to other meshes since they are obtained for a specific 
body, an exclusive topology, and some particular tests. Thus, it is not easy 
to obtain useful generic parameter values from such techniques. However, 
in the case of soft tissue, typically there is not analytical information of the 
behaviour of the body. Then, testing the actual body and adjusting the 
virtual deformable body to those data becomes mandatory. 

On the contrary, analytical methods offer parameters that are 
calculated for a certain material models and are not limited to a specific 
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sample body. Consequently, they provide more exportable results than the 
previous methods. 

Data-driven strategies can be useful, for instance, to design virtual 
models for a learning simulator in which the object is not going to be 
modified and where the interactions are going to be known in advance. 
However, if the model has to be modified because the application is patient-
specific or the resolution and the topology of the object can be arbitrarily 
changed then, analytical methods are preferable. 

Once a data-driven method is selected an important disadvantage 
comes through: the time spent in obtaining the parameter of the model. 
Usually, they adopt evolutionary or simulated annealing techniques to avoid 
local minima and give global optimal values, which require long searching 
times due to the size of the search space. Additionally, their performance is 
governed by some parameters that are hard to define, for instance, mutation 
probability, population size or annealing schedule. 

Concerning the disadvantages found in analytical methods presented 
above is that some of them derive MSMs that are more complex than the 
models that use only linear springs with constant stiffness values. Building 
more complex MSMs might increase the accuracy of the simulation but they 
lead to models that are harder to calculate. Enclosed in this group are those 
who add external forces (Etzmuss2003, Baudet2009) or angular springs 
(Delingette2008), and those who change the stiffness values of the springs 
depending on the angles of the deformed cube (Maciel2003). On the 
contrary, the approach suggested by Gelder (Gelder1998) and followed by 
Lloyd et al. (Lloyd2007) keeps the simplicity of traditional models. 

3.2 MSM DESIGN PROPOSAL 

As stated before, surgery oriented applications can use diverse information 
to build deformable models. When available, it is better to obtain analytical 
information and design models that perform accurately. Otherwise, data-
driven methods offer the possibility to make some tests and derive from 
them the desired parameters. As both methods can be useful to design 
surgery simulators it is necessary to propose methods in both branches in 
order to improve the existing ones and overcome their drawbacks. 

The methods presented previously are very different from one 
another and, a priori, it might be considered that all of the approaches are 
compatible with the objectives of this thesis. However, it is important to 
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stress one fundamental point: the proposed models must allow computing 
the deformations fast and accurately. Considering complex MSM designs is 
hardly justified since one of the main advantages against FEM would be 
lost. Thus, the effort has to be focused on obtaining models that perform as 
accurately as possible, but maintaining the mathematical simplicity to 
exploit their advantages. 

This remark rules out directly those data-driven methods that are 
based on nonlinear and piecewise linear springs. It also reduces dramatically 
the available analytical approaches since, except from the works of Gelder 
(Gelder1998) and Lloyd et al. (Lloyd2007), all of them build models with 
complex characteristics. On the contrary, constraint-based approaches are 
compatible with the idea of mathematical simplicity since they only have 
influence during the simulation, not on the MSM design itself. In other 
words, they allow using the conventional MSMs as ground models and 
introduce some constraints that make the model perform more realistically. 
For example, they can be very useful to avoid the collapse of the elements 
of the model. 

According to the topology of the mesh, most of the methods listed 
previously are focused on calculating the spring stiffness values for the 
particular case of tetrahedral meshes. The main reason is that using 
tetrahedra makes it possible to build easily any type of 3D virtual body 
found in surgical simulators. However, it is not possible to fill an object 
using equally sized tetrahedra. That is, each tetrahedron requires different 
edge sizes and angles. This variety of elements leads to complex design 
methods, like topology identification techniques, since meshes with identical 
mass and spring constants still behave quite differently depending on the 
overall topology (Bianchi2003, Völlinger2009). 

Some of the difficulties found in the MSM design can be avoided 
choosing another type of elements. Regular meshes like cubical grids, for 
instance, allow using one unique type of element to fill the body simplifying 
a lot the parameter identification, at least in the case of homogeneous 
materials. 

Another important advantage of cubical meshes is the possibility of 
making symmetric configurations of point masses and springs in the three 
orthogonal directions perpendicular to the faces of the cube. This makes 
the model respond equally in those directions. 
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Most of the continuum-based deformable models used in the 
simulations of living tissues consider isotropic or orthotropic material 
models. The main reason is that obtaining anisotropic models requires the 
determination of many unknown parameters for which more specific 
experiments and more complex formulations are needed. In practice, in the 
case of patient specific models for instance, the available information to 
build the model is limited to CT and MRI data which makes almost 
impossible to provide enough information to define complex material 
models. Thus, it is reasonable to make the same assumption when using 
MSMs and adopt symmetrical cubical meshes whose behaviour is 
orthotropic. 

Taking all these considerations into account in this thesis two new 
methods are proposed to design accurate and fast deformable models based 
on cubical MSMs: 

1- A new analytical method for linear elastic material models based 
on the linearization of the equilibrium equations of the MSM. In 
this method the linearized system is equated to the linear FEM 
model with the particularity that it allows obtaining the stiffness 
coefficients for any values of Young’s modulus and Poisson’s 
ratio. 

2- A new analytical method that is based on the study of the 
nonlinear behaviour of cubical MSMs. This method adjusts the 
parameters of the MSM in such a way that it behaves like some 
reference nonlinear elastic material. According to the 
bibliographic review, there is no published method for deriving 
analytically cubical models from hyperelastic material models. 
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CHAPTER 4 

4 MSM DESIGN FROM 

LINEAR ELASTIC MATERIAL 

MODELS 

As already mentioned in section 2.2, it is usual in continuum based 
approaches to assume that biological tissues display a linear elastic 
behaviour when the material is working under small deformations. Setting 
this simplification in the case of discrete models such as MSMs is more 
difficult because there is no underlying formulation to define the global 
material model. Therefore, the main challenge of this chapter is the search 
for a cubical MSM that behaves like a linear elastic material. 

The first approach to accurately simulate the properties of elastic 
materials using a MSM was due to Gelder (Gelder1998). This work 
proposed an analytical reasoning strategy based on the FEM formulation. 
First, he searched for a MSM with a triangular mesh equivalent to a linear 
elastic FEM by linearizing the system of equations of the MSM. This 
approach did not provide a positive result and he concluded that there is no 
possible solution that equates the stiffness matrix of a linear FEM to the 
corresponding stiffness matrix of the linearized equations of MSM. 

Afterwards, he proposed the derivation of a set of expressions from 
geometrical restrictions obtaining a stiffness value that depends on the 
elastic modulus, the rest length of the edge, and the area of the triangle. 
Although the derivation is valid only for Poisson’s ratios equal to zero, he 
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suggested that no observable difference in quality was detected within a 
range between 0 and 0.25. 

Later on, Lloyd et al. (Lloyd2007) demonstrated that there is a 
particular case in which both stiffness matrices are equal: equilateral 
triangles with Poisson’s ratio equal to 1/3. Although this case is just a 
particular situation, they proposed a general method to obtain approximated 
stiffness values for any type of triangle even for rectangular meshes but 
maintaining Poisson’s ratio equal to 1/3. However, in 3D problem, they did 
not find any exact solution to make both matrices equal for the case of 
tetrahedral meshes. For this reason, they proposed the minimization of the 
distance between the stiffness matrices to derive approximated tetrahedral 
models with Poisson’s ratio equal to 1/4. 

The methods presented in both works (Gelder1998, Lloyd2007) are 
based on the linearization of the equations of the MSM around the 
equilibrium position, which makes them valid only for small deformations. 
In other words, the usefulness of these methods in the field of surgery 
simulation, where the deformations and displacements are large, is limited. 
However, it can be an interesting first approximation when attempting to 
build deformable models. Even though linear elastic material models are far 
from the actual behaviour of living tissues the assumption of small 
deformations has been widely adopted in soft body simulation (Bro-
Nielsen1998, Müller2002, DiMaio2003, James2003, Berkley2004, 
Hauth2004, Wu2004, Lee2006, Georgii2008). 

Keeping in mind the limitations of the results that can be obtained 
from the linearization approach, this procedure will be followed in this 
thesis to make a first approximation to the design of deformable models. 
Special attention will be paid in the definition of the method to some weak 
points detected in the method proposed by Gelder (Gelder1998) and Lloyd 
et al. (Lloyd2007). 

First, both works suggest that the best way to make the linearized 
MSM behave like the linear FEM is by achieving the same element values in 
both stiffness matrices one to one. As in most cases there is not an exact 
solution Lloyd et al. (Lloyd2007) propose minimizing the difference 
between each element. However, an eigenvalue- and eigenvector-based 
approach can provide a deeper analysis of the quality of the approximation 
because it allows studying the direction and magnitude of the 
transformations that produce both stiffness matrices. 
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Second, there are two main material parameters in linear elastic FEM: 
Young’s modulus and Poisson’s ratio. The work of Lloyd et al. focuses on 
finding an exact solution to the stiffness matrices equating process. Thus, 
they limit the variability of Poisson’s ratio to the value that produces the 
smallest error. However, this magnitude has to be, in principle, a free 
parameter in the deformable model design. 

Finally, Gelder studies the particular case of 2D triangles and 
tetrahedron meshes while Lloyd et al. focus on the analysis of 2D triangle, 
rectangle, and tetrahedron meshes. However, neither work studies 3D 
cubical MSM elements. 

For these reasons, a new method is developed in this thesis based on 
the study of the eigenvectors and eigenvalues of the linearized cubical 
MSM, which is able to deal with any value of Poisson’s ratio and Young’s 
modulus. It is important to remark that the linearized model is only used to 
obtain the stiffness coefficients of the MSM but not to compute the real 
deformations. That is, the MSM used in any simulation will be nonlinear. 
For this reason, from now on, this method is called the linear method 
although it provides the parameters of a nonlinear model. 

4.1 METHOD DESCRIPTION 

As it has been seen, one possibility to derive a MSM whose behaviour is 
equivalent to a linear FEM is by linearizing the spring force as a function of 
the node positions and equating the linearized MSM equations with the 
FEM equations (see figure 4.1). This results in a linear approximation 
around the current configuration of the element. 

Four steps are necessary to derive the spring coefficients of a single 
cubical MSM before the whole body is assembled. First, the element 
stiffness matrix must be calculated analytically using the FEM. Second, the 
equations of the MSM have to be obtained. Then, these equations are 
linearized and the linear stiffness matrix is calculated. Finally, the stiffness 
matrices of both MSM and FEM are compared. Normally, a linearized 
MSM with the same stiffness matrix as the linear FEM of the same 
geometry cannot be found, making it necessary to find the parameters that 
minimize the difference between them. 

It is important to mention that this analytical method works over a 
single element. It does not consider the whole mesh of the deformable 
model. This makes the MSM design method independent of the mesh 
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topology. Thus, after identifying the parameters of one cube, the elements 
are assembled in order to build the complete deformable model. 

 

Figure 4.1. Method to obtain a cubical MSM from linear elastic FEM. 

4.1.1 LINEAR ELASTIC FEM 

In the FEM, the continuous model is spatially discretized by dividing it into 
a set of interconnected regions, called elements. The deformation field is 
approximated by interpolation functions associated with each element. For 
the linear FEM formulation, a cubical element with 8 nodes and trilinear 
interpolation is used. The equilibrium equations have the following form: 

 UKF
FEM  4.1 

where F is the vector of 24 forces applied at the nodes (3 components for 
each node), U is the vector of the nodal displacements and KFEM is a 
symmetric 24x24 matrix known as the element stiffness matrix. 

As the objective in this section is to obtain the stiffness matrix KFEM 
the theoretical background for the FEM will be only briefly outlined. The 
reader is referred to the work of Zienkiewicz et al. (Zienkiewicz2005) for 
further details. 
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Equating method 
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For a linear elastic material the stiffness matrix depends on the 
elasticity matrix (D). This matrix is constant and depends only on two 
parameters: 
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The  and  coefficients are the Lamé parameters whose values 
depend on the Young’s modulus and Poisson’s ratio: 
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Following the Serendip formulation (Zienkiewicz2005), three local 

coordinates (,  and ) centred in a cube are used to define the 
interpolation functions (see figure 4.2), whose values vary between -1 and 1. 
Thus, the resulting cube in the local coordinates has an edge length of 2. 

 

Figure 4.2. The cubical element represented using normalized local coordinates ,  and . 
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Calling the coordinates of node i as i, i and i and taking into 
account that the element is a cube with 8 nodes and linear interpolation the 
corresponding functions of interpolation are: 

     8,...,1111
8

1
 iN iiii   4.5 

The strain state is defined by the strain-displacement matrix (B). The 
block columns of B can be calculated by taking the derivative of the 
interpolation function with respect to the global Cartesian coordinates in 
the following way: 
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Finally, the stiffness matrix can be obtained computing the following 
volumetric integral: 

  v

FEM dvDBBK
T  4.7 

4.1.2 LINEARIZED MSM 

In order to obtain a MSM equivalent to the linear FEM described above, 
first, it is necessary to obtain an expression that relates the applied forces 
with the resulting deformations. 

The numbering of the vertices of the hexahedral elements follow the 
conventions typically used in FEM texts. That is, the element is represented 
by an ordered set of vertices from 1 to 8, where the point masses are placed. 
These vertices are connected to each other by linear springs. Considering 
the requirement of symmetric configuration three types of springs are 
defined to connect each of the vertices of the cube with the remaining 
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seven vertices: edge springs with ke stiffness (e.g. between vertices 1 and 2), 
face diagonal spring with kf stiffness (e.g. between vertices 1 and 6) and 
internal diagonal springs with kd stiffness (e.g. between vertices 1 and 7). 
The graphic representation of the different springs and the node numbering 
are shown in figure 4.3. 

 

Figure 4.3. Node numbering and spring distribution in the cube. Edge springs in blue, face 

diagonal springs in black and internal diagonal springs in red. 

Every elastic force that connects the 8 point masses of the cubical 
MSM is modelled using linear springs. That is, the force exerted by the 
spring that connects two generic nodes i and j is proportional to the 
elongation of the spring, k(i,j) being the corresponding stiffness coefficient 
and l(i,j)

0 its rest length. Calling xi=(xi, yi, zi)
T and xj=(xj, yj, zj)

T to the 
positions of the nodes i and j, the force at node i exerted by the spring that 
connects it with the node j can be computed as: 
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For a given spring, the force acting at node j is the same as at node i 
but with the opposite direction: 

    jiij ,, ff   4.9 

Although the relation between the force and the elongation is 
constant, the evaluation of this force leads to a nonlinear formulation. The 
reason is that the computation of the length of the spring in the deformed 
state is a Euclidean distance. Thus, the assembly of the 28 springs that 
compose the cube produces a system of nonlinear equations. 
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As deformations are considered small, the final positions of the nodes 
are close to their initial positions. Consequently, the system of equations 
that governs the behaviour of the MSM can be linearized around the rest 
state. The same approach was adopted by Lloyd et al. (Lloyd2007) to obtain 
triangular, rectangular, and tetrahedral elements. 

A first order approximation of the equations at the rest state is 
adopted to linearize the system of equations. In addition, a generic spring 
will be studied first to simplify the formulation and then the assembly of all 
the system will be performed. 

The linearized expression of the force of the spring that connects 
nodes i and j around the rest nodal positions (xi

0, xj
0) is: 
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The first term of the linearized expression is null because it refers to 
the resulting forces at the rest state. The second and third terms can be 
calculated by computing partial derivatives and substituting xi and xj with xi

0 
and xj

0 respectively. 

The process concerning the assembly of the equations of the 28 
springs that compose the single cube is straightforward and will not be 
detailed. In any case, this linearization allows computing approximately the 
equilibrium of a MSM under the hypothesis of small deformations around 
the initial rest position with a system of equations of the following form: 

 UKF
MSM  4.11 

As in the case of FEM, F is the vector of 24 forces applied at the 
nodes (3 components for each node), U is the vector of the displacements 
of the nodes and KMSM is the symmetric 24x24 stiffness matrix obtained 
from the linearization. This matrix has a structure of 8x8 blocks, each block 
being a 3x3 matrix. The blocks located in the diagonal of the matrix 
correspond to the sum of the spring forces exerted at each node. The 
blocks not contained in the diagonal, in turn, define the stiffness relation 
between only two particular nodes. 

The submatrices located at the diagonal have the form: 
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While the submatrices not contained in the diagonal have the form: 
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Note that the stiffness values of the springs k(i,j) can be only of three 
types: edge (ke), face diagonal (kf) or internal diagonal (kd) springs. 

4.1.3 STIFFNESS MATRICES EQUATING PROBLEM 

The objective of the present method is finding the values of the free 
parameters of the MSM so that it behaves in a way equivalent to linear 
FEM, at least when the model is working under small deformations around 
the initial rest configuration. The MSM has been already linearized and 
written in matricial form (see equation 4.11) which is similar to the FEM 
system (see equation 4.1). The equivalency between both mathematical 
formulations makes possible to propose methods that allow obtaining an 
approximate MSM from the linear elastic FEM. 

Both models transform the nodal displacements into force vectors 
using a stiffness matrix whose elements are constant. Note that the 
transformation that makes KFEM depends on two parameters because a 
linear elastic material is defined by the Young’s modulus and Poisson’s 
ratio. However, the proposed MSM has at most three parameters to adjust 
its behaviour: ke, kf, and kd (see figure 4.4). 

 

Figure 4.4. Linear transformation mapping each displacement vector U in 24 to the force 

vector F in 24. 

In the ideal case, given any displacements vector U24 both 
stiffness matrices would transform this U into the same F and the method 

U F 

KMSM (ke, kf, kd) 

24 24 

KFEM (E, ) 
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proposed to obtain the parameters would have to be valid for any E and . 
In general, finding the stiffness coefficients of the MSM that fulfil this 
requirement is not possible since the problem has not an exact analytical 
solution. 

The method of Lloyd et al. (Lloyd2007) consists in making the 
submatrices of KFEM symmetric before solving the equating problem. The 
main drawback of this approach is that the Poisson’s ratio needs to be fixed 
to a specific value, which limits extremely its usability. For this reason, it is 
necessary to develop a new method to find the spring coefficients that make 

both stiffness matrices as similar as possible for any value of . 

In the following section the approach followed by Lloyd et al. 
(Lloyd2007) to calculate the most suitable constants will be presented and 
then a new method based on the eigenproblem study will be proposed. 

4.1.3.1 Matrix distance approach 

Lloyd et al. (Lloyd2007) obtained an analytical exact solution to the equating 
problem for equilateral triangles and rectangles. However, as the stiffness 
parameters of the MSM are not enough to equate both matrices they 
increased the number of degrees of freedom of the problem by considering 
also as output variable the Poisson’s ratio. In the particular case of triangles 
and rectangles, the Poisson’s ratios that make the submatrices of KFEM 
symmetric are 1/3 and 1/4 respectively. In the case of rectangles they even 
had to increase the number of variables by considering prestrained springs. 

In other words, they force KFEM to have the same form as the 
stiffness matrix of the linearized MSM by selecting a particular value for 

Poisson’s ratio. However, including  in the set of design parameters limits 
the usefulness of the method because it admits as input parameters any 

value of E but a unique . Therefore, this method is able to find MSMs 
equivalent to only certain linear elastic material models. 

In the case of regular tetrahedra, apart from the three stiffness 

parameters and , they included volume preserving forces. However, the 
equating problem still did not yield an exact solution. Therefore, they 
proposed a minimization approach to obtain the best possible 

approximations, and divided the method into two steps: first the value of  
that makes both stiffness matrices have similar form is selected and then the 
minimization is performed. Calling C to the difference between the 
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linearized MSM and FEM stiffness matrices (see equation 4.14) the 
optimization strategy consists in minimizing the Frobenius norm of C (see 
equation 4.15). 

 MSMFEM
KKC   4.14 
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However, using this strategy it is difficult to understand the physical 
meaning of the Frobenius norm of C and even more difficult to interpret 
the obtained results. In turn, analyzing the transformation that makes each 
stiffness matrix in certain characteristic directions provides a more detailed 
view of the physical behaviour of the model. 

4.1.3.2 Eigenproblem approach 

In this thesis a new approach is proposed to find the most suitable 
parameters of the cubical MSM. In particular, it is focused on the study of 
the eigenproblem of the stiffness matrices. 

Taking as reference the stiffness matrix of the FEM, the study of the 
eigenproblem provides the V and D square matrices that satisfy the 
following equation: 

 VDVK FEM  4.16 

The columns of V are the eigenvectors (vn) of KFEM and D is a 

diagonal matrix whose values correspond to the eigenvalues (n) of KFEM. 

As V is an orthogonal matrix (VT=V-1) the vector of displacements U 
can be computed as follows: 

   FVVDFKU
TFEM 11 

  4.17 

As both the stiffness matrices of the FEM and the linearized MSM 
are symmetric, their eigenvectors are orthogonal. This means that the 24 
eigenvectors of each matrix form an orthogonal basis of the space of U. 
Analyzing the transformations suffered in those directions is equivalent to 
studying all the possible displacements vectors since the rest of them are 
linear combinations of this basis. 
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Consequently, analyzing the eigenproblem of the stiffness matrices is 
equivalent to studying the effects of applying different deformations in the 
specific directions that define the whole behaviour of the model. 

In this approach the reference system is the FEM model, and 
therefore the eigenvectors of KFEM will be the directions in which the 
equivalence will be studied. The error obtained in the MSM when 
performing the linear transformation in the principal directions defined by 
KFEM can be computed as follows: 

   24...1,,  nkkk n
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The strategy proposed to optimize these transformations is the 

minimization of  using a least squares method,  being: 
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This new strategy based on the study of the eigenvectors of KFEM is 
consistent with the minimization of the Frobenius norm of difference 
between KMSM and KFEM proposed by Lloyd et al. (Lloyd2007). This 
equivalence is proved in equation 4.20 taking into account that C is a real 
matrix and V orthogonal (VT=V-1). 
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However, the approach proposed in this thesis provides more 
information about the obtained MSM as it will be seen in section 4.2.2. 

The main advantage of this method is that it allows making an 
analysis of the deformation modes of both mechanical models. It consists in 
identifying the shapes of the deformations and the stiffness of the model in 
those directions. In particular, the eigenvectors of the stiffness matrices 
determine the shapes of these deformation modes, while the eigenvalues are 
used to determine the stiffness associated to them. The orthogonality 
property of the eigenvectors allows decoupling the behaviour of the model 
so that the system can be represented as linear combination of the 
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eigenvectors. That is, any deformation of these mechanical models is a 
superposition of their eigenmodes. 

As the FEM and linearized MSM can be decomposed in eigenmodes 
it is possible to evaluate the quality of the approximation by analyzing the 
similarity between their corresponding modes. The more similar the modes 
are the more similar the mechanical models will behave. In the ideal case, 
both models would have their eigenvectors parallels to one another and the 
corresponding eigenvalues with the same magnitude. 

4.2 RESULTS 

As mentioned before, linear elastic material models are defined by two 

parameters: E and . From equations 4.2, 4.3 and 4.4 can be deduced that 

the elastic matrix D depends on E and  but with the particularity that 
Young’s modulus multiplies all the elements of the matrix. Thus, the 
stiffness matrix KFEM (see equation 4.7) can be rewritten as a product of E 
and a matrix. 

On the other hand, all the elements of KMSM are proportional to the 
spring constants (see equation 4.12 and 4.13). The consequence of these 
properties of KFEM and KMSM is that the stiffness coefficients of the MSM 
have to be proportional to E. A similar reasoning can be made with the 
length of the cube edge L0. In this way, the study of the equivalence 
between stiffness matrices is simplified since E and L0 are no longer free 
parameters to be identified. 

In turn, there is no way to consider an equivalent proportionality with 
respect to the Poisson’s ratio. Taking these considerations into account, the 
parameters of the MSM can be rewritten using three pseudo-stiffness ki’ 
constants which are non-dimensional factors: 

 dfeiEk
L

k ii ,,
2

0   4.21 

To derive the values of these parameters from the linear elastic FEM 
the minimization method described in the previous section (see equation 
4.19) is applied. In order to handle this minimization in an easy way, the 

resolution is particularized for certain values of . The range of Poisson’s 
ratios between 0 and 0.5 is divided into discrete values using increments of 
0.05. The resulting pseudo-stiffness values are detailed in table 4.1. 
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Poisson’s 

ratio () 

Edge springs 

(ke’) 

Face diagonals 

(kf’) 

Internal 

diagonals (kd’) 

0.00 0.155 0.206 0.119 

0.05 0.153 0.206 0.121 

0.10 0.153 0.208 0.125 

0.15 0.154 0.214 0.132 

0.20 0.158 0.223 0.141 

0.25 0.166 0.239 0.156 

0.30 0.179 0.265 0.179 

0.35 0.205 0.312 0.220 

0.40 0.260 0.410 0.303 

0.45 0.432 0.714 0.555 

0.49 1.826 3.166 2.585 

Table 4.1. The pseudo-stiffness coefficients of edge springs, face diagonal springs, and 

internal diagonal springs obtained from linear FEM for different Poisson’s ratios. 

These pseudo-stiffness values depend only on the Poisson’s ratio. 
Defining a particular MSM requires taking into account the expression that 
relates them with ki (see equation 4.21) and choosing coherent units for L0 
and E. 

Note that the highest value of  has been taken 0.49 instead of 0.5 
because the elements of the stiffness matrix corresponding to the linear 
elastic FEM tend to infinite as the model approaches incompressibility. 
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4.2.1 SENSIBILITY TO THE POISSON’S RATIO 

There are several ways to study the influence of the Poisson’s ratio on the 
quality of the approximation. One of them is to subject a single cubical 
MSM to certain forces and compare the resulting deformations with respect 
to the corresponding FEM simulations. Another way to evaluate the 
approximation is to analyze the residual error of the minimization. 

4.2.1.1 Uniaxial tensile test 

The most common experiment used to obtain the mechanical properties of 
some sample is the uniaxial tensile test (see figure 4.5). Therefore, an 

interesting way to analyze the effect of  on the deformation error of the 
model is testing a single cube made up with the derived spring constants 
and study how it behaves in both axial and transversal directions. 

  

Figure 4.5. The appearance of the MSM subject to uniaxial tensile forces. 

Different definitions of stress and strain are used in solid mechanics. 
Although these magnitudes are defined for a continuum context, in a tensile 
test it is possible to define an equivalent relation in the discrete domain, 
assuming that the total applied load over a face is the sum of the external 
nodal forces. The resulting engineering stress in z axis equation 4.22 in the 
present tensile test may be defined as the relation between the applied load 
(4Fz) and the original cross-sectional area. 
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Likewise, the engineering strain equation 4.23 along the i axis may be 
estimated as the relation between the elongation and the original reference 
length of the spring. 
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It is also interesting to study the Poisson’s ratio equation 4.24, that 

measures the relation between the strain in the transversal direction (x or 

y) and the strain along the axial direction (z) when a pure uniaxial test in z 
axis is performed. 
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Figure 4.6. Stress-strain curves of the linear FEM (in red) and MSM (in blue) for a uniaxial 

tensile test. The MSM shows a dependency with the Poisson’s ratio. The stress value is 

expressed per unit of elasticity module. 

Taking into account these magnitudes figures 4.6 and 4.7 show the 
results of tensile tests performed to MSMs designed using the values of 

 = 0.45  = 0.49 

 = 0.40 

 = 0.35 

 = 0.30 
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table 4.1. Note that although the parameters have been obtained using the 
linearized model, these tests are applied to the original MSM. In all the cases 
the model is pulled until the elongation raises a value of 10% in the axial 
direction. In order to avoid the scaling influence of E on the deformation as 
well as on the error, this parameter is taken equal to 1. In particular, figure 
4.6 shows the stress-strain curves of the linear FEM and the MSM in the 
axial direction for all the Poisson’s ratios displayed in table 4.1. 

Note that the curves shown in figure 4.6 that correspond to the MSM 
are not perfect straight lines although they look so. The reason for this is 
that the response of the MSM is calculated by computing the nonlinear 
equations (see equation 4.8) and not the linearized system. The fact that 
these lines are fairly straight demonstrates that it is logical to assume that 
the behaviour of MSMs is close to linear when they work under small 
deformations. 

When Poisson’s ratio is around 0.35, the derived spring constants 
behave in the axial direction very much like a linear elastic FEM but a 
considerable error appears when other values are selected. Below this value 
the cube behaves more softly and the deviation increases when Poisson’s 
ratio decreases, 31% softer would be its worst. On the other hand, analyzing 
Poisson’s ratios greater than 0.35, it can be seen that the sample behaves 

more stiffly than the original one. This error gets even worse the more  
approaches incompressibility. For example, a MSM obtained from linear 
elastic FEM with Poisson’s ratio of 0.40 is 28% stiffer than that reference 
model. 

Taking into account the same experiments, figure 4.7 shows the 
transversal strain in function of the tensile strain for the linear FEM and the 
MSM for all the Poisson’s ratios displayed in table 4.1. That is, this figure 
shows how good the approximation in the transversal direction is. 

Figure 4.7 allows completing the analysis of the error in uniaxial 

tensile tests associated to the parameter derivation method in function of . 
Although in the reference FEM model the Poisson’s ratio varies from 0 to 
0.49 with increments of 0.05, the obtained MSMs show very different 
behaviours. All of them have a relation between the transversal strain and 
the tensile strain in the range of 0.25 and 0.3. 

That is, even though the proposed method is able to approximate 

accurately the behaviour in the axial direction for =0.35 it is not capable of 
describing correctly the strain caused in the transversal direction. 
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Conversely, for =0.275 the transversal behaviour is approximated 
accurately while the axial response turns 20% softer. 

 

Figure 4.7. Transversal strain versus tensile strain curves of FEM (in red) and MSM (in 

blue) for a uniaxial tensile test. 

In summary, in the case of considering the axial response in a uniaxial 

tensile test then, the best  is 0.35. In turn, if the relation between the axial 
and the transversal deformations is analyzed then, the optimum value 
becomes 0.275. 

4.2.1.2 Residual error of the minimization 

Another way to analyze the best approximated reference parameters is 
studying the residual error of the proposed minimization process. Figure 4.8 
shows the 2-norm value of the residual error at the solution in function of 
the Poisson’s ratio. 

The curve of the residual error remains quite planar for Poisson’s 
ratios below 0.35. Although in this whole range the error is small the 

z 
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minimum value is located at approximately 0.2, which means that at this 
specific value both matrices are closer. However, the error shown by this 

value in the uniaxial tensile test suggests that =0.2 does not correspond to 
the best approximation. 

 

Figure 4.8. Residual error of the minimization approach in function of the Poisson’s ratio. 

On the other hand, the optimum Poisson’s ratios obtained in the 
tensile experiments (0.275 and 0.35) display small residual error. This makes 
them the best candidates for approximating accurately the behaviour of 
linear elastic material models. 

4.2.2 ANALYSIS OF THE EIGENPROBLEM 

The eigenproblem approach allows analyzing the results of the proposed 
method from a point of view that is different from the direct study of the 
generic response of the model itself. It provides specific information about 
the response of the model in a group of directions that represent its whole 
behaviour. This information makes it much easier to evaluate how close the 
FEM and the linearized MSM are. In particular, the study will be focused on 
the identification of equivalent subspaces and the evaluation of the quality of 
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the approximation of the obtained MSM by using a specifically defined 
metric. This approach will help identifying the optimum value for the 
Poisson’s ratio. 

The same set of Poisson’s ratios in the range of 0-0.5 that are detailed 
in table 4.1 will be analyzed since the previous section provided several 

optimum values for . Before starting with the complete study, some 
aspects of the eigenproblem study will be introduced. In order to illustrate 

this concepts the case of =0 is adopted. For other values of  the 
procedure would be same. 

4.2.2.1 Eigenspaces 

The stiffness matrix of the FEM has a set of 24 eigenvectors and each of 
them has associated an eigenvalue. Due to the symmetry of this matrix, the 
eigenvectors are orthogonal to one another and they form a basis of the 
space of U. Some of these eigenvectors have associated the same eigenvalue 
and form, together with the zero vector, subspaces of U called eigenspaces. 
The dimension of these eigenspaces is given by the number of eigenvectors 

that have the same eigenvalue, also known as the geometric multiplicity () of 
the eigenvalue. 

The stiffness matrix of the linearized MSM has also the same 
characteristics as the stiffness matrix of the FEM. Therefore, its collection 
of eigenvectors can also be subdivided in orthogonal eigenspaces. 

In order to show this concepts in a practical example, table 4.2 shows 

the eigenvalues and their geometric multiplicity for the case of =0. This 
table is organized in increasing order of the eigenvalues. 

 1 2 3 4 5 6 7 8 9 

FEM 0(6) 0.17(2) 0.22(3) 0.5(6) 0.67(1) 1(6) - - - 

MSM 0(6) 0.21(2) 0.31(3) 0.34(3) 0.52(2) 0.62(3) 0.72(3) 0.82(1) 1.37(1) 

Table 4.2. Eigenvalues and their geometric multiplicity (the number in brackets) for =0. 

This information allows identifying the number of eigenspaces that 
each stiffness matrix uses to define the space U and their dimension. In any 
case, the sum of all of them is 24 which is the dimension of the space of U. 
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In particular, the FEM that corresponds to =0 has 6 eigenspaces while the 
corresponding linearized MSM has 9. That is, the way in which they 
describe the solution is different. The reason for this is that the MSM 
cannot behave exactly as the linear FEM, only in an approximate way. 

In particular, the shapes of the eigenmodes corresponding to the 

linear FEM with =0 are displayed in figure 4.9 except from the first 
eigenspace which is the one that describes the rigid body displacements. 
Four of these shapes have well-known physical meaning. The 2nd eigenspace 
describes the deformations that take place in a torsion test, the 3rd one refers 
to the side warping, the 4th one corresponds to bending experiments and the 
6th one refers to the shapes obtained in shear tests. The fifth eigenspace 
does not have a simple physical interpretation. 

 

Figure 4.9. Some shapes of the eigenmodes of the linear elastic FEM when =0. In 

brackets the number that identifies the eigenspace. 

The minimization strategy proposed in this chapter adjusts the 
parameters of the MSM in order to design a model whose modes are as 
similar to the modes of the FEM as possible. Depending on the quality of 
the obtained linearized MSM, some shapes will be the same in both models 

Torsion (2) Side warping (3) Bending (4) 

Shear (6) No interpretation (5) 
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and the others different. The eigenspaces that describe the same subspace 
of U will be considered equivalent eigenspaces. 

In particular, the adjusted linearized MSM and the FEM 

corresponding to =0 have three equivalent eigenspaces. Following the 
numbering of the eigenspaces of the FEM, these are the 1st (rigid body 
displacements), 2nd (torsion) and 5th (no interpretation) ones. Apart from 
these shapes the MSM has another six that are detailed in figure 4.10. The 
5th eigenspace describes the deformations obtained in stretching 
experiments while the 9th one can be seen as a scaling deformation. The 
other four eigenspaces do not have a simple physical interpretation. 

 

Figure 4.10. Some shapes of the eigenmodes of the linearized MSM for =0. In brackets 

the number that identifies the eigenspace. 

Analyzing the shapes of the eigenmodes allows identifying which are 
the eigenspaces that the proposed method has achieved to describe 
correctly. However, it does not evaluate how good the approximation of the 
other eigenmodes is. In other words, the similarities between the 
eigenspaces of both systems and the coupling of their eigenspaces are not 
still quantified. 

Stretching (5) 

Scaling (9) 

No interpretation (3) No interpretation (4) 

No interpretation (6) No interpretation (7) 
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4.2.2.2 Projection of the eigenvectors 

With the aim of evaluating the quality of the approximation of the derived 
MSM, each eigenvector of the linearized MSM is projected onto each 
eigenvector of the linear FEM. This allows completing the information 
provided by the identification of the modes made in the previous section 
and checking whether the eigenspaces of both systems describe similar 
shapes or not. 

If an eigenvector of the linearized MSM has projection only onto a 
single eigenvector of the FEM then both eigenvectors are collinear. In turn, 
if it has projections onto a set of multiple eigenvectors it is a linear 
combination of those eigenvectors of the FEM. In this way it is possible to 
study the level of coupling between the different eigenspaces of the FEM 
and the linearized MSM. 

 

Figure 4.11. Projection of the eigenvector of KMSM on the eigenvectors of KFEM for the case 

of =0. The horizontal axis refers to the eigenvectors of the KMSM while the vertical axis 

refers to the ones of FEM. Both axes are ordered in increasing value of their respective 

eigenvalues. Red blocks refer to equivalent subspaces. 

The projections of some eigenvectors onto the others are represented 
graphically using a dot diagram. In particular, the data relative to the 

v1 v24 

v1 

v24 

FEM 

MSM 
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projections of the eigenvectors for the case of =0 is represented in figure 
4.11. The horizontal axis refers to the eigenvectors of the linearized MSM 
while the vertical axis refers to the eigenvectors of the FEM. Both axes are 
ordered in increasing value of the respective eigenvalues. In this diagram, 
each dot indicates that the corresponding eigenvector of the FEM and the 
linearized MSM have a projection different to 0, that is, they are not 
orthogonal to one another. 

4.2.2.3 Identifying equivalent eigenspaces 

The key idea to identify the equivalent eigenspaces using the projection 
techniques is the fact that any linear combination of the eigenvectors 
belonging to an eigenspace is also an eigenvector of the system and belongs 
to same eigenspace. Therefore, if an eigenvector of the linearized MSM has 
projections only onto the set of eigenvectors of a specific eigenspace of the 
FEM then, this vector is also an eigenvector of the FEM. When this 
happens to all the eigenvectors of a particular eigenspace then this 
eigenspace is equivalent in both models. 

In figure 4.11, the vertical and horizontal lines delimitate the 
eigenspaces of the KMSM and the ones of the KFEM respectively. In the 

particular case of =0, there are three equivalent eigenspaces in both 
systems. These eigenspaces have the particularity that the eigenvectors of 
KMSM have projections only on the eigenvectors of certain eigenspace of 
KFEM, but are orthogonal to the rest of the eigenspaces. The following 
equivalent eigenspaces can be identified in figure 4.11: a 6-dimensional 
eigenspace that corresponds to rigid body movements, a two-dimensional 
space that describes torsion-like deformations and an eigenspace formed by 
a single eigenvector with simple physical interpretation. 

On the other hand, the 4th eigenspace of the FEM is coupled with 
two eigenspaces of the linearized FEM. The shapes are equivalent in both 
models since they are orthogonal to the rest of the eigenspaces. That is, six 
eigenvectors of the FEM form an equivalent basis to six eigenvectors of the 
linearized MSM. However, the two eigenspaces corresponding to KMSM have 
associated different eigenvalues. This makes them not to be exactly 
equivalent eigenspaces. 

The remaining eigenspaces of KFEM do not have an equivalent 
eigenspace in KMSM. The third eigenspace of KFEM which has dimension 3 
for example, is coupled with two eigenspaces of KMSM (4th and 6th) that 
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contain 6 eigenvectors. In the case of the FEM, a force applied in a certain 
direction contained in the third eigenspace of KFEM causes a deformation in 
the same direction. In turn, this force causes a force in a different direction 
when applied to the MSM. 

The information regarding the equivalent eigenspaces was correctly 
obtained in the identification of the shapes made in section 4.2.2.1. 
However, the projection method allows in addition to indentify fairly 
equivalent eigenspaces and the level of coupling between the shapes that are 
not equivalent. 

4.2.2.4 Obtaining the optimum Poisson’s ratio 

In the case of a linearized MSM totally equal to a linear elastic FEM, all the 
eigenspaces of the KFEM would have their equivalent ones in the KMSM and 
the corresponding eigenvalues would be the same. In such case, the dot 
diagram would have a diagonal shape. This distribution of the projections 
of the eigenspaces in the diagram can be used to measure how far from the 
ideal stiffness matrix the obtained MSM is. 

In this thesis, it is proposed to measure the quality of the 
approximation by calculating the distance between the equivalent subspaces 
and their ideal position in the diagram. To this end a new metric h is defined 
based on the dot diagram (see equation 4.25). In particular, this magnitude 
weights these distances by giving more importance to the eigenspaces 
whose eigenvalue is greater: 

 
 


N

i idN

i
h

1 1

1
 4.25 

N is the total number of eigenspaces of KFEM while di is the number of 
eigenvectors that separates a given equivalent eigenspace from its ideal 
position in the diagram. When an eigenspace corresponds exactly to the 
ideal case then the distance is 0; for this reason, using di+1 as the measure 
of the distance is proposed. An example of this metric is given in figure 4.12 

for the case of =0. 

In order to indentify the best approximation it is necessary to apply 
this technique to the whole range of Poisson’s ratios described in table 4.1. 

The dot diagrams corresponding to the different  values are displayed in 
appendix A. 
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Figure 4.12. Distance between equivalent eigenspaces and their ideal positions for =0. 

Table 4.3 contains the metric computed using these diagrams for each 
linearized MSM depending on the Poisson’s ratio. 

 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.49 

h 0.64 1.73 1.73 1.73 1.72 1.72 1.65 2.01 1.74 1.97 1.97 

Table 4.3. Quantification of the quality of the approximation for the different values of . 

From the eigenspace projection point of view, =0.35 leads to the 

best approximation of the model while =0 corresponds to the worst one. 
This conclusion reasserts the observations made in section 4.2.1 where the 
best Poisson’s ratio was suggested to be the one that could approximate 
better the axial response in the uniaxial tensile test. 

4.2.2.5 Additional comments 

One remarkable issue is that all the obtained MSMs have the two 
eigenspaces that correspond to the smallest eigenvalues equivalent. Those 
eigenspaces define pure translations and rotations and torsion deformations. 

v1 v24 

v1 

v24 

FEM 

MSM 

d5=5 
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In addition, except for the case of Poisson’s ratio 0, all the MSMs 
share the same last eigenspace. This is one-dimensional eigenspace and 
corresponds to the largest eigenvalue. That is, the response of the model in 
the direction of the eigenvector that defines this subspace has the largest 
gain. The effect of exciting the cube in the direction of this eigenvector is 
equivalent to scaling the model (see figure 4.10). 

Apart from these common equivalent eigenspaces, other three 
eigenspaces appear in most of the equivalence analyses. Two of them are 
three-dimensional whereas the other one needs only an eigenvector to 
define the eigenspace. However, their distribution in the graph of 
projections is different and in some cases they even do not appear. Using 
the magnitude h makes it easier to identify the best approximation. 

Finally, it is important to stress the idea that the three ways proposed 
to analyze the quality of the approximation (uniaxial tensile test, residual 
error and eigenproblem study) are complementary. The information they 
provide helps to better understanding the behaviour of the obtained MSMs 
and identifying the most suitable value of Poisson’s ratio. 

4.3 EXPERIMENTS 

The study of the MSM derived from linear elastic FEM that has been 
performed in the previous section was focused on the evaluation of a single 
cubical element. However, it is necessary to test multi-element bodies in 
order to validate the method proposed in this thesis. In addition, the 
eigenproblem analysis refers to the study of the linearized MSM which is 
only valid around the rest state and does not provide information about the 
behaviour of the model for larger deformations. 

For these reasons, it is necessary to study different deformation states 
of a more realistic MSM with multiple elements to make a complete 
evaluation of the model. In particular, six tests that consider axial, shear and 
torsion forces have been chosen to evaluate the performance of the MSM. 

4.3.1 DESIGN OF THE CUBICAL MSM 

The model selected for the simulations is a cube with 10x10x10 elements (1 
mm3 each). Concerning its mechanical properties, the proposed method to 
design MSMs is able to provide stiffness coefficients for any value of 
Young’s modulus and Poisson’s ratio. Therefore, the validation is made 
using different material models. 
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In particular, the reference material model is described by a Young’s 
modulus of 300 KPa and different Poisson’s ratios, detailed in table 4.1. 
This will make it possible to identify the Poisson’s ratio that provides the 
most accurate results and assess the conclusions of sections 4.2.1 and 4.2.2. 

Additionally, =0.49 will help studying the quasi-incompressible condition 
which is a frequent assumption in living tissue modelling. 

The considered hexahedral mesh is composed by a collection of 
interconnected cubes. In this mesh there are different kinds of neighbour 
conditions since the assembly of cubes involves merging faces and edges. 
When two cubes share a face, both of them are contributing to the stiffness 
of that face, which means that the values of ke and kf of both cubes have to 
be added. If the merging process involves sharing just an edge then ke will 
be added but not kf. The same idea is behind the assembly of matrices in 
FEM. Some generic examples of cube assemblies are shown in figure 4.13. 
The assembly of the multielement model used for the simulations is built by 
following these rules of stiffness contribution. 

 

Figure 4.13. Four examples of multiple contributions to the spring stiffness due to cube 

assembling. In red, springs whose stiffness is the sum of two values. In blue the case in 

which three springs are involved. 

4.3.2 DESCRIPTION OF THE EXPERIMENTS 

The proposed experiments are divided into two sets of three tests. The first 
set of experiments is specifically designed to produce small deformations 
while the second, in turn, large deformations. The only difference between 
both sets is the amount of force applied but in both cases, the force 
configuration is the same. In this way, the MSM can be evaluated for small 
deformations (around the linearization point) as well as large deformations 
(farther from the rest state). Independently of the deformation amount, 
these simulations are calculated using the nonlinear equations (see equation 
4.8). 
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Following the typical experiments performed in material science these 
tests are focused on tensile, shear and torsion forces where the bottom 
faces (zi=0) are fixed (see figure 4.14):  

- Test 1: each node belonging to the top face is subject to a vertical 
force FAi. The total force acting over the face is 121 times FAi. 

- Test 2: each node belonging to the top face is subject to a 
horizontal force FSi. The total force acting over the face is 121 times 
FSi. 

- Test 3: each node belonging to the edges of the top face is subject 
to forces that cause an anti-clockwise moment with respect to the z 
axis. The force applied on each edge is 11FTi. In the vertices exists the 
combined effect of the two corresponding edges. 

 

Figure 4.14. Description of the three tests used in the validation of the MSM. The bottom 

face is kept fixed and the forces act on the top face (tests 1 and 2) or top edges (test 3). 

The particular values of the forces that are applied in the different 
tests are detailed in table 4.4. 

 Test 1 (FAi) Test 2 (FSi) Test 3 (FTi) 

Small deformations 10 2 5 

Large deformations 50 10 25 

Table 4.4. Nodal forces of the different experiments given in x10-3 N. 

Test 1 

x 
y 

z 

Test 2 Test 3 

FSi FAi FTi 
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4.3.3 EXAMPLE OF SIMULATIONS 

In this section the results of the simulations are presented, with the aim of 
explaining the validation strategy and proposing measurements to evaluate 
the quality of the performance of the MSM. In addition, the range of 
deformations caused by the two sets of experiments will justify the value of 
the forces detailed in table 4.4. 

In particular, from the available Poisson’s ratios, the value of 0.25 is 
chosen for the six experiments. Based on the results obtained in section 4.2, 
the stiffness constants of a MSM derived from the linear elastic material 

model with L=1 mm, E=300 KPa and =0.25 are: 
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 4.26 

The behaviour of this MSM in the six experiments is compared with 
the results obtained with the Abaqus1, software for finite element analysis, 

using a linear elastic FEM with E=300 KPa and =0.25. 

In order to better compare these results, the corresponding final 
deformed states of the MSM and the FEM are displayed in superimposed 
images in figure 4.15. The visual comparison of the results of the MSM with 
the FEM simulations gives a qualitative idea of the accuracy of the obtained 

deformations for the particular case of =0.25. 

In the three tests corresponding to small deformations, the 
displacements of the MSM nodes are larger than the FEM. This means that, 

in the case of =0.25, the obtained MSM behaves softer than the reference 
model. This characteristic is coherent with the stress-strain curves of tensile 
experiment performed with a single element (see figure 4.6), the cube 

showed to be softer for  below 0.35. 

In any case, these simulations show that the general behaviour of the 
proposed MSM is quite similar to the performance of the FEM in both 
small and large deformations. However, it is necessary to make a 
quantitative measurement of the error in order to evaluate more precisely 
the quality of the designed model. 

                                                 
1 http://www.simulia.com/products/abaqus_fea.html 

http://www.simulia.com/products/abaqus_fea.html


Experiments 105 

 

 

Figure 4.15. Simulation of deformable bodies using MSM, red mesh, and FEM, green wire-

frame (E=300 KPa, =0.25). Left column small deformations and right column large 

deformations. From top to bottom: axial, shear and torsion tests (details in figure 4.14). 

Axial test (small def.) Axial test (large def.) 

Shear test (small def.) Shear test (large def.) 

Torsion test (small def.) Torsion test (large def.) 
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4.3.4 ERROR MEASUREMENT 

One way to make the quantitative evaluation of the quality of the 
simulations is to define some representative measurements and compute 
their error with respect to the FEM results. 

In the case of the tensile test the height of two particular nodes of the 
top face is studied: L1 and L2. These are the z coordinates of the centre 
node and a vertex of the top face respectively (see figure 4.16). 

 

Figure 4.16. Magnitudes selected to measure the error in the axial tensile test. L1 stands for 

the centre node in the top face while L2 corresponds to any vertex of the top face. 

The second test corresponds to a shear test, and therefore, in this case 

the most representative measurements are the angles of the left (1) and 

right (2) faces. These angles are measured considering the rotation of the 
vertices of the top face with respect to the analogous vertex of the bottom 
face (see figure 4.17). 

In the case of the torsion test, the most meaningful measurement is 
the rotation of the top face. Therefore, the angle described by two nodes is 

proposed: the rotation of the middle node of an edge of the top face (1) 

and the rotation of a vertex of the top face (2). Both angles correspond to 
the rotation of the segment that connects them to the centre of the top face 
(see figure 4.18). 

L1 

L2 
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Figure 4.17. Measurement of the error in the shear test. 

 

Figure 4.18. Measurement of the error in the torsion test. 

In order to evaluate the accuracy of the simulations performed with 
the MSM the relative errors (r) of these measurements (m) with respect to 
the results obtained with the FEM are calculated: 

1
 


 

2
 

1
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As the experiments have been divided into two sets regarding the 
resulting displacements, the study is divided in two cases attending to this 
distinction: small and large deformations.  

4.3.5 ACCURACY OF THE MSM UNDER SMALL DEFORMATIONS 

Table 4.5 shows the errors obtained in the simulation of the three tests 
corresponding to small deformations. In this case the minimum error 

belongs to MSMs obtained from =0.3 and =0.35. For these values the 
best results are obtained for the axial experiment where the error is below 

0.6% while shear tests have an error up to 12%. Torsion tests for=0.3 and 
0.35 show errors below 6% except for the rotation of the vertex node for 

=0.35 whose error is around 22%. Note that for the same experiment the 

error of the middle point of the edge of the top face is 1.5% for =0.35. 

 Poisson’s ratio 

0.20 0.25 0.30 0.35 0.49 

L1 (axial) 1.25% 0.97% 0.59% 0.05% -3.02% 

L2 (axial) 1.30% 0.85% 0.26% -0.57% -5.29% 

1 (shear) 34.16% 24.83% 11.52% -4.91% -90.14% 

2 (shear) 32.95% 21.54% 9.89% -6.67% -90.58% 

1 (torsion) 4.13% 2.76% 0.97% -1.54% -19.91% 

2 (torsion) 21.84% 8.00% -5.63% -22.28% -92.98% 

Table 4.5. Relative errors for different experiments and Poisson’s ratios under small 

deformations. 

The results of the experiments performed with =0.2 are less 
accurate, reaching the shear test errors values around 33%. The errors 
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corresponding to the axial test are around 1.25%. In the case of the torsion 

test the error of the vertex for =0.2 and 0.35 is similar. 

Analyzing the magnitude of the errors and the corresponding sign it 
can be seen that they are totally consistent with the analysis made in 
sections 4.2.1 and 4.2.2 about the Poisson’s ratio sensibility. That is, for 

MSMs obtained for  below 0.35 the resulting model gets softer than the 
reference FEM as the Poisson’s ratio decreases. For material models close 
to incompressibility the method becomes much stiffer and very inaccurate 
in the case of shear and torsion tests. 

These results highlight the importance of analyzing also the 
eigenproblem instead of focusing just on the residual value of the 
minimization. As it was concluded in that analysis, the best design was 
expected for Poisson ratios around 0.35. 

4.3.6 ACCURACY OF THE MSM UNDER LARGE DEFORMATIONS 

Table 4.6 displays the relative errors corresponding to the large deformation 
tests. 

 Poisson’s ratio 

0.20 0.25 0.30 0.35 0.49 

L1 (axial) 0.36% 3.22% -2.59% -4.95% -12.48% 

L2 (axial) -1.48% -1.02% -7.94% -12.01% -20.97% 

1 (shear) 38.02% 28.62% 16.69% 0.69% -89.64% 

2 (shear) 32.77% 22.30% 9.34% -7.40% -90.95% 

1 (torsion) 2.50% 0.95% -0.68% -2.77% -12.46% 

2 (torsion) 9.99% -0.01% -7.95% -24.20% -92.23% 

Table 4.6. Relative errors for different experiments and Poisson’s ratios under large 

deformations. 
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As deformations increase the MSM becomes stiffer and under large 
deformations the errors vary with respect to the case of small deformations. 
This effect is reasonable taking into account that MSMs are nonlinear 

models. For axial tests the minimum errors are achieved with =0.2 and 

0.25 while in the case of shear experiments =0.35 is more accurate. The 

MSM obtained for =0.25 and 0.30 perform better in torsion tests. These 
values have to be taken carefully because they are based on large 
deformations, that is, far from the linearization point. 

Considering the general performance in the proposed simulations it 

can be concluded that the MSM derived from =0.35 behaves more 
accurately than the other models. Except from the angle that corresponds 
to the vertex in the torsion test it shows a relative error below 7% for small 
deformations and below 12.5% for large deformations. 

4.3.7 QUASI-INCOMPRESSIBLE MATERIAL MODEL 

Under small and large deformations the approximation of the MSM when 
the reference material model is quasi-incompressible is not accurate. In this 
section it is proposed to analyze whether the optimal value of Poisson’s 

ratio can be a better choice. Therefore, =0.35 will be taken as input 
parameter to model nearly incompressible materials. 

 Small 

deformations 

Large 

deformations 

L1 (axial) 0.18% 0.57% 

L2 (axial) -0.44% -4.46% 

1 (shear) -2.93% -2.94% 

2 (shear) -5.57% -6.90% 

1 (torsion) -1.89% -3.84% 

2 (torsion) -28.65% -28.65% 

Table 4.7. Errors of the MSM obtained from =0.35 with respect to incompressible FEM. 
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Table 4.7 displays the relative errors of the MSM, with parameters 

E=300 KPa and =0.35, when compared to the behaviour of a linear elastic 

FEM with E=300 KPa and =0.49. 

These tensile, shear and torsion experiments show that the MSM 

derived from =0.35 simulates accurately the behaviour of a nearly 
incompressible material. Independently of the range of deformations, it 
shows a relative error below 7%, except from the measure of the angle that 
corresponds to the vertex in the torsion test. In this case the error is around 
30%. 

These errors are clearly below the results obtained for a MSM derived 

from =0.49. Therefore, for simulating incompressible material models it is 

recommended to adopt the MSM derived from =0.35. 

4.4 DISCUSSION 

Given a pair of reference values (E, ) that define a linear elastic material 
model the method proposed calculates the stiffness coefficients of a MSM 
that approximates its behaviour. As the quality of the simulations is 
influenced by the Poisson’s ratio it is necessary to discuss the outcome of 
the analyses presented above: uniaxial tensile tests, residual error of the 
minimization, eigenvalue and eigenvector analysis and multi-element 
experiments. 

The MSM was subject to a uniaxial tensile test in order to evaluate 
how accurately it approximates the parameters of the reference FEM. This 
allows obtaining the equivalent Young’s modulus (EMSM) and Poisson’s ratio 

(MSM) of the discrete model. The results show that the input parameter  

influences the values of EMSM and MSM, while E only influences EMSM. In 

addition, independently of the value of the reference , the resulting MSM is 

always ranged between 0.25 and 0.30. As the influence of  over EMSM is 
high, it is more important to obtain accurate values of EMSM instead of 

trying to approximate MSM. In particular, Young’s modulus is accurately 
described when the reference material model has a Poisson’s ratio around 
0.35. 

From the point of view of the residual error of the minimization 

process, the smallest error corresponds to =0.2 which has been shown to 
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be less accurate in the tensile test than when using =0.35. Specifically, it 
behaves 32% softer than the reference model. 

On the other hand, the eigenproblem study also indicates that =0.35 
should provide more accurate MSMs because their equivalent eigenspaces 
are closer to their ideal position in the eigenvector projection graph. For 
this value, only two of the eight eigenspaces of the FEM have no equivalent 
eigenspace in the stiffness matrices of the linearized MSM. 

Consequently, uniaxial tensile tests and eigenproblem analysis 

conclude that the optimum value is =0.35 while the residual error 

determines that it should be =0.20. This discrepancy is solved with the 

experiments performed using multi-element bodies. They assert that =0.35 
is the most accurate value. 

4.5 CONCLUSIONS 

In this chapter a new method to derive cubical MSMs from linear elastic 
FEM has been proposed. The main characteristics of this method are: 

- Given any value for the input parameters Young’s modulus and 
Poisson’s ratio, the method proposed provides the stiffness 
coefficients needed to build a cubical MSM that approximates that 
behaviour. 

- Although the method provides MSMs for any linear elastic FEM 

the quality of the approximation depends on . That is, in practice, 

the usefulness of the method is limited to some specific values of . 
In particular, the most accurate results correspond to the range 
between 0.30 and 0.35. 

- Below =0.35 the obtained MSM behaves softer than the 
reference FEM while above this value the model becomes stiffer. 

- The value of E does not influence the quality of the model since 
the stiffness coefficients of the MSM are proportional to this 
parameter. 

- The proposed method is based on the study of the MSM around 
the initial rest position. Therefore, it is valid for small deformations. 
As deformations increase the difference between the MSM and the 
FEM increases. 



Conclusions 113 

 

- Under small deformations, the MSM obtained from =0.35 is the 
most accurate one. In five of the six results obtained in tensile, shear 
and torsion experiments the relative error is below 7%. 

- Under large deformations =0.30 is the optimum value. In this 
case, the relative error is below 17% in the six results compared. 

- The optimum value of  has been correctly predicted by the tensile 
test analysis and the eigenproblem study. However, focusing only on 
the analysis of the residual error of the minimization can lead to 
wrong interpretations. 

- Although incompressible materials are out of the range of useful 

Poisson’s ratios, it is possible to use the MSM obtained from =0.35 
to represent the incompressible behaviour. Experiments show that 
this value gives accurate simulations. Independently of the range of 
deformations, the relative errors of five of the six results compared 
are bellow 7%. 

- The three ways proposed to analyze the quality of the 
approximation (uniaxial tensile test, residual error and eigenproblem 
study) are complementary and help to better understand the 
behaviour of the obtained MSM. 

The main conclusion reached in this chapter is that discrete nonlinear 
models such as cubical MSMs are able to approximate quite accurately the 
behaviour of linear elastic FEM with any value of Young’s modulus and a 
Poisson’s ratio between 0.30 and 0.35. When the material model is nearly 

incompressible adopting =0.35 provides also good results. 
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CHAPTER 5 

5 MSM DESIGN FROM 

HYPERELASTIC MATERIAL 

MODELS 

In the previous chapter a new method to derive cubical MSMs from linear 
elastic FEM has been proposed. Considering biological soft tissues, 
however, a linear elastic material is an assumption that usually is valid only 
for small deformations. When deformations are large, the behaviour of 
these materials generally becomes nonlinear. Taking advantage of the 
nonlinear behaviour of MSMs, the main objective of this chapter is to study 
the possibility of building a cubical MSM that behaves like the nonlinear 
elastic material models used in soft-tissue simulation. 

The bibliographic review presented in chapter 3 shows that there is 
no analytical method for obtaining a cubical MSM based on nonlinear 
material models. The closest study belongs to Delingette (Delingette2008) 
who proposed a discrete model to simulate nonlinear membranes. This lack 
of methods opens a challenging field that is tackled in this chapter. 

The MSM designs described in section 3.1 focus their attention on 
the continuum, either, using the results of their simulations as reference 
data or taking their mathematical formulation as the starting point for 
analytical derivations. Following such a continuum-based methodology 
without analyzing previously the behaviour of MSMs can lead to two basic 
problems: unreasonable approximations and high complexity. 
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The first problem refers to the enforcement of an unnatural 
behaviour. That is, if cubical MSMs have a response that is totally different 
from some reference data obtained from FEM simulations it makes no 
sense to search for the parameters that best approximate its behaviour, 
because the quality of the approximation will never be good. Thus, it is 
necessary to analyze first if the model has the capability of describing the 
desired behaviour and then, adjust the coefficients to obtain a model as 
accurate as possible, within the limits of the model. 

The second problem is related to the complexity of the model. 
Delingette (Delingette2008), for instance, proposed a discrete model 
equivalent to nonlinear membranes whose mathematical derivation is based 
on a continuum formulation. This method provides a model that contains 
extremely complex expressions, even though the considered elements are 
bi-dimensional. The consequence of this is that the obtained discrete model 
can lose the advantage of the computation efficiency that MSMs have over 
the FEM. 

For these two reasons, it is proposed to change the focus from the 
continuum to the discrete field. In this way, it is possible to develop 
methods to derive cubical MSMs from material models that have similar 
behaviour to them. With this objective, the following sections will start 
studying the intrinsic behaviour of cubical MSMs and then, a new MSM 
design strategy that defines consistent parameters will be developed. As this 
method is based on the nonlinear behaviour of MSMs, from now on, it is 
called the nonlinear method. 

5.1 METHOD DESCRIPTION 

Let us assume a cubical MSM with edge length L0 where the point masses 
are placed on the eight vertices as shown in figure 5.1.a. To ensure the 
maximal number of degrees of freedom and the same behaviour along the 
x, y, z axes the same three types of linear springs presented in section 4.1.2 
are used: edge springs with stiffness ke, face diagonal spring with stiffness kf 
and internal diagonal springs with stiffness kd. Note that adopting the same 
value of k for all the springs of the cubical MSM would lead to a model 
with less capability for approximating the behaviour of real soft tissues. 

The study of the behaviour of cubical MSMs will be focused on the 
study of their response under uniaxial tensile loads as this is a common 
experiment performed to characterize living tissues (Chui2004, Hu2004, 
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Martins2006, Zhong2007, Kim2008, Ma2009, Brunon2010). The same 
experiments were adopted to evaluate the resulting MSM in the previous 
chapter (see section 4.2.1.1). 

The z axis indicates the direction along which the tensile stress is 
applied and x and y axes are considered as the transversal directions. 
Accordingly, Lx, Ly and Lz denote the lengths of the deformed cube along 
the corresponding axes. 

 

Figure 5.1. (a) The configuration of the essential MSM cube showing the point masses and 

springs. In blue edge springs, in black face diagonal springs and in red internal diagonal 

springs. (b)  defines the direction of diagonal springs contained in the lateral faces and  

the direction of internal diagonal springs.  

Once the cube is defined, there are many ways to characterize the 
mechanical properties of the MSM. Two different points of view are 
proposed to study its behaviour: a qualitative reasoning and a quantitative 
evaluation. With this aim, the MSM is tested as if it were a sample of an 
actual material, and the behaviour of the cube is studied by performing a 
uniaxial tensile test and evaluating the response in both the axial and the 
transversal directions. 

In this situation, because of the symmetries, the deformations along 
the x and y axes are identical; thus, in the tensile test the two faces of the 
cube that are subject to the external forces keep their square shape whereas 
the other four faces turn into rectangles. Consequently, it is enough to study 
one unique node. Considering node number 6 for example, two angles can 

be defined to better describe the spring configuration. The first, , is the 
angle between the edge in z axis and the corresponding diagonal of the face. 

The second, , is the angle between the edge in z axis and the internal 
diagonal (see figure 5.1.b). 
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Although some foam materials display very complex mechanical 
behaviour, most common materials become thinner in cross section when 
the sample is stretched. Consequently, this last assumption is adopted for 
the description of the material deformations in the following sections. 

5.1.1 QUALITATIVE STUDY OF THE BEHAVIOUR 

A qualitative analysis of a single cube subject to uniaxial forces provides 
important information about the behaviour of cubical MSMs. The adopted 
approach focuses on analyzing separately the effect of each type of spring. 
That is, studying first the effect of edge springs and then the consequences 
of adding face and internal diagonal springs. 

Performing a tensile test on a cube where the stiffness value ke is 
positive and kf and kd are null produces an elongated prism whose cross-
sectional faces do not change in size. However, the faces aligned with z axis 
deform enlarging Lz (see figure 5.2.a). Indeed, the edge springs aligned with 
x and y axes remain in resting state, whereas, the other four springs that are 
aligned with the applied loads (z axis) offer a linearly proportional resistance 
to the elongation. In other words, the force-displacement response along 
the z axis is linear (see figure 5.3). 

  

Figure 5.2. The appearance of the MSM subject to uniaxial tensile forces (a) when kf and kd 

are null and (b) when kf or kd are not null.  

However, if kf becomes non null, three new forces appear on each 
node of the MSM. Only two of them have a direct influence in the z 
direction since the third one is contained in the cross-sectional face. In this 
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configuration, the directions of the face diagonal springs that have z 
component change as the deformation rate is modified. That is, as Lz 

increases the angle  decreases (see figure 5.2.b). Additionally, under the 
assumptions made above, as the elongation in z axis grows the value of Lx 

and Ly becomes smaller, increasing the effect over . 

The direct consequence of increasing the applied force along the z 
axis in this situation is twofold. On the one hand, focusing the discussion 
on the spring between nodes 6 and node 3 for example, decreasing the 

value of the angle  increases the projection of the force of that spring over 
the z axis. On the other hand, the elongation of the cube increases the 
length of that spring. As the deformation grows these two characteristics 
add to the initial linear response of the edge springs an increasing influence 
of the face diagonal springs contained in axial faces. This induces a 
stiffening of the MSM with regards to the previous linear response. A 
similar analysis can be made with the internal diagonal springs. 

The final effect of adding face diagonal and internal diagonal springs 
is that the initial linear force-elongation curve turns into a nonlinear relation 
at large deformations (see figure 5.3). 

 

Figure 5.3. At large deformations, when kf or kd are non null, the influence of diagonal 

springs grows and the initial linear behaviour of the MSM turns into a nonlinear relation. 

This nonlinear curve is similar to the response of living tissues 
presented in section 2.2 (see figure 2.3) except from the last phase where 
the rupture of the material occurs. As soft tissues are frequently 
characterized by using hyperelastic material models it is proposed to adjust 
the stiffness coefficients of the MSM so that they approximate the 
behaviour of such materials. 

Lz- L0 

Fz 

ke>0, kf=kd=0 

ke, kf, kd>0 
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5.1.2 EQUILIBRIUM EQUATIONS FOR A TENSILE TEST 

In an ideal uniaxial tensile test performed over a continuous medium, stress 

() is uniformly distributed on the surface. However, when the model is 
made up of discrete elements as in MSMs, it is necessary to concentrate the 
stress in the point masses becoming punctual forces. Consequently, six 
spring forces and one external force (Fz) that is equivalent to a quarter of 
the total theoretical force applied to a face in a continuous model act on 
each point mass of the cube. 

Considering the symmetries of the cube and the applied forces, it is 
sufficient to study the equilibrium of a particular point mass as the 
remaining nodes are subject to identical forces. In this case, node 6 will be 
taken as example. 

Considering equilibrium in point mass 6 and keeping in mind the 
existing symmetries, the resulting equation for either x axis or y axis ( see 
equation 5.1) and the corresponding one to the z axis (see equation 5.2) can 
be written as follows: 
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Where f(i,j) is the module of the force made by the spring that 
connects nodes i with j. Taking into account the stiffness coefficients of the 
of the cubical MSM, these equations can be rewritten as follows: 
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These two equations describe the behaviour of the cubical MSM in 
the transversal as well as axial direction, using edge lengths and forces. 
However, material models used in soft-tissue simulation frequently are 
given by means of stress and strain magnitudes. Therefore, it is necessary to 
transform equations 5.3 and 5.4 in order to use these magnitudes. 

Different definitions of stress and strain are used in solid mechanics. 
In contrast to the engineering stress and strain used in the previous chapter 
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(see section 4.2.1.1), here the Cauchy true stress and the logarithmic strain 
will be adopted. Although these magnitudes are defined for a continuum 
context, in a tensile test it is possible to define an equivalent relation in the 
discrete domain, assuming that the total applied load over a face is the sum 
of the external nodal forces. Consequently, the Cauchy true stress in z axis 
in the present tensile test may be defined as the relation between the applied 
load (4Fz) and the final cross-sectional area (LxLy): 
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Likewise, the logarithmic strain along the i axis may be estimated as 
the logarithm of the relation between the final length and the original 
reference length: 
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The definition of the Poisson’s ratio is the same as in the previous 
chapter (see equation 4.24). 

Considering the definition of stress (see equation 5.5) and combining 
it with equation 5.4, the relation between the derived stress and the 
corresponding deformation for the particular case of a pure uniaxial tensile 
test results: 
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Finally, the logarithmic strains along the x and y axes for the pure 
uniaxial tensile test can be calculated by combining equations 5.3 and 5.6: 
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To define the stress-strain relation of a cubical MSM subject to tensile 
loads it is enough to use three of the previous relations: equations 5.6, 5.7 
and 5.8. Note that this relation is clearly nonlinear and it cannot be explicitly 
expressed using a unique equation. 
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5.1.3 OBJECTIVE FUNCTION 

In the previous sections it has been demonstrated that cubical MSMs have 
nonlinear behaviour when they are subject to tensile tests and work under 
large deformations. Using this kind of experiment is a common practice in 
the determination of the material properties of biological soft tissue and the 
derivation of the parameters of other models such as nonlinear FEM 
(Chui2004, Hu2004, Martins2006, Zhong2007, Kim2008, Ma2009). 

Therefore, in this thesis it is proposed to design MSMs that 
approximate the behaviour of nonlinear material models focusing on 
uniaxial tensile tests and using the previously obtained analytical expressions 
of stress and strain. 

Usually, material models of soft tissue are defined using constitutive 
equations that make it possible to obtain directly their behaviour under 
uniaxial tensile tests. These models provide the deformation in the axial 
direction caused by tensile loads and allow computing the corresponding 
transversal deformation through the Poisson’s ratio. Similar data can be 
acquired performing specifically designed experiments. 

This information defines two curves that describe the reference 
material model: stress-strain dependence in the axial direction and the 
transversal-axial strain relation. The proposed method is based on finding 
the MSM that better approximates these two reference curves. In particular, 
the stiffness coefficients will be obtained by adjusting the curves of the axial 
and transversal responses of the MSM to those reference curves. As it is 
expected that the curve fitting problem will hardly ever produce an exact 
solution a minimization strategy will be adopted to approximate it. 

The stress-strain curve z-z of a cubical MSM subject to tensile loads 
can be computed using the equations 5.6, 5.7 and 5.8 presented in the 

previous section. The transversal-axial strain curve x-z, in turn, is 

calculated using the equations 5.6 and 5.8. Note that angles  and  relate 
the edge lengths of the cube. 

Figure 5.4 displays the curves that the proposed method has to fit. 
Figure 5.4.a shows the stress-strain response of a generic MSM during a 
tensile test before the adjustment process and the corresponding reference 
data. Figure 5.4.b displays the relation between the axial and the transversal 
strain of the same generic MSM and the corresponding reference data. For 
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this example, the parameters of the generic MSM are ke=kf=kd=50 N/m 
and L0=1 mm. 

 

Figure 5.4. (a) The axial response of a generic MSM before the adjustment process in a 

tensile test and the corresponding reference data. (b) The relation between the axial and the 

transversal response of the same generic MSM and the corresponding reference data. 

The adjustment of the stiffness coefficients of the cubical MSM is 

performed by minimizing an objective function  that simultaneously 
considers the square root error of the difference between both reference 
curves, as described in equation 5.9. 
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The first term refers to the error associated to the stress that is 
required to produce a certain strain in the axial direction. The second one 
represents the error of the transversal strain in function of the axial strain. 
Both terms are normalized in order to avoid numeric problems and deal 
with the whole function as a dimensionless expression. 

The objective function is evaluated for a set of N axial strain values, 

namely, zi. The stress value and the transversal strain corresponding to 

these strain values are denoted by zi and xi respectively. The superscript 
MSM stands for Mass-Spring Model while ref stands for the reference 

model. The specific zi values depend on the available reference data and the 
range in which the model is supposed to work. 

The strategy proposed to obtain the stiffness parameters of the MSM 
is to minimize the objective function using a nonlinear least-squares 
technique. This minimization is made using the function lsqnonlin of the 
Optimization Toolbox of Matlab1, a programme that allows performing 
computationally intensive tasks. 

In this case the objective function uses only uniaxial tensile data. In 
the case of having information about shear and torsion tests this function 
could be extended with analogous terms that relate the corresponding strain 
and stress values. 

5.2 RESULTS 

The method for obtaining cubical MSMs from stress and strain reference 
data presented in this chapter can be applied to many different input data. 
As the method is going to be used for approximating living soft tissues, it is 

                                                 
1 http://www.mathworks.com/products/matlab/ 

http://www.mathworks.com/products/matlab/
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important to make first a general study of the potential of this model to 
represent such materials. In particular, if cubical MSMs are able to behave 
like nearly incompressible materials then it will be possible to approximate 
accurately the behaviour of living tissues. 

5.2.1 CAPABILITY OF CUBICAL MSMS FOR MODELLING TISSUES 

The qualitative study of section 5.1.1 has shown the nonlinear behaviour of 
cubical MSMs. However, it does not provide enough information to 
illustrate the capability that cubic MSMs have to describe different material 
models. Thus, it is necessary to analyze the capability that MSMs have to 
represent materials such as those in biological tissues. 

As soft tissues frequently show quasi-incompressible behaviour, the 
following study will focus on defining the family of parameter sets that 
make a single cubical MSM behave in a nearly incompressible way. For this 
study, each spring parameter (ke, kf and kd) is varied from 0 to 0.1 N/mm 
using increments of 0.02 N/mm. The error associated to the volume 
variation is described with a magnitude equivalent to the second term of the 

objective function  (see equation 5.9) and its value is arbitrarily limited to 
0.01. The behaviours of the MSMs obtained that fulfil this requirement are 
grouped into the family of curves displayed in figure 5.5. 

Increasing the range of the stiffness values above 0.1 N/mm or 
decreasing the stiffness step just increases the number of curves that fulfil 
the condition of volume variation. Those curves would have different slope 
but they would maintain their nonlinear hyperelastic behaviour. 

As it can be seen in figure 5.5b the slope of the transversal versus 
axial strain of the reference material model is 0.5 which is the value of the 
Poisson’s ratio that corresponds to the behaviour of incompressible 
materials. 

The numerous curves displayed in figure 5.5 demonstrate that there 
are many cubical MSMs that approximate quite accurately the transversal 
response in function of the axial one. In other words, they fulfil the 
condition of quasi-incompressibility and they can be appropriate to use in 
soft-tissue simulations. 
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Figure 5.5. The behaviour of the parameter sets that make a MSM behave in a nearly 

incompressible way. The potential candidates have been evaluated from 0 to 0.1 N/mm 

stiffness constant using increments of 0.02 N/mm. (a) stress-strain relation and (b) the 

transversal against the axial response. 

5.2.2 EXAMPLES OF MSM PARAMETER DERIVATIONS 

As it has been shown in the previous section, many cubical MSMs with a 
single element can behave in a quasi-incompressible way under uniaxial 
deformations. Now, the objective is to find the stiffness parameters that 
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simultaneously fit this requirement and approximate the stress-strain 
response of a certain material model. 

5.2.2.1 Incompressible hyperelastic material model 

Martins et al. (Martins2006) studied the nonlinear mechanical behaviour of 
biological soft tissues under uniaxial loads and they obtained the 
coefficients for seven different hyperelastic material models. Among others, 
they studied Neo-Hookean, Mooney-Rivlin, Yeoh, and Ogden models 
which are some of the most frequent constitutive equations adopted in soft-
tissue simulation. 

In order to make an example of the method proposed to obtain 
cubical MSMs, the Ogden type material model is taken as reference using 
the particular constants values obtained by Martins et al. (Martins2006) for 
soft tissues (see equation 5.10). 
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where  denotes the Cauchy true stress,  the axial stretch, and ci the 
constant coefficients with the following values: c1 = c3 = c5 = 0.005044 and c2 
= c4 = c6 = 5.7255. As stated in their assumptions (Martins2006), this model 
is obtained considering a homogeneous, isotropic, and incompressible 
sample of soft tissue. 

The constitutive equation and the property of incompressibility are 
not enough for the minimization process that calculates the MSM that 
approximates the desired hyperelastic behaviour. It is also necessary to 
define the range of strain values in which the material model is valid. 

In the work of Martins et al. (Martins2006), the range of valid strain 
values is not specified. From the figures included, it can be assumed that 
their model behaves accurately, at least, for stretch values between 1 and 
1.5. Considering the relation between stretch and true strain (see equation 
5.11), this Ogden material model is valid, at least, for strain values between 
0 and 0.4. 

  ln  5.11 

In order to compute the objective function of the minimization 
process (see equation 5.9), the range of strain values has been divided into 

20 values of zi. These strain values allow obtaining Lz using equation 5.6. 
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Then, Lx can be calculated with equation 5.8. Note that the angles  and  
are related with Lx and Lz. With all these values the stress magnitude is 
determined by equation 5.7 and both curves can be obtained. 

 

Figure 5.6. Example of curve fitting method using as reference the Ogden model proposed 

by Martins et al. (Martins2006). (a) Stress-strain curves and (b) the strain relation between 

axial and transversal direction. 

The curve fitting method based on fixing a set of strain values gives 
the following stiffness values (in N/mm) for the case of a cube with edges 1 
mm long: 
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The curves of stress-strain and axial strain against transversal strain of 
the obtained MSM and the corresponding reference data are shown in 
figure 5.6. As it can be seen in figure 5.6.b the slope of the transversal 
versus axial strain of the reference material model is 0.5 which is the value 
of Poisson’s ratio that corresponds to incompressibility. 

5.2.2.2 Incompressible linear elastic material model 

In addition to the hyperelastic case, and even though MSMs have been 
shown to behave in a nonlinear way when subject to large tensile 
deformations, it is also possible to find MSMs equivalent to linear elastic 
materials working under small deformations. The procedure is the same, 
except for the fact that the reference data in this case has to be linear. As an 
example, a MSM equivalent to a linear elastic material model with 
E=0.3MPa has been calculated. In this case, the stress-strain relation is 
defined as: 

 zz E   5.13 

Additionally, the condition of incompressibility of the reference data 
has been defined by giving a value of 0.5 to the Poisson’s ratio. That is, the 
slope of the curve that represents the relation between the transversal and 
axial strains is 0.5 (see figure 5.7.b). 

The curve fitting method gives the following stiffness values (in 
N/mm) for the case of a cube with edges 1 mm long: 
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In contrast to the previous example, there is not a specific range of 
strain values in which the reference material model is valid. As the linear 
elastic behaviour is suitable for small deformations in this case the 
maximum strain is limited to a value of 0.1. The resulting curves of stress-
strain and axial strain against transversal strain of the obtained MSM and 
the corresponding reference data are shown in figure 5.7. 
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Figure 5.7. (a) The stress-strain curve and (b) the strain relation between axial and 

transversal direction using as reference a linear elastic material model with Young modulus 

300 KPa and Poisson’s ratio 0.5. 

5.2.2.3 Contribution of each stiffness coefficient 

In the case of the linear material model the internal diagonal springs have a 
much larger stiffness value than the other spring types. Particularly, kd is one 
order of magnitude larger than ke and kf. These values might lead to the 
false conclusion that kd determines the behaviour of the MSM. Or in other 
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words, that the contribution of ke and kf is small and that they can be 
neglected. 

The first point to consider is that in the cube there are only four 
internal diagonal springs, three times less than edge and face diagonal 
springs. Secondly, the strain induced in a test affects each spring in a 

different way. That is, given some particular strain z the elongation of each 

spring is different due to their original orientations ( and ). 

 

Figure 5.8. Contribution made to the total stress by each type of spring. (a) Nonlinear 

material model and (b) Linear material model. 
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Figure 5.8 shows the contribution of each type of spring to the total 
stress in function of the strain. Figure 5.8.a shows the results obtained for 
the nonlinear material model case while figure 5.8.b for the example of the 
linear case. 

According to figure 5.8, being kd much larger does not mean that the 
influence of diagonal springs is bigger and that the other springs contribute 
less to the behaviour of the model. Conversely, these curves show that the 
proposed method obtains stiffness values whose contribution is balanced. 

5.3 EXPERIMENTS 

In the previous section two parameter derivation examples have been 
presented, the first from a hyperelastic material model and the second from 
a linear elastic one. As the range of deformations for the linear elastic model 
is small, the following experiments will be focused only on the hyperelastic 
model. 

The proposed derivation method takes into account uniaxial tensile 
tests and single elements. In order to study the performance of the MSM in 
other situations, it is necessary to make some experiments using multi-
element models working under different loading types. In this way, the 
accuracy of the behaviour of the obtained models will be studied and the 
assessment of the strategy proposed to obtain the stiffness coefficients will 
be completed. 

The experimental analysis is divided into three sections. The first one 
studies the behaviour of a multi-element cube subject to uniaxial tensile, 
shear and torsion forces. The second one is focused on the influence of the 
mesh resolution in the accuracy of the results. To this end, a bar deflexion 
experiments is proposed. Finally, as the two methods addressed in the 
previous and present chapters are able to derive MSMs from linear elastic 
FEM, a comparison between both approaches will be made to see which of 
them is more suitable. 

5.3.1 MULTI-ELEMENT CUBE 

The comparison of the behaviour of a MSM and a FEM subject to large 
deformations is performed using the same geometrical model as in the 
previous chapter (see section 4.3.1). That is, both models share the same 
cubical geometry: a multi-element model with cubical form composed by 
10x10x10 elements (1 mm3 each). 
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According to the reference material model, in this study the Ogden 
material proposed by Martins et al. (Martins2006) is adopted. The derivation 
of the MSM corresponding to this material model is presented in section 
5.2.2.1 and the stiffness coefficients are the values given in equation 5.12. 

On the other hand, the deformable body modelled using nonlinear 
FEM will be simulated using the same commercial software as in the 
previous chapter, namely, Abaqus. Because of the specific way of defining 
the Ogden material model in Abaqus, the values of the constants of the 
characteristic equation (see equation 5.10) have to be transformed in the 
following way: 
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The experiments are performed in the same way to those made to the 
MSM derived from linear elastic FEM in chapter 4. That is, the behaviour 
of the MSM and the FEM is studied under the same uniaxial tensile, shear 
and torsion forces for small and large deformations described in section 
4.3.2. 

5.3.1.1 Simulations 

In order to better compare the results of the simulations of the six tests, the 
corresponding final deformed states of the MSM and the FEM are shown 
in superimposed images in figure 5.9.  

The visual comparison of the simulations of the MSM and the FEM 
shows that the axial behaviour has been accurately approximated. However, 
when the models are subject to shear and torsion loads the MSM deforms 
less than the reference model. In other words, the obtained MSM can be 
seen as a model that is stiffer than the reference one. This characteristic is 
present in both small and large deformations. 

Note that, the objective function proposed in section 5.1.3 only uses 
information related to uniaxial tensile tests. This can be the reason for 
obtaining shear and torsion simulations less accurate than the ones 
corresponding to the linear method, which uses the stiffness matrix that 
characterizes the whole behaviour of the model (see section 4.3.3). 
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Figure 5.9. Simulation of the deformable bodies using MSM (red mesh) and FEM (green 

wire-frame). Left column corresponds to small deformations and right column large 

deformations. From top to bottom: axial, shear and torsion tests. 

Axial test (small def.) Axial test (large def.) 

Shear test (small def.) Shear test (large def.) 

Torsion test (small def.) Torsion test (large def.) 
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5.3.1.2 Accuracy of the MSM 

The visual comparison of the results of the MSM with the simulations of 
the FEM gives a qualitative idea of the accuracy of the obtained 
deformations. This information can be completed with the measurement of 
some magnitudes of the deformed models in order to give quantitative data 
about the accuracy of the MSMs. The proposed magnitudes are the same to 
the ones presented in section 4.3.4. 

Table 5.1 shows the errors obtained in the three tests, both for small 
and large deformations. The adopted relative error was defined in section 
4.3.4 (see equation 4.27). 

 Small 

deformations 

Large 

deformations 

L1 (axial) 0.40% 1.37% 

L2 (axial) -0.49% 0.52% 

1 (shear) -23.64% -7.26% 

2 (shear) -25.46% -12.23% 

1 (torsion) -3.72% -11.54% 

2 (torsion) -46.88% -33.36% 

Table 5.1. Errors of the MSM with respect to incompressible hyperelastic FEM for 

different experiments. 

These values indicate that the performance of the MSM obtained with 
the proposed method behaves very accurately when the model is subject to 
uniaxial tensile loads. The measured magnitudes show that the error is 
below 1.4% even for large deformations. 

However, in the case of shear deformations the results are less 
accurate. The error is around 25% under small deformations while under 
large deformations is below 13%. 
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The worst approximation corresponds to torsion loads. In this case 
the error reaches 47% for the measurements made to the vertex of the top 
face. However, the nodes that are located in the middle of the edge of the 
top face are more accurate with an error below 12%. 

5.3.1.3 Volume preservation analysis 

Another magnitude that is important for the analysis of the quality of the 
simulation is the final volume of the MSM. As the reference material model 
is incompressible, the obtained MSM should also maintain the initial 
volume (1000 mm3). 

The final volume of the whole model in the three tests performed 
under small and large deformations is detailed in table 5.2. 

 Small deformations Large deformations 

Test 1 Test 2 Test 3 Test 1 Test 2 Test 3 

Volume [mm3] 1025 999 1000 1046 974 994 

Error [%] 2.5 -0.1 0 4.6 -2.6 -0.6 

Table 5.2. Errors of the MSM obtained from =0.35 with respect to incompressible FEM. 

The study of the total volume of the simulated model gives an idea of 
its general behaviour. However, it is also necessary to analyze the volume of 
each cubic element to see whether the volume preservation is achieved 
locally or not. With this aim, for each test, the box plot of all the elements is 
shown in figure 5.10. 

In this table, for each test, the blue box shows the range between the 
lower and upper quartile of the volumes of the elements. The red horizontal 
line corresponds to the median value. Black whiskers extend from each end 
of the box to the adjacent values in the data, being the most extreme values 
within 1.5 times the interquartile range from the ends of the box. Red + 
signs are outliers, that is, data with values beyond the ends of the whiskers. 

The data corresponding to each element of the model show that the 
volume varies locally more than what the global volume suggests since the 
volume variation of the elements is larger than the total one. That is, the 
excess and defect on the final volume of the elements compensated each 
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others making the model nearly incompressible. Under small deformations, 
for the three tests, this error is below 4.8% if the outliers are not taken into 
account. This value reaches 17% in the case of large deformations. 

 

Figure 5.10. Final volume of each element of the simulated MSM depending on the test. 

Most of the outliers identified in figure 5.10 correspond to the 
elements where there is a high stress concentration. In the case of test 2 
under large deformations, for example, the highest volume variations are 
located in the right lower edge where the compression forces are maximal. 
The reason for this is that the parameters of the MSM have been adjusted in 
a specific range of the axial strain. When the working load causes 
deformations out of this range the MSM behaves less accurately. 

5.3.1.4 Discussion and conclusions 

The method presented in this chapter obtains the stiffness coefficients of 
cubical MSMs considering only a single element subject to uniaxial tensile 
loads. When a multi-element model is built with those coefficients, the 
simulation of the uniaxial tensile test keeps being very accurate, even under 
large deformations. However, the results obtained in the shear and torsion 
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tests are less accurate. As the proposed method does not take into account 
these experiments in the minimization strategy, the resulting MSM is not 
able to provide such good results in shear and torsion tests. 

In the case of the torsion test, it can be seen that the error 

corresponding to 1 is much smaller than for 2 (see table 5.1). The reason 
for this difference probably falls on the stress concentration that exists in 
the vertices of the top face. Note that these nodes are subject to the double 
of the force of the rest of the top edge nodes. The same reason can lay 

behind the error measured in 2 when the model is subject to large shear 
deformations, because the right face is the one that supports more 
compression in its bottom edge elements. 

According to the property of incompressibility, the total volume 
variation of the MSM is small in all the experiments even under large 
deformations. In the case of making a local analysis, most of the elements 
change their volume below 10%. However, some elements can reach up to 
50% of volume reduction. Again, the worst results are measured in the 
elements with higher compression stress values. 

An important conclusion of the volume study is that, although the 
local variations can be high, the global behaviour of the model is quasi-
incompressible, even if no specific volume preserving forces or constraint 
based strategies have been used. 

5.3.2 DESIGNING LINEAR ELASTIC MODELS 

Two different methods have been proposed in this thesis to obtain 
deformable models that approximate the behaviour of living soft tissues: 
the linear method and the nonlinear method. Although they are different 
approaches, both methods are able to derive MSMs from linear elastic 
material models. 

In this section, the linear and nonlinear methods will be used to obtain 
cubical MSMs, in order to evaluate which of them produces more accurate 
models. With this aim two linear elastic material models are taken as 

reference: a compressible model with E=300 KPa and =0.35 and an 

incompressible model with E=300 KPa and =0.5. Regarding the model 
geometry, as in the previous section, the body is formed by 10x10x10 
cubical elements whose total volume at rest state is 1000 mm3. 
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5.3.2.1 Compressible linear elastic model 

To build the compressible model using the linear method the parameters of 
the MSM are calculated using equation 4.21 and table 4.1. The resulting 
stiffness coefficients are: 
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To build the model corresponding to the nonlinear method a 
minimization strategy equivalent to that made in section 5.2.2.2 is required. 
The only difference is that instead of having a slope of 0.5 in figure 5.7.b 

this value changes to 0.35 since this is the value of  for this material model. 
The resulting stiffness values are the following: 
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Both models are subject to the same experiments presented in section 
4.3.2 but only considering small deformations. These tests are described in 
figure 4.14 and table 4.4. Using the relative error definition proposed in 
section 4.3.4 the resulting errors are detailed in table 5.3. 

 Linear method Nonlinear method 

L1 (axial) 0.05% -0.26% 

L2 (axial) -0.57% -0.28% 

1 (shear) -4.91% -11.03% 

2 (shear) -6.67% -12.94% 

1 (torsion) -1.54% -0.77% 

2 (torsion) -22.28% -23.70% 

Table 5.3. Errors of the tests under small deformations of the linear and nonlinear methods. 
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Analyzing the errors corresponding to the compressible models 
obtained using both methods (see table 5.3), it can be concluded that the 
linear method provides better results. Even though in the case of the uniaxial 
and torsion tests both models perform similarly, in the shear experiment the 
model obtained with the nonlinear method is less accurate. 

5.3.2.2 Incompressible linear elastic model 

In section 4.3.7 it was concluded that the best way of approximating 
incompressible materials with the linear method is by building a cubical MSM 
from a reference model whose Poisson’s ratio is 0.35. Thus, the same 
coefficients adopted in the previous section are used (see equation 5.16). 
Regarding the model designed with the nonlinear method, the stiffness 
constants are those detailed in equation 5.14. 

The relative errors obtained with these two models are shown in table 
5.4. 

 Linear method Nonlinear method 

L1 (axial) 0.18% -0.11% 

L2 (axial) -0.44% -1.05% 

1 (shear) -2.93% -41.79% 

2 (shear) -5.57% -44.68% 

1 (torsion) -1.89% -3.00% 

2 (torsion) -28.65% -65.67% 

Table 5.4. Errors under small deformations of the linear and nonlinear methods for different 

experiments. 

Analyzing the errors corresponding to the incompressible models 
obtained using both methods (see table 5.4), it can concluded that the linear 
method provides better results. The greatest differences are observed in the 
shear and torsion tests where the errors are much higher in the simulations 
performed with the MSM derived using the nonlinear method. 
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5.3.2.3 Conclusions 

In this section a study of linear elastic material modelling has been done, in 
order to compare the two methods proposed in this thesis. The main 
conclusion of this analysis is that the linear method provides more accurate 
models than the nonlinear method both, for compressible and incompressible 
linear elastic materials working under small deformations. 

This result is reasonable for two reasons. The first one is that the 
linear method takes into account the whole behaviour of the cubical MSM 
while the nonlinear method makes the design considering only uniaxial tensile 
tests. The second one is that the nonlinear method needs to define a range of 
deformations in which the model is going to work. These bounds are 
chosen previous to the simulations and the deformations obtained finally 
may differ from the initial estimation. 

5.3.3 MULTI-ELEMENT BAR MODEL 

Apart from the previously studied tensile, shear and torsion experiments, 
another test widely known in continuum mechanics is the bar deflection 
test. This experiment consists in subjecting a beam fixed at one end to 
distributed or punctual loads to study its behaviour. Some authors 
(Marchal2008, Baudet2009) propose using this kind of analysis to validate 
deformable models such as MSMs. Furthermore, Baudet et al. (Baudet2009) 
studied simultaneously the accuracy of the MSM and the dependence of the 
results with the size of the elements. Following this idea, in this section a 
bar deflection experiment is performed to analyze the influence of the mesh 
resolution on the behaviour of the model. In particular, the size of the beam 
is 4x4x16 mm3 and its material model is the one described in section 5.2.2.1. 

 

Figure 5.11. Forces applied in the bar deflection test, using different element sizes: (a) 

1x1x4, (b) 2x2x8 and (c) 4x4x16. 

(a) (b) (c) 
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The test is performed using a MSM with three different levels of 
resolution: (a) 1x1x4 elements, (b) 2x2x8 and (c) 4x4x16. In all the cases, at 
the lower edge of the free end of the beam a total force of F=0.05 N is 
applied. That is, the force applied at each node is Fa=F/2, Fb=F/3 or 
Fc=F/5 depending on the resolution (see figure 5.11). 

The deformation of these three bar models that use cubical MSMs are 
compared with the deformation of a bar of 4x4x16 elements modelled with 
the FEM, using the nonlinear Ogden material presented in section 5.2.2.1. 
The corresponding results are displayed in figure 5.12. 

 

Figure 5.12. A deflection test performed to a bar with different element sizes. In green 

wire-frame the bar with 4x4x16 elements simulated using nonlinear FEM. In red the same 

test but using a MSM with different resolutions: (a) 1x1x4, (b) 2x2x8 and (c) 4x4x16. 

In this study one of the most representative results is the 
displacement of any of the two bottom vertices of the free end. In the case 
of the FEM this displacement is around 11 mm, which is a large value 
compared with the size of the bar (16 mm). The simulation of the MSM 
with the highest resolution (see figure 5.12.c) demonstrates that these 
models can approximate accurately the behaviour of nonlinear FEM in 
deflection tests, even though the resulting displacements are large. 

Using the relative error definition proposed in chapter 4 (see equation 
4.27), the errors corresponding to the three tests ordered in increasing 
resolution are -20.21 %, -8.03 % and -0.70 %. The difference between the 
MSM and the FEM decreases as the size of the elements converges. 

(a) (b) (c) 
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5.4 CONCLUSIONS 

In this chapter a new method to derive cubical MSMs from nonlinear elastic 
models has been proposed. The main characteristics of this method are: 

- The response of cubical MSMs working under uniaxial tensile 
loads is nonlinear and they become stiffer as the deformations grow, 
as show qualitative and quantitative analyses of their behaviour. 

-  This nonlinear behaviour is similar to the response of living 
tissues except in the last phase, where the rupture of the material 
occurs. 

- The method proposed to obtain the stiffness coefficients of the 
MSM is able to adjust simultaneously the axial as well as the 
transversal response of the model. This makes it possible to consider 
the incompressibility characteristic in the derivation process. 

- Using the right parameters allows cubical MSMs fulfilling the 
condition of quasi-incompressibility making them appropriate for 
simulating soft tissues. 

- The nonlinear method allows deriving MSMs from nonlinear as well 
as linear reference data. However, experiments show that in the case 
of linear material models the MSMs obtained using the linear method 
behave more accurately. 

- The obtained stiffness coefficients have similar contribution to the 
stress magnitude in the uniaxial tensile tests, although there is even a 
difference of one order of magnitude between the values of ke, kf and 
kd. 

- Experiments performed using multi-element cubical models show 
that the response of the MSM is accurate under uniaxial tensile loads 
where the error is below 1.5%. The quality of the approximation 
decreases in the case of studying shear and torsion tests. Under large 
deformations, the corresponding errors are below 13% and 34% 
respectively. 

- The global incompressible behaviour shown by many soft tissues 
is accurately approximated when using the proposed MSM, although 
locally some elements vary their volume. 

- Bar deflection tests using multi-element models show that the 
response of the MSM is accurate when the size of cubes is the same 
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to the size of the elements of the nonlinear model. As the size of the 
cubes of the MSM increases its behaviour gets less accurate. 

- When designing MSM that approximate the behaviour of 
compressible and incompressible linear elastic materials working 
under small deformations, the linear method provides more accurate 
results than the nonlinear method. 

The main conclusion reached in this chapter is that discrete nonlinear 
models such as cubical MSMs are able to approximate accurately the 
behaviour of incompressible hyperelastic materials working under axial 
forces. However, when the model is subject to shear or torsion loads the 
approximation is less accurate. 
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CHAPTER 6 

6 APPLICATIONS 

Two different methods have been proposed in this thesis to obtain MSMs 
that approximate the behaviour of living soft tissues. The linear method 
assumes that deformations are small and derives the stiffness coefficients of 
the MSM from linear elastic FEM. The nonlinear method is valid for small as 
well as large deformations and its design is based on the fitting of nonlinear 
mechanical curves. As it was shown in the previous chapter the latter model 
is also able to describe linear elastic materials but it is less accurate than the 
former. 

The objective of this chapter is to present real applications developed 
using both approaches. In particular, the MSM obtained using the linear 
method will be used to simulate maxillofacial surgery and the MSM designed 
using the nonlinear strategy will be adopted to construct a platform that 
allows interacting with a brain model. 

6.1 MAXIPLAN: MAXILLOFACIAL SURGERY SIMULATOR 

Medical imaging techniques have been used to better understand anatomical 
structures in diagnostic and visualization processes. In the last decades, 
computer science has given a new dimension to all this information, 
enabling the prediction and simulation of surgical treatments. In the case of 
maxillofacial surgery, for example, surgical simulation is becoming a very 
powerful tool to plan and simulate different procedures (Zachow2006, 
Mollemans2007) because of its reduced cost (Xia2006). 

In this thesis a maxillofacial surgery simulation software named 
Maxiplan has been developed to predict the new facial appearance of the 
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patient that undergoes an operation before performing the surgery. This 
allows the surgeon to check the aesthetic results caused by the planed 
intervention and make the corresponding changes if needed. 

The surgery types that are considered in this thesis are focused on the 
bones belonging to the maxilla and mandible. First, the bone is cut into one 
or multiple pieces and then each part is moved to the desired position. The 
objective of the simulation is to predict the change in the skin caused by 
these bone relocations. 

The following sections are divided into five main topics. First, the 
modular structure of Maxiplan and some details about the simulation 
strategy are presented. Then, detailed information regarding the MSM 
design. In third place, the soft-tissue area which is in contact with the bone 
that is going to be cut during surgery is studied. This area suffers the highest 
modifications and wrong assumptions can lead to unrealistic simulations. 
After that, a real case of maxillofacial surgery is performed and the post-
surgery results are compared with simulated prediction. To end this section 
some conclusions are addressed. 

6.1.1 MODULES OF MAXIPLAN 

Software oriented to medical simulation is usually divided into different 
modules depending on the specific interventions that are going to be 
studied and the tools that the surgeons request. In particular, Maxiplan is 
divided into five modules: 

- Graphical interface: it lets the user interact with programme. 

- Segmentation: it processes the medical images to identify soft 
tissue and bone. 

- Surgery planning: it allows defining the cuts and movements of the 
maxilla and mandible as it is planned in the real intervention. 

- Surgery simulation: it simulates the effects that the surgery plan has 
over the face. 

- Visualization: it shows the medical data and the results of the 
different steps of the surgery planning and simulation. 

In this thesis three of these modules have been designed and 
implemented: segmentation, surgery planning and surgery simulation 
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modules. The graphical interface and the visualization tools are out of the 
scope of this thesis. 

6.1.1.1 Segmentation 

Segmentation is the process of partitioning a digital image into multiple 
regions to locate objects and boundaries. In this case, the segmentation 
module reconstructs the medical images taken with a computer tomography 
(CT) scanner and converts it into hard and soft-tissue objects (see figure 
6.1). 

 

Figure 6.1. Segmentation of the medical data to extract hard and soft-tissue boundaries. 

Frequently, medical images contain noise and artefacts which are 
misrepresentations of tissue structures. They may be caused by a variety of 
phenomena such as patient movement, presence of metallic objects or lack 
of precision. To avoid this kind of wrong data, in the segmentation module 
of Maxiplan an image filtering algorithm based on region growing 
techniques has been implemented. 

6.1.1.2 Surgery planning 

The surgery planning consists in defining the different bone cuts that the 
surgeon is going to make and assigning to them the corresponding 
translation and rotation movements. In Maxiplan this planning is build upon 
the previously segmented images using reference planes specified by the 
user (see figure 6.2) and provides the simulation module with all the 
necessary information to start simulating a procedure. 

The developed software does not indentify automatically the maxilla 
and the mandible. Instead, the user defines the planes displayed in figure 6.2 

DICOM files 

Segmentation 

Hard tissue Soft tissue 

+ 
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to determine their location. In addition, these references help establishing 
the cutting area and the relative movements of the bone pieces. 

 

Figure 6.2. Identification of the maxilla and mandible to plan and simulate the surgery. 

6.1.1.3 Surgery simulation 

The objective of Maxiplan is to calculate the appearance of the patient after 
the surgery, which means that only the computation of the final deformed 
state is needed. There are two ways of determining these deformations: 
directly and gradually. The direct one makes all the required bone 
displacements simultaneously and simulates afterwards the soft-tissue 
behaviour. In turn, the gradual method determines the bone movements in 
several steps, computing the soft-tissue equilibrium in each step. 

When the displacements are large compared with the size of the 
elements of the MSM the direct method can lead to simulation problems, 
such as instabilities caused by large forces and overlapping of the springs. 
These problems can be avoided doing the simulation gradually, since it 
allows limiting the maximal movement of the bone in each time step. In 
Maxiplan the gradual strategy has been adopted because it makes the 
simulation more stable and avoids implementing restrictions to control 
mesh overlapping. 

The gradual method can be seen as a dynamic simulation in which in 
each time step some parts of bone are displaced. The simulation ends when 
all these parts achieve the final desired position. Figure 6.3 displays the 
process of calculating the results of a maxillofacial surgery by moving 
gradually the affected bones. 

Surgery planning 
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Figure 6.3. Calculating the results of a maxillofacial surgery by gradual approximations. 

Frequently, the computation of each time step is made using time 
integration methods based on finite differences (Haile1992) like Euler, 
Runge-Kutta, Verlet, and Gear’s predictive-corrective methods. In this case, 
as the objective of the simulation is to calculate the final appearance of the 
patient, the intermediate deformed positions do not need to be accurately 
computed. Therefore, the force scaling method proposed by Brown et al. 
(Brown2001) and detailed in section 2.5.1 is used. The main advantages of 
this method is that it reaches equilibrium faster than other strategies and it 
only needs to keep one set of positions, which makes it computationally 
efficient. 

6.1.2 DEFORMABLE MODEL DESIGN 

6.1.2.1 Material model 

As it was discussed in section 2.2, living tissues have non-uniform, 
anisotropic, nonlinear, visco-elastic behaviour and these properties depend 
on the history of applied loads (Fung1993). However, in order to obtain fast 
results most simulators simplify this complex behaviour using linear elastic 
(Cotin2000, Maciel2003, Chabanas2004, Zachow2004, Mollemans2005, 
Westermark2005, Zachow2006, Mollemans2007), geometrically nonlinear 
(Picinbono2003, Nesme2005, Mollemans2007) or hyperelastic material 
models (Chabanas2004, Martins2006, Wang2009). 

Westermark et al. (Westermark2005) studied the effect of considering 
non-homogeneous tissue models in the prediction of osteotomies in cranio-
maxillofacial surgery. They differentiated between fat and muscle tissue and 

Pre-surgery Simulated 
surgery 

Gradual displacements 
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assigned for each tissue type different values to E and . They concluded 
that the net improvement obtained by using such non-homogeneous tissue 
models did not significantly influence the prediction quality. 

Chabanas et al. (Chabanas2004) compared the performance of linear 
and hyperelastic material models in the simulation of the post-operative 
facial appearance. In the cases they studied the linear FEM provided 
accurate results, even better than using nonlinear FEM. Probably, the 
reason for this is that the properties of the face are not uniform and it is 
difficult to define the properties that best describe the global behaviour. 

There is little information about the range of deformations in which 
the linear model is valid. According to Chabanas et al. (Chabanas2004) the 
use of linear material models is appropriate for maxillofacial soft-tissue 
simulations that undergo deformations bellow 20%. On the other hand, 
Gladilin et al. (Gladilin2003) suggested that the limit of the maximum 
distraction allowed using linear material models is about 1 cm. 

Taking into account these studies, it seams acceptable to use 
homogeneous linear elastic material models to make fast simulations of 
maxillofacial procedures where the deformations are small; particularly 
when a fast response is required. Therefore, the surgery simulation tool will 
be developed using cubical MSMs obtained from linear elastic FEM which 
involves calculating the stiffness coefficients with the method presented in 
chapter 4. 

6.1.2.2 Material properties 

Although linear elastic material models are very common in maxillofacial 
surgery simulation, there are great discrepancies when settling the 
mechanical properties. The main reason is that it is difficult to assign an 
elasticity modulus and a Poisson’s ratio to the grey levels of the images 
provided by medical imaging techniques such as CT and MRI. 
Unfortunately, there is no unique relationship between Hounsfield Units 
(gray levels) and mechanical properties, and the determination of suitable 
values for different tissue types is still the subject of ongoing research in 
biomechanics and elastography (Zachow2006). 

In the maxillofacial simulations performed by researchers like 
Zachow et al. (Zachow2004, Zachow2006), Chabanas et al. (Chabanas2004) 
or Mollemans et al. (Mollemans2005, Mollemans2007) the optimum 
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Young’s modulus varies from 3 kPa to 300 kPa while the Poisson’s ratio is 
recommend to be between 0.3 and 0.5. 

The method proposed in chapter 4 to design MSMs provides more 

accurate results when =0.35 (see section 4.3). Consequently, this will be 

the value used since it is in the range of valid  when approximating the 
behaviour of soft tissues involved in maxillofacial surgery simulation. 
Regarding Young’s modulus, E=50 kPa is adopted because it is an 
intermediate value. 

6.1.3 NEW METHODS FOR BONE REMODELLING 

The maxillofacial surgeries simulated in Maxiplan involve bone cuts and 
displacements. If the objective of the intervention is to shorten the 
mandible or the maxilla, it is necessary to remove certain portion of bone 
which is typically known as bone setback operation. On the contrary, if the 
objective is to make it larger then it is called advancement. In this case, the gap 
caused by the relocation of the bone is filled again. 

In interventions that involve bone relocation it is important to study 
the soft-tissue area which is in contact with the bone that is going to be cut 
and displaced during surgery. This area suffers the highest modifications 
and wrong assumptions can lead to unrealistic simulations. 

Biological mechanisms such as tissue regeneration and bone growth 
are very complex and describing them is usually computationally expensive, 
if not directly impossible with current knowledge. Thus, it is necessary to 
analyse the way that geometrical assumptions can help representing more 
realistically physical and physiological characteristics. This section is focused 
on the study of the soft-tissue bounding conditions, that is, in the boundary 
layer in contact with the bone. 

In this thesis two possible methods for performing bone setback and 
advancement are proposed: Scaled Displacement Method (SDM) and 
Removing Method (RM). Note that these approaches are applicable both to 
MSM and FEM. 

The SDM represents a bone cut and displacement by scaling certain 
area of the affected bone. In this way, the bone modifies its length 
according to the desired osteotomy. The soft tissue that is in direct contact 
with the bone also suffers a similar compression of its surface. This method 
modifies the geometry of the model but it does not remove any element of 
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the mesh. On the other hand, the RM removes a piece of bone exactly like 
in the actual surgery, which involves eliminating the soft tissue in direct 
contact with the removed bone. Therefore, this method requires 
restructuring the affected elements and removing some elements of the 
MSM in contact with the bone. 

In order to illustrate how these methods work, a practical example of 
a mandibular setback is studied (see figure 6.4). 

 

Figure 6.4. An example of the application of the SDM and the RM in a mandibular setback. 

In particular, the length of the mandible is reduced certain amount L 
and an area equivalent to ten times the setback length is analyzed. As it can 
be seen, the SDM scales the central part of the sample while the RM 
extracts a portion equivalent to the setback amount. In particular, the size 
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of the area selected for scaling in the SDM is five times bigger than the 
setback size in order to distribute the effect of the osteotomy in a wide area. 

In figure 6.4 can be seen that the SDM distributes stress and strain 
uniformly along the area close to the cut. The RM, in turn, shows a bending 
effect in this area caused by a stress concentration located near to the 
surface that connects the two bone pieces. Concerning real surgeries, after a 
recovery period, soft tissue relaxes losing any stress concentration caused 
during the operation. Therefore, from this point of view, the prediction 
made by the SDM is more realistic. 

Another advantage of the SDM is that it avoids remeshing and 
removing elements like the RM does. Therefore, it maintains the initial 
mesh of the model. As a consequence the mathematical formulation is 
simplified and the computation time is improved. 

6.1.4 PRACTICAL APPLICATION 

In this section a real case of maxillofacial surgery is presented, where facial 
asymmetry and long face pathology are treated: asymmetric mandibular 
setback (3 mm left, 5 mm right), maxillary impaction (2 mm), maxillary 
advancement (3 mm) and arch widening (0.5 mm) (see figure 6.5). Note that 
this case involves the most common osteotomies in maxillofacial surgery. 

 

Figure 6.5. Surgical bone movements performed: (a) mandibular setback, (b) maxillary 

advancement and impaction, and (c) maxillary arch widening. 

(a) (b) (c) 
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6.1.4.1 MSM design 

The medical images are taken with an i-Cat scanner1 that generates regular 
voxels with edges 0.4 mm long. This size is too small for simulation because 
it leads to a large amount of elements. Therefore, each axis is simplified by 4 
resulting in a model that is 64 times smaller than the original one. In this 
case, the model has 303178 equal sized voxels with edges 1.6 mm long. 
Larger simplifications are also possible but they do not result in a mesh fine 
enough for the surface reconstruction process and important details can be 
lost. 

The MSM is derived from a homogeneous linear elastic material 
model following the indications of previous research works mentioned 
above (see section 6.1.2.1). To build the deformable model it is necessary to 
calculate the parameters of the MSM using equation 4.21 and table 4.1. The 

stiffness coefficients corresponding to L=1.6 mm, E=50 kPa and =0.35 
are the following: 
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 6.1 

6.1.4.2 Simulation 

The simulation module needs to guarantee a stable and accurate 
performance. For this reason, the strategy proposed to compute the final 
appearance of the patient is divided in two parts. The first one is focused on 
computing a fast but rough approximation of the final outcome and the 
second one is concerned with the refinement of the results. 

To avoid stability and overlapping problems Maxiplan uses the SDM 
in the first phase. In particular, the scaling of the bone areas involved in the 
operation is made gradually in 10 steps. In each of them the soft tissue is 
simulated in a rough way in order to give intermediate quasi-static results. 
These successive approximations that take place each time the bone is 
reconfigured are driven in 30 steps using the force scaling method (see 
section 6.1.1.3). Consequently, the first phase calculates 300 times the 
deformations of the MSM. 

                                                 
1 Imaging Sciences International, Inc. (www.imagingsciences.com) 

http://www.imagingsciences.com/
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The second part of the simulation begins with the bone in its final 
configuration and the soft tissue in a roughly approximated state. The 
refinement of the results is performed using the force scaling method and is 
designed to compute 2000 steps. 

The results of the simulation corresponding to the surgery studied in 
this section are displayed in figure 6.6. Three data reconstructions for the 
same patient are shown: (a) before surgery, (b) simulated model and (c) after 
surgery. 

 

Figure 6.6. Patient data reconstruction: (a) patient before surgery, (b) simulated result after 

surgery and (c) actual surgery results. 

The simulation module of Maxiplan took 4.5 minutes to simulate the 
outcome of the surgery procedure using an Intel® Core ™ 2 Quad 2.4 
GHz with 3.25 GB of RAM. No precomputed data has been used apart 
from the stiffness calculations. 

6.1.4.3 Error computation 

The scanner images of the patient before and after surgery have been taken 
in different days and in different postures, which makes the comparison 
process more complex. Thus, before measuring the error of the simulation, 
both models have to be oriented in the same direction. The simplest way to 
reorient correctly the model is to match regions that surgery has not 
modified (the forehead, for example) and calculate the translation and 
rotation matrices. In this case, six points that do not displace during surgery 

(a) (b) (c) 
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are taken and then the transformation that minimizes the sum of the 
distances between the equivalent points in the two models is computed. 

The evaluation of the difference between the simulated model and the 
actual surgery can be accomplished in many ways. In the particular case of 
the face, there are some representative points that have to be especially 
considered when analyzing simulation results, namely, soft-tissue landmarks 
of the face. In this field, Swennen et al. (Swennen2006) made a detailed 3D 
cephalometric study to identify the most meaningful points of the face. 

Following their work, in Maxiplan, the landmarks belonging to the 
mandible, maxilla and cheekbone selected to measure the error of the 
simulation are: (1) right soft-tissue cheekbone, (2) pronasale, (3) subnasale, 
(4) labiale superius, (5) labiale inferius, (6) soft-tissue pogonion, (7) subspinale 
and (8) left soft-tissue cheekbone. Their location is detailed in figure 6.7. 

 

Figure 6.7. Soft-tissue landmarks that allow evaluating the error in representative regions. 

The error at these points is measured by using ray tracing techniques. 
First, a set of triangles of the simulated mesh in the area of the landmark is 
selected. Then, from each triangle, a ray is traced perpendicular to its 
barycentre. The error is the distance covered by the ray between the 
simulated model and the actual surgery model (see figure 6.8). 

(1) 

(2) 

(3) 

(4) 

(5) 
(6) 

(8) 

(7) 
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Figure 6.8. The distance between two triangular meshes is calculated measuring the 

distance covered by a perpendicular ray from the barycentre of each triangle of the 

simulated mesh to the actual surgery mesh. 

The value of this error varies significantly with the selected triangle. 
Thus, to give a statistical idea of this deviation, for each landmark the five 
nearest triangle barycentres are measured and the average and standard 
deviation for their errors are calculated. These results are shown in table 6.1. 

 Average error 

[mm] 

Standard 

deviation 

(1) Soft-tissue cheekbone (right) 1.43 0.90 

(2) Pronasale 1.72 0.99 

(3) Subnasale 1.51 0.98 

(4) Labiale superius 4.44 0.24 

(5) Labiale inferius 2.01 1.81 

(6) Soft-tissue pogonion 0.68 0.38 

(7) Subspinale 1.82 0.85 

(8) Soft-tissue cheekbone (left) 0.37 0.25 

Table 6.1. Error measured at the landmarks. 

Simulated model 

Actual surgery 
model 
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Note that the surgery simulation has been performed taking into 
account the pre-surgery planning and not the real surgery. During the 
operation the procedure may change due to unexpected bone 
characteristics, deficient medical images or teeth malocclusion. In Maxiplan, 
these changes are not considered during the simulation. Conversely, 
Marchetti et al. (Marchetti2010), for instance, adapt the virtual plan to 
match post-operative bone situation. In this way, they avoid the error 
associated to the planning process. However, it is preferable to comply with 
the initial plan in order to reproduce fairly the way in which the doctor is 
going to work. For these reasons, errors shown in table 6.1 have to be 
considered carefully. 

6.1.5 DISCUSSION 

When analysing the simulation error it is important to consider the 
impossibility of having CT images after surgery with exactly the same 
posture and facial expression of the ones previous to it. Furthermore, the 
distance measured perpendicularly from the barycentre, in general, is not 
the smallest distance between one triangle and the other mesh because the 
relative angles can make this distance larger. 

In spite of these sources of error, in the landmarks the average error 
is between 0.37 and 2.01 mm, that is, less than the internal diagonal length 
of a cube except for labiale superius whose error is 4.44 mm. Concerning the 
standard deviation, the worst value corresponds to labiale inferius due to the 
curvature of this region. Taking into account that the cube size is 1.6 mm, 
these error values are reasonable and similar to those obtained by other 
researchers that use linear FEM (Zachow2006, Mollemans2007). 

Although there is no significant effect on the error in the proposed 
landmarks when using the scaled displacement method and the removing 
method, it has been observed that the error corresponding to the region 
where the cut is performed is bigger for the latter, reaching in some cases 
1.5 times the error of the scaled displacement method. This issue supports 
the theoretical reasons mentioned above. 

6.1.6 CONCLUSIONS 

In this section a tool to simulate maxillofacial surgical procedures is 
presented. The patient specific MSM is generated using the method 
proposed in chapter 4. The main conclusions reached in this 
implementation are the following: 
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- The new MSM proposed in chapter 4 has been applied to a surgery 
simulation tool and it has been tested using real surgery procedures 
information. 

- The addressed case report shows that the new model provides 
accurate results, which are comparable to those obtained by other 
authors that use linear FEM. 

- A new method to emulate cuts is proposed, namely, SDM. This 
method is applicable both to MSM and FEM, and it allows translating 
realistically the effects of a bone cut and the following movement to a 
geometrical scope. 

- The SDM describes more reliably the effects of the surgery than 
the RM, as it is shown in a comparative test made in a small sample 
using both methods. 

- The implementation of the SDM in the Maxiplan simulation tool 
proves that it does not give unrealistic results like wrinkles in the 
cutting area. 

The main conclusion reached in this section is that the MSM design 
proposed in chapter 4 combined with the SDM makes it possible to 
develop accurate medical simulators such as those used to predict facial 
appearance of patients after maxillofacial surgery. 

6.2 I-BRAIN: INTERACTIVE BRAIN SIMULATOR 

Neurosurgery is concerned with the prevention, diagnosis, treatment and 
rehabilitation of disorders that affect the entire nervous system including 
the brain, spinal column, spinal cord, peripheral nerves and extra-cranial 
cerebrovascular system. 

Brain surgery, in particular, is suffering a great evolution due to new 
neuronavigation techniques. During image guided navigation, pre-
operatively acquired image data of different modalities such as CT or MRI 
are registered to the anatomy of the patient. Rigid registration (see section 
1.3.1) is relatively straightforward; however, deformations of the brain tissue 
reduce its usefulness, especially in the case of large skull openings. These 
deformations may occur due to physical phenomena (e.g. dura opening, 
intra-operative position of the patient, loss of cerebrospinal fluid, surgical 
manipulation, characteristics of the tissue, etc.) and to physiological 
phenomena (e.g. swelling due to osmotic drugs, anaesthetics). 
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Studies have reported a continuous dynamic shift of the brain tissue 
evolving differently in distinct brain regions, with a surface shift up to 24 
mm that occurs throughout surgery and with a subsurface shift exceeding 3 
mm for the deep tumour margin that mainly occurs during resection 
(Nabavi2001, Hastreiter2004). As a consequence of this phenomenon the 
images acquired before surgery are no longer valid representations of the 
brain of the patient. Therefore, intraoperative changes in brain morphology 
significantly deteriorate the accuracy of any neuronavigation system during 
the surgery. 

For these reasons, biomechanical models that simulate brain 
deformations under loading and boundary conditions typically found in this 
kind of surgeries are gaining attention. The main objective of these 
simulation tools is to help in computer assisted and image-guided 
neurosurgery by providing reliable models that deform like actual brains. In 
a similar way, simulators focused on training programs have to provide 
models that behave realistically in order to transfer the trainees the skills 
required to tackle with real surgeries. 

In this section, a deformable brain model developed for neurosurgery 
training purposes, called I-Brain, is presented. In contrast to Maxiplan, I-
Brain does not use patient specific data. In turn, the geometric information 
is provided by a brain atlas whose weight has been set to 1.3 Kg. 
(Kewitz1980). 

There is a lack of in vivo actual medical image data of a whole brain 
working under different loading conditions. This is a remarkable limitation 
when trying to validate the deformable models used in neurosurgery 
simulators. Therefore, the development of I-Brain is a proof-of-concept to 
see the suitability of MSM to be used in this kind of tools. 

6.2.1 DEFORMABLE MODEL DESIGN AND SIMULATION 

6.2.1.1 Material model 

Experimental results show that the mechanical response of brain tissue to 
external loading is very complex because the stress-strain as well as the 
stress-strain rate relationship are nonlinear (Miller2010). Miller et al. 
(Miller2010) adopted an Ogden-based hyper-viscoelastic constitutive model 
and assumed that the brain is incompressible and isotropic. Schiavone et al. 
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(Schiavone2009) proposed a Mooney-Rivlin model with =0.45 to describe 
the hyperelastic nearly incompressible behaviour. 

Both researches (Schiavone2009, Miller2010) insist on the 
hyperelastic and quasi-incompressible behaviour of the brain. Therefore, the 
surgery simulation tool will be developed using cubical MSMs obtained 
from hyperelastic material models. This requires calculating the stiffness 
coefficients with the method presented in chapter 5. 

6.2.1.2 Material properties 

There are two reasons that make it difficult to select the material properties 
of the model of human brain. The first one is that many authors provide the 
characteristics of porcine brains (Miller2002, Zhang2010) because obtaining 
them has less ethical consequences. The second ones is that the material 
models calculated using post-mortem samples vary dramatically depending 
on the preservation conditions, particularly on the preservation temperature 
(Zhang2010). 

Recently, Schiavone et al. (Schiavone2009) provided for the first time 
in vivo data on human brain elasticity. They extracted a constitutive law of 
the human brain measuring pre-operatively on the patient, just before the 
resection of the brain parenchyma. However, as they point out, the main 
aim of their work was not to describe a universal constitutive law for the 
brain elasticity, but to propose a new procedure to obtain reliable data. 

The hyperelastic incompressible material model used to obtain the 
MSM in section 5.2.2.1 is compared with the data provided by Zhang et al. 
(Zhang2010). As it can be seen in figure 6.9 the proposed model behaves 
like the set of brains they call group A. Note that behaviour data has been 
transformed into engineering stress and strain in order to use the same 
magnitudes as Zhang et al. (Zhang2010). 

In Zhang’s work, group A refers to the set of the brain tissues stored 
at low temperatures above freezing point and warmed to a temperature of 
37ºC in saline bath prior to testing. That is, the group whose behaviour has 
been obtained following the procedure the authors recommend. Therefore, 
the Ogden constitutive equation described in equation 5.10 has been 
selected for brain modelling in I-Brain. 
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Figure 6.9. Mean engineering stress-strain curves for porcine brain tissue preserved in ice 

cold (group A) and37 ºC (group B) saline solution with the 95% confidence bands plotted in 

0-70% (Zhang2010) and the material model proposed in this thesis (see section 5.2.2.1). 

6.2.1.3 Simulation 

The objective of I-Brain is to provide a proof-of-concept tool to interact 
with a brain model in real time. The main difference with respect to the 
maxillofacial surgery simulator is that, in this case, there is a continuous 
interaction between the model and the user. Therefore, in contrast to 
Maxiplan, this simulator requires computing the actual deformation in each 
time step, not only in the final deformed configuration. This involves 
detecting the collisions between the brain and the medical instruments and 
computing the effect that they have over the deformable model. 

The whole mass of the brain is distributed uniformly in the collection 
of point masses that forms the MSM. At each point a set of springs is 
connected and when their length changes they apply a force on the masses 
they connect, making them accelerate according to equation 2.10. The new 
position of the nodes of the model can be evaluated using different types of 
integration schemes. In I-Brain an Euler Implicit integration has been 

Proposed model 



I-Brain: interactive brain simulator 163 

 

chosen, in order to make fast simulations and fulfil the requirement of real-
time performance. 

6.2.2 IMPLEMENTATION AND TESTING 

In order to implement I-Brain in a flexible manner the Simulation Open 
Framework Architecture (SOFA1) has been used. SOFA is an open-source, 
C++ library for physical simulation, primarily targeted to medical 
simulation. The data structure that uses to model the scene is similar to 
hierarchical scene graphs commonly used in graphics libraries. 

As it is usual in this kind of applications, several models have been 
combined to build the deformable object of I-Brain: a visual model, a 
deformable model and a collision model. In this section only the key 
information related to these models will be addressed. 

6.2.2.1 Visual model 

The purpose of this simulator is to help with training tasks. Therefore, it is 
not necessary to use patient specific data and the geometric information can 
be obtained from brain atlases. In particular, a free human brain atlas2 is 
used as the brain visual model. This model contains a detailed triangle mesh 
with 36758 elements (see figure 6.10). 

 

Figure 6.10. The visual model of the brain contains 36758 triangles. 

6.2.2.2 Mechanical model 

A cubical MSM has been implemented in SOFA with the aim of modelling 
the mechanical response of the brain. Following the discussion about the 

                                                 
1 http://www.sofa-framework.org 

2 http://artist-3d.com/free_3d_models/dnm/model_disp.php?uid=568 

http://www.sofa-framework.org/
http://artist-3d.com/free_3d_models/dnm/model_disp.php?uid=568
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generic behaviour of the brain (see sections 6.2.1.1 and 6.2.1.2) the Ogden 
model proposed by Martins et al. (Martins2006) has been used as a 
reference. Given the nonlinear nature of the material model and taking into 
account that the deformations can be large, the brain has been modelled 
using the method proposed in chapter 5 (see section 5.2.2.1). 

 

Figure 6.11. Cubical MSM that describes the nonlinear behaviour of the brain. 

Taking the edge length 2 cm, the resulting MSM is composed of 706 
point masses and 6951 springs (see figure 6.11) and the corresponding 
parameters are shown in equation 6.2. 
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 6.2 

In SOFA, by default, the method that automatically constructs regular 
MSMs uses a unique stiffness coefficient. In order to be able to use three 
different stiffness values, the implementation of this model has required 
modifying the source code of the module of SOFA involved in MSM 
generation. 

As the detail level of the mechanical model is much smaller than the 
one of the visual model a barycentric mapping between both models is 
performed. In this way, it is possible to display detailed results even though 
the deformation is computed using a coarser physical model. This technique 
is widely used in computer graphics because it allows making 
computationally efficient simulations with high resolution visualizations 
(Mosegaard2005, Nesme2009). 
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6.2.2.3 Collision model 

Among the different types of collision models that SOFA allows defining, 
in I-Brain the sphere collision model has been used. This model is integrated 
into the collision detection and response pipeline, and when contact or 
mouse interaction forces are applied to the set of spheres, the forces are 
propagated to the mechanical model by mapping them. Then, these contact 
forces are incorporated in the dynamics equations producing the 
corresponding deformations. In particular, the proposed collision model is 
composed of 271 spheres (see figure 6.12). 

 

Figure 6.12. Collision model composed of a collection of spheres. 

 

Figure 6.13. (a) The green sphere is the one intersected by the ray casted from the mouse. 

(b) The deformations caused by the spring created during the mouse interaction. 

(a) (b) 
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6.2.2.4 Interaction mode 

The user interacts with the collision models using rays casted from the 
mouse pointer and hitting collection of spheres. If any ray intersects one of 
the spheres that form the collision model of the scene (see figure 6.13.a) 
then, a spring is created between the model and the mouse pointer (see 
figure 6.13.b). Moving the mouse allows pulling on some elements of the 
mechanical model and deforming it. 

6.2.2.5 Simulation performance 

The computation of the deformation suffered by the brain due to user 
interactions takes about 5 ms. These simulations have been performed using 
a time step of 20 ms and an Euler Implicit Integrator. The corresponding 
results have been obtained with a CPU-based implementation using a 
computer with an Intel Dual Core Pentium D processor at 3.2 GHz and 2 
GB of RAM. 

Some frames of a deformation sequence taken when interacting with 
the model are displayed in figure 6.14. 

 

Figure 6.14. Some frames of a deformation sequence taken when interacting with I-Brain. 

Taking these results into account, this implementation shows the 
suitability of MSMs designed with the proposed approach to describe 
nonlinear material behaviour in real-time interactive applications. The 
present implementation has been focused on palpation-like interactions but 
it can be include in other kind of medical applications such as procedures 
planning or surgery simulation. 
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Moreover, the proposed model can be an interesting alternative to 
nonlinear FEM, since computationally efficient GPU based 
implementations such as the one proposed by Rasmusson et al. 
(Rasmusson2008) show that MSMs are, in general, faster than nonlinear 
FEM implementations such as the one published by Comas et al. 
(Comas2008) (see discussion in section 2.6.3). 

6.2.3 CONCLUSIONS 

In this section a proof-of-concept tool to physically interact with nonlinear 
elastic deformable models is presented. The model is generated using the 
method proposed in chapter 5. The main conclusions reached in this 
implementation are the following: 

- Although SOFA is focused on physical simulation and primarily 
targeted to medical simulation it still does not include nonlinear 
material models. The proposed approach has allowed developing 
models that behave like hyperelastic materials adopting cubical MSMs 
and avoiding the implementation of nonlinear FEM. 

- The simulation of the interactions using bodies whose behaviour is 
nonlinear has been achieved at real-time rates. In particular, the 
computation of the deformation of a detailed brain model has been 
carried out in 5 ms. 

The lack of actual medical image data of a whole brain working under 
different loading conditions has been a limitation when trying to validate 
the MSM implemented in I-Brain. However, the performed simulations 
show that MSMs are an interesting choice for medical simulators that need 
nonlinear deformable models whose behaviour has to be computed in real 
time. 
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CHAPTER 7 

7 CONCLUSIONS AND 

FUTURE WORK 

This thesis presents new methods for obtaining soft-tissue mechanical 
models typically used in medical simulators. These models are valid either 
for surgeon training, surgery planning or surgical simulation. The main 
contributions of this work are focused on the field of MSM design, in 
particular, on the computation of the stiffness coefficients of cubical MSMs. 

Two new methods to design cubical MSMs are proposed. The first 
one, called linear method, obtains the stiffness parameters of the MSM from 
linear elastic FEM and is focused on modelling soft tissues for the 
simulation of small deformations. The second one, namely nonlinear method, 
obtains the MSM from the behaviour of nonlinear material models and is 
able to work accurately under large deformations. 

The general conclusions and characteristics of these two methods are: 

- The proposed approaches allow simulating fast and with enough 
accuracy for interactive training, the behaviour of the most frequent 
soft tissues present in surgical procedures. 

- Both methods are based on the study of the behaviour of a single 
cubical element. Even if they are based on a single element, the 
behaviour of the corresponding multi-element model is also accurate. 

- The analytical study of the behaviour of a single element makes 
these methods independent from the global shape of the body. In 
addition, they are based only on the constitutive model of the body, 
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without requiring a set of experiments to obtain the MSM. These two 
characteristics are clear advantages with respect to data-driven 
methods used by other authors. 

- Even though the formulation of MSMs does not permit defining 
directly properties such as incompressibility, the experiments 
simulated in this thesis show that the proposed models achieve quasi-
incompressible behaviour without using constraint based methods. 

- Both methods allow defining different compressibility ratios. This 
is an advantage with respect to the energy-based approaches which 
usually focus on volume preservation constraints, thus limiting their 
usability to only incompressible materials. 

- The complexity of the evaluation of nonlinear FEM is greater than 
linear FEM. In contrast, the simulation of the MSMs presented in this 
thesis has always the same computational cost, in spite of the fact that 
some of them are suitable for nonlinear behaviour modelling, while 
others are specifically designed for modelling linear elastic materials. 

- Both MSM design approaches proposed in this thesis have been 
integrated into medical simulator prototypes, one of them in a real-
time interactive environment. This proves the suitability of these 
approaches for surgery training, planning and simulation. 

7.1 LINEAR METHOD FOR CUBICAL MSM DESIGN 

A new analytical approach has been proposed to design MSMs from linear 
elastic FEM by linearizing the equilibrium equations of the MSMs and 
equating the stiffness matrices of both models. The main contributions in 
this topic are: 

- A new method for obtaining analytically cubical MSMs from linear 
elastic FEM is proposed in this thesis. The method is based on the 
study of the eigenvectors and eigenvalues of the stiffness matrices of 
the linear FEM and the linearized MSM. The linearized model is only 
used to obtain the stiffness coefficients of the MSM. The 
computation of the real deformation is performed using the nonlinear 
model. 

- As the eigenvectors and eigenvalues of both stiffness matrices can 
rarely be the same, the spring coefficients of the MSM are computed 
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using a minimization method that takes into account the results of 
both eigenproblems simultaneously. 

- The linear method is specifically developed for small deformations 
because of the linearization involved in the MSM design and the 
linear elastic assumption. 

- In this thesis three complementary methods are proposed to 
evaluate the quality of the obtained MSM: (a) the axial and transversal 
behaviour of the model working under uniaxial tensile loads, (b) the 
residual error of the minimization and (c) a new metric that quantifies 
the similarity between the eigenspaces of the stiffness matrices of the 
linearized MSM and the FEM. These methods allow identifying the 
range of Poisson’s ratios in which the approximation is accurate. 

- In contrast to previous works, the proposed method can handle 
any value of Poisson’s ratio in the range of 0 to 0.5. However, it 
approximates better the behaviour of the reference FEM when the 
value of this parameter is around 0.35. Below this value, the obtained 
MSM behaves softer than the reference model and stiffer above it. 

- As Poisson’s ratio  gets further from 0.35, the minimization error 

increases, reaching high error values for  =0.49. Therefore, it is 

preferable to use the MSM obtained from  =0.35 to represent 
incompressible materials. Numerical experiments show that this 
solution provides accurate simulations and a quasi-incompressible 
behaviour. 

- In this thesis it has been shown that cubical MSMs are able to 
approximate quite accurately the behaviour of linear elastic materials 
and can be used in medical applications. In particular, its 
implementation in Maxiplan shows that this approach can be used to 
predict facial appearance of patients after maxillofacial surgery. 

- The use of MSMs obtained from linear elastic FEM is 
recommended when the real-time requirement is more important 
than the accuracy. It can be an interesting alternative solution to linear 
FEM when preprocessing techniques are not useful, for instance, 
when topological changes are involved in the simulation. 
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7.2 NONLINEAR METHOD FOR CUBICAL MSM DESIGN 

A new analytical approach to design MSMs from nonlinear elastic material 
models by adjusting their behaviour under uniaxial tensile loads has been 
proposed. The main contributions in this topic are: 

- A new analytical method for designing cubical MSMs that behave 
like nonlinear materials is presented in this thesis. This method is 
based on the nonlinear behaviour study of cubical MSMs working 
under uniaxial tensile tests and it is especially suitable for medical 
simulators that use hyperelastic models. 

- The study of the behaviour of a single element explains the 
characteristic stiffening of the response of MSMs as the deformations 
grow. This behaviour reproduces with enough accuracy the main 
properties of many biological soft tissues. 

- The nonlinear method developed in this thesis is able to adjust, 
simultaneously, the axial and the transversal behaviour of the model. 
This makes possible to work with compressible or incompressible 
reference material models, as the derivation process can use different 
values of Poisson’s ratios. 

- Even under large deformations the MSMs is able to approximate 
complex characteristics such as the nonlinear incompressible 
behaviour found in living tissues. This is achieved adopting just linear 
springs and cubical topology. 

- This method also allows designing MSMs from linear elastic 
material models. However, they behave less accurately than the MSMs 
obtained with the linearization approach also presented in this thesis. 

- The use of MSMs obtained from nonlinear elastic material models 
is an interesting alternative solution when nonlinear FEM cannot 
meet the real-time requirement in interactive applications, since they 
are computationally very efficient. 

7.3 FUTURE WORK 

The MSM is an interesting alternative to the FEM especially for real-time 
interactive applications. In the present work a new approach to define the 
parameters of a MSM is proposed based on a comparison to linear elastic 
FEM for small deformations and another method based on the constitutive 
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law of a material working under large deformations. In the first case, a good 
approximation of the behaviour of linear FEM is obtained. In the second 
case, it has been shown that a simple approach such as approximating the 
behaviour in simple uniaxial tensile tests allows the definition of MSMs with 
mechanical behaviour similar to nonlinear material models, but with a 
significantly reduced computational cost. However, several possible 
research lines are open to continue with this work: 

- Validate the performance of the MSMs proposed in this thesis 
using real experimental data instead of considering only the results 
obtained using the FEM. 

- Extend or modify the objective function used in the nonlinear 
method with the aim of considering the behaviour of a cubical element 
under additional types of loads. This could improve in some cases the 
accuracy of the MSM designed using this method, specially when 
stretching is not the dominant load. 

- Study cubical MSMs with more than the three stiffness coefficients 
used in this thesis. For instance, making the edge springs aligned with 
the axial direction and the transversal ones have different stiffness 
values might help modelling tissues such as muscle, whose behaviour 
in the fibre direction generally differs from the behaviour in the 
transversal one. 

- Design of MSMs with additional types of springs, such as 
nonlinear and torsion springs. This provides the MSMs with 
additional parameters that may improve the quality of the 
approximation. 

- Take dynamic properties into consideration in the process of the 
MSM design. This could involve analyzing issues such as inertia and 
damping. 

- Develop friendlier soft-tissue simulating environments. The 
existing software development tools focused on medical applications 
are not easy to modify and test, or do not provide properly 
documented code. 

 





 

175 

APPENDIX A: EIGENSPACES 

In section 4.2.2 the projections of each eigenvector of the linearized MSM 
onto each eigenvector of the linear FEM are studied, in order to evaluate 
the quality of the MSM obtained using the linear method. In this appendix the 

dot diagrams corresponding to the set of Poisson’s values ={0, 0.05, 0.10, 
0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45 and 0.49} are displayed. Note that, in 
some cases, the resulting figures are the same for different Poisson’s ratios. 

 

Figure A.1. Projections of the eigenvectors of KFEM and KMSM for =0. 
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Figure A.2. Projections of the eigenvectors of KFEM and KMSM for =0.05, 0.10 and 0.15. 

 

Figure A.3. Projections of the eigenvectors of KFEM and KMSM for =0.20 and 0.25. 
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Figure A.4. Projections of the eigenvectors of KFEM and KMSM for =0.30. 

 

Figure A.5. Projections of the eigenvectors of KFEM and KMSM for =0.35. 
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Figure A.6. Projections of the eigenvectors of KFEM and KMSM for =0.40. 

 

Figure A.7. Projections of the eigenvectors of KFEM and KMSM for =0.45. 
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Figure A.8. Projections of the eigenvectors of KFEM and KMSM for =0.49. 
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