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The induction of IFN-�-secreting CD8+ T cells and neutralizing antibodies to HIV-1 are both key requirements for prevention
ransmission and clearance of pathogenic HIV. Although DNA vaccination has been shown to induce both humoral and cellula
esponses against HIV antigens, the magnitude of the immune responses has always been disappointing. In this report, we analy
f polyethylenimine (PEI)–DNA complex expressing an HIV–glycoprotein 120 (gp120) antigen (PEI–pgp120) to induce systemic CD
nd humoral responses to the gp120 antigen. The administration of PEI–plasmid complex resulted in rapid elevation of serum lev
nd IFN-�. Furthermore, a single administration of PEI–pgp120 complex elicits a number of gp120-specific CD8+ T cells 20 time

han that elicited by three intramuscular injections of naked DNA. Interestingly, we found that systemic vaccination with PEI–pgp12
rotective immune responses against both systemic and mucosal challenges with a recombinant vaccinia virus expressing a gp
he data also demonstrated that the depletion of macrophages with liposome-encapsulated clodronate completely abolished gp
ellular response. Overall, our results showed that a single administration of PEI–pgp120 complexes, eliciting strong immune re
n effective vaccination approach to generate protection against systemic and mucosal viral infections.
2004 Elsevier Ltd. All rights reserved.
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. Introduction

An optimal acquired immunodeficiency syndrome (AIDS)
accine should be able to induce bothenvelopeglycopro-
ein 120 (gp120)-specific neutralizing antibodies, as well as
ystemic and mucosal cellular immune responses to human

Abbreviations:PEI, polyethylenimine; gp120, glycoprotein 120; HGH,
uman growth hormone
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immunodeficiency virus (HIV)-infected cells[1–7]. Vac-
cine strategies which elicit potent cytotoxic T cell (CT
responses lead to reduced virus loads and long-term
tection against immunodeficiency disease in macaque
lenge studies using simian immunodeficiency virus (SIV
pathogenic simian-human immunodeficiency virus chim
(SHIV) [8,9]. It has been recently reported that viral esc
from CTL recognition can result in the eventual failure
the immune protection induced by candidate AISD vacc
[10] and rhesus macaques infected with SIV/SHIV show
nificantly higher viral loads if CD8+ T cells are eliminat
[11,12]. Glycoprotein 120 by itself is weakly immunoge
and immunizations with plasmid DNA encoding gp120 al

264-410X/$ – see front matter © 2004 Elsevier Ltd. All rights reserved.
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are not efficient. DNA immunizations with gp120 of HIV usu-
ally require boosting with viral vaccines, co-administration
of various cytokines or expression as a fusion protein with
proinflammatory chemoattractants to achieve optimal effi-
cacy[13–17].

The ability of plasmid DNA to induce both humoral and
cellular immune responses against a variety of infectious
agents has been well documented[18]. Numerous scientific
publications have reported the effectiveness of DNA vaccines
in providing potent immune responses or protective immu-
nity against viruses, bacteria and parasites in several species
including human volunteers[19–21]. DNA vaccination has
become an accepted method in the research community, and
is now being tested on humans. Although safety and efficacy
have been demonstrated, the potency of the immune response
against the antigens induced by plasmid immunization com-
pared with the use of viral vectors has been disappointing
[22]. The main problem associated with DNA administration
is the low efficiency of cellular uptake and expression in
vivo. A number of different strategies are being developed
to increase the efficacy of DNA vaccines. The development
of appropriate vehicles that increase plasmid transfection
and protect from degradation in the biological environment
is one of the strategies being examined. Production of
DNA complexes with polycations is being widely studied
a ols
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shown to elicit a humoral immune response against the HGH
[29].

In this report, we seek to develop a simple AIDS vac-
cine strategy using a particulate gene delivery system formed
through non-covalent complexation of PEI and a DNA plas-
mid expressing HIV–gp120 antigen. We demonstrate that ad-
ministration of these complexes generates significantly more
IFN-�-secreting gp120-specific CD8+ T cells than naked
DNA vaccines expressing gp120. Although the PEI–DNA
vaccine was systemically delivered, protection was observed
against both systemic and mucosal challenges with a recom-
binant vaccinia virus. We also show that PEI–DNA-induced
immune response depends on the activation of macrophages.

2. Materials and methods

2.1. Experimental animals

Female, 5–6-week-old, BALB/c mice were obtained from
Taconic Laboratories and maintained according to the reg-
ulations of our institution. All mice were acclimatized for
1 week before immunization. Prior to immunization, mice
were bled orbitally and sera were collected for subsequent
enzyme-linked immunosorbent assay (ELISA).
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The cationic polymer, polyethylenimine (PEI), is kno
o be an efficient carrier of DNA that promotes uptake
nd transfection of cells in vitro[24]. It appears to work b
ompacting DNA into particles by way of electrostatic in
ctions, thereby protecting the DNA from enzymatic de
ation and providing a global positive charge, which fa

tates uptake by cells[25]. The ability of PEI to act as a
fficient vector for DNA transfer resides also in its capa

o permeabilize the endosomal membranes, thus prov
he DNA with access to the cytoplasm. Although the me
nism for PEI-mediated transfection is not fully understo

here is evidence that PEI and PEI–DNA complexes und
uclear localization more effective than cationic lipids[25].
number of PEI molecules have been described with var
olecular sizes and structures—among them, branche
ith an average molecular weight of 800 kDa (PEI800
5 kDa (PEI25), and linear forms with an average molec
eight of 22 kDa (PEI22)—have been widely used and c
cterized both in vivo and in vitro[26]. In vivo, systemically
elivered PEI22–DNA complexes resulted in the trans

ion of the lung, spleen, liver, heart and kidney, with no
ological change observed in these organs[27]. PEI22–DNA
omplexes can repeatedly be administered to animals wi
liciting an immune response against the polymer, alth

he development of an immune response against the e
ously expressed protein has been reported to reduce th
f protein expression[28]. In fact, administration of lung

argeted macroaggregated polyethylenimine–albumin c
ates expressing human growth hormone (HGH) has
l

.2. Plasmid DNA

The gp120 gene under the control of the human
omegalovirus (CMV) promoter/enhancer was a gift from
. Esteban and Dr. D. Rodrı́guez. The plasmids were pr
uced and purified using reagents and columns for endot

ree DNA (Quiagen, Valencia, CA) and then dissolved in
ndotoxin-free 5% glucose solution to the desired con

ration. The plasmids were predominantly supercoiled
ere quantitated using UV absorbance. The recomb
Vgp120 employed in this study was provided by Dr. M.

eban and Dr. D. Rodrı́guez. The virus was grown in hum
eLa cells, and sucrose cushion purified virus was titr

n African green monkey kidney BSC-40 cell monolayers
laque assays.

.3. Preparation of PEI/DNA complexes

The desired amount of DNA in a solution of 5% g
ose (water containing 5% glucose) was complexed with
2 kDa by adding the DNA to the PEI while vigorously v

exing the solution. The solution was then allowed to in
ate at room temperature for 15 min prior to animal adm

stration. PEI/DNA complexes were formed at a molar r
f PEI nitrogen to DNA phosphate of 4 (nitrogen/phosph
N/P) = 4).

.4. Immunization protocol

PEI–DNA complexes were injected intravenously as a
le 400�l volume via the tail vein. Animals were kept und



1386 M. Rodrigo Garz´on et al. / Vaccine 23 (2005) 1384–1392

Fig. 1. Effect of i.v. administration of PEI–plasmid complexes on the IL-12
and IFN-� production in serum and in different organs. Groups of BALB/c
mice (n= 6) were injected via tail vein with 100�g of PEI–pluciferase com-
plexes at an amine over phosphate ratio of 4 in 400�l 5% glucose. (A) From a
group of five mice, serial blood samples were obtained and the total amounts
of IL-12 and IFN-� in the serum were assayed by ELISA. Results displayed
are means of total cytokine quantity. (B) A second group of five mice were
sacrificed 6 h after injection and the lungs, liver, kidney, heart, spleen from
each mouse were excised, the organs were homogenized in RIPA buffer
and assessed individually for the expression of IL-12 and IFN-�. Results
displayed are means of cytokine quantity per mg of organ or ml of serum.

observation for 1 h after intravenous administration. In the ex-
periment shown inFig. 1, mice received 100�g of a plasmid
expressing luciferase under the control of a CMV promoter
complexed with PEI 22 kDa at N/P of 4. In experiment shown
in Fig. 2A, mice received different doses of pgp120 plasmid,
from 5 to 150�g complexed with PEI 22 kDa at N/P of 4. In
the experiment shown inFig. 2B, mice received 100�g of
pgp120 plasmid complexed with PEI 22 kDa or alone. Mice
intramuscularly immunized with naked DNA received three
doses of 100�g of pgp120 suspended in 100�l PBS every 2
weeks. Control mice were injected with 100�l PBS contain-
ing 100�g luciferase coding vector DNA.

2.5. Quantification of epitope specific CD8+ T cells by
ELISPOT assay

We determined the number of CD8+ T cells that recog-
nized HIV antigen in immunized mice by obtaining spleno-
cytes from these mice, and stimulating them with the MHC-
compatible target cells P815 incubated with1�M of p18 pep-
tide (RIQRGPGRAFVTIGK) for 1 h at 37◦C. This peptide
contains the H-2d restricted CD8+ T cell epitope correspond-
ing to the V3 loop of HIV strain IIIB. Two weeks after
immunization, mice were sacrificed and single-cell suspen-
sions were prepared from the spleen. Ninety-six-well nitro-
c rd,
M

Fig. 2. gp120-specific cellular and humoral immune response in BALB/c
mice using different immunization protocols. (A) Groups of three BALB/c
mice were immunized i.v. with different doses of PEI–pgp120 complexes
(N/P = 4) from 5 to 150�g in a volume of 400�l, and 2 weeks later, splenic
lymphocytes were isolated and the number of IFN-�-secreting p18-specific
CD8+ T cells was determined by an ELISPOT assay. (B) Groups of three
BALB/c mice were immunized with a single dose of 100�g of PEI–pgp120
complexes in a volume of 400�l, 400 ml of a solution of PEI 10 mM diluted
in 5% glucose, 100�g of pgp120 administered i.v. in a volume of 400�l of
5% glucose, i.p. with 5× 107 PFU of Vac-gp120, or three doses of 100�g
of pGp120 i.m. administered. Two weeks later, splenic lymphocytes were
isolated and the number of IFN-�-secreting p18-specific CD8+ T cells was
determined by an ELISPOT assay. (C) Serum samples obtained from the
groups of mice in (A) 2 weeks after last immunization and the presence
of anti-gp120 antibodies was measured by antigen-specific ELISA. Mean
optical densities (±S.D.) for each group are shown for a serum dilution of
1:100, with the background OD of wells with serum from non-immunized
mice subtracted.

overnight incubation at room temperature, the wells were
washed and incubated with the medium for 3 h at 37◦C. Tar-
gets cells not pulsed with the peptide or pulsed with an irrel-
evant CD8+ epitope from hepatitis B core antigen were used
as negative controls. Serially diluted lymphocytes, starting at
1× 106 cells per well, were co-cultured with 1× 105 target
cells in the ELISPOT wells. After incubating the plates for
24 h at 37◦C and 5% CO2, the plates were treated as previ-
ously described[30] and the number of spots correspond-
ing to IFN-� secreting cells determined. The background
level, namely the number of cells which secrete IFN-� in
the absence of antigen, was subtracted in every experimental
group.
ellulose plates (Multiscreen HA, Millipore Corp., Bedfo
A) were coated with anti-mouse IFN-� mAb, R4. After
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2.6. gp120-antibody measurements by ELISA

High-binding polystyrene microtiter plates (Max-
isorpTM; Nunc A/S, Roskilde, Denmark) were coated
with 100�l of the peptide 2× RIQRGPGRAFVTIGK
at 20 mg/ml in 0.05 M carbonate–bicarbonate buffer pH
9.6 overnight at 4◦C. The wells were washed twice with
0.05% Tween-20 in PBS (PBS-T) and blocked with PBST
containing 1% no-fat dry milk for 1 h at room temperature.
Serum samples diluted in blocking solution were added
in a volume of 100�l/well and incubated for 1 h at RT.
Plates were washed six times before the detection anti-
body was added: peroxidase-conjugated rabbit antimouse
immunoglobulin G (IgG) antibody (Sigma, St. Louis,
MO) diluted 1:5000 in blocking solution and incubated
for 1 h at RT. After being washed six times with PBS-T
and three times with PBS, the plates were developed with
2,2′-azinobis(3-ethylbenzthiazolinesulfonic acid) (ABTS)
peroxidase substrate. After 10 min incubation, plates were
read at 405 nm on a plate reader. Mean optical densities
(±S.D.) for each group were obtained at a serum dilution of
1:100, with the background OD of wells with serum from
non-immunized mice subtracted.

2.7. IL-12 and IFN-� ELISA
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TGACTACGTTGTTATGAGTGCTTGG-3′, anti-sense: 5′-
TTATCAAAATACAAGACGTCGCTTTT-3′, probes: 5′-
AAGGAGCCCAATTCCATTATTCTTTTAG-3′) designed
using the Primer-Express software were used for the PCR.
The reaction was performed in 20�l with 2 �l of sam-
ple, MgCl2 5 mM, 0.3�M of each primer, 0.1�M of probe
and 2�l of LightCycler-FastStart DNA Master Hybridiza-
ton Probes (Roche Diagnostic GmbH, Mannheim, Germany).
PCR was performed according to the following parameters:
initial denaturation for 10 min at 95◦C, and 40 cycles of 10 s
at 95◦C and hybridization/elongation of 20 s at 60◦C with a
temperature transition rate of 20◦C/s. The fluorescence sig-
nal delivered during PCR amplification was monitored using
the LightCycler System (Roche Diagnostics, Basel, Switzer-
land). The copy number of vaccinia DNA in each sample was
determined by interpolation, using an external standard con-
sisting of serial dilutions (109–101) of a plasmid containing
the amplified fragment.

2.9. Plasma AST and ALT

The concentrations of aspartate aminotransferase (AST)
and alanine aminotransferase (ALT) were measured in
plasma samples with kits obtained from Sigma (St. Louis,
MO) according to the manufacturer’s protocol.
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Levels of IL-12 and IFN-� were determined in serum a
n the different organ samples of mice by using a cyto
nzyme-linked immunosorbent assay kit (PharMingen,
iego, California) according to the manufacturer’s inst

ions. Organ samples for IL-12 and IFN-� assay were disinte
rated in 500�l of ice-cold Ripa buffer. After incubation o

ce for 30 min, samples were centrifuged twice at 20,000×g
or 15 min at 4◦C and the resulting supernatants were u
or assay. The threshold of detection of the IFN-� and the
L-12 assay is 14 and 4 pg/ml, respectively.

.8. In vivo protection against infection with a
ecombinant vaccinia virus expressing gp120

Two weeks after immunization with PEI–pgp120 co
lex, mice were challenged intraperitoneally with 5× 107

FU of the recombinant vaccinia virus expressing gp
ive days after vaccinia challenge, mice were sacr
nd ovaries and lungs removed, homogenized, soni
nd assayed for virus titer by plating serial 10-fold

utions of samples on a plate of BSC-1 indicator ce
fter 2 days of culture, cells were stained with cry
iolet to detect PFU at each serial dilution. For qu
itative real time PCR titering, viral DNA from the h
ogenized ovaries and lungs were extracted using
igh Pure Viral Nucleic Acid Kit (Boehringer Mannheim
ccording to manufacturer’s instructions and then

ected to real time PCR. Primers and TaqMan pro
Applied Biosystems, Foster City, CA) for vaccinia vir
emaglutinin gene (GeneBank: AF375124) (sense:′-
.10. Macrophage depletion

Clodronate was a gift from Roche Diagnostics Gm
Mannheim, Germany). Phosphatidylcholine (Lipoid E P
Lipoid GmbH, Ludwigshafen, Germany) and cholest
Sigma, St. Louis, MO) were used to prepare the liposom
escribed earlier[31,32]. Mice were intravenously injecte
ith 20�l per 10 g body weight of the standard suspen
f clodronate liposomes diluted in PBS in a final volume
0�l.

. Results

.1. Induction of immunostimulatory cytokine expressio
fter intravenous administration of PEI–DNA complexes

We first asked whether the administration of PEI–D
omplexes is able to induce an innate immune respon
as been described for naked DNA[33]. For this purpose

wo groups of five mice were injected intravenously w
EI–DNA complexes generated with 100�g of luciferase
r GFP-expressing plasmids together with PEI-22 kDa a
atio of 4 in 5% glucose solution. The same amount of
r DNA dissolved in 5% glucose solution was injected

wo groups of five mice as controls. Serum IL-12 levels w
easured 6, 12, 24 and 48 h after the injection by EL
igh levels of IL-12 (180–200�g/ml) were detected 6 h aft

.v. injection of PEI–pluciferase, decreasing to 2–3 ng/ml
ost injection, and finally disappearing at 48 h (Fig. 1A, data
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not shown). The analysis of IFN-� expression in the serum
showed that as in the case of IL-12, the maximum level was
obtained during the first 12 h after injection, with the level
decreasing 100 times after 24 h, although low levels of IFN-
� were maintained in the serum for a longer period of time
(215 pg/ml, 72 h) (Fig. 1A). Similar results were obtained
in the group of mice that received PEI–pGFP complex, and
no IL-12 or IFN-� was detected in the serum of mice that
received PEI or DNA alone (data not shown).

We next analyzed IL-12 and IFN-� expression levels
in different organs 6 h after i.v. injection of 100�g of
PEI–pluciferase complex. As shown inFig. 1B, the expres-
sion of both cytokines was detected in all the organs tested,
including lung, kidney, liver, spleen and heart. We found high
levels of IL-12 in the liver and kidney, whereas IFN-� has a
different organ distribution with high levels of IFN-� found
in the spleen (Fig. 1B). Surprisingly, low levels of IL-12 and
IFN-� were detected in the organ that showed the highest
transgene expression 6 h after PEI–pluciferase administra-
tion, the lung[34].

3.2. gp120-specific CD8+ T cell response elicited by i.v.
administration of PEI–DNA complexes expressing
HIV–gp120 antigen
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i.p. immunization with a recombinant vaccinia virus express-
ing gp120. The differences found in the number of gp120-
specific, IFN-�-secreting cells among the different vaccina-
tion strategies varied from one experiment to the other. How-
ever, the immunization with PEI–pgp120 complexes consis-
tently resulted in a 20-fold increase in gp120-specific IFN-
�-secreting CD8+ T cells compared to the number of the
T cells elicited after three i.m. immunizations with a naked
DNA. The analysis of IL-12 and IFN-� in the serum of mice,
immunized fromFig. 2A, 6, 12, 24 and 48 h after the injection
showed a dose-dependent expression of both cytokines (data
not shown), with the same pattern of expression as described
for PEI–pluc (Fig. 1A).

3.3. Anti-gp120 antibody response elicited by i.v.
administration of PEI–DNA complexes expressing
HIV–gp120 antigen

Sera from mice employed in the experiment described
above were used to measure the titers of IgG antibodies spe-
cific for the V3 region of gp120 antigen. As shown inFig. 2C,
the antibody response was dose-dependent, with no antibody
response being detected in the group of mice that received
the lower doses (5–25�g), whereas the optimal antibody re-
sponse was obtained in the group of mice that received 100�g
o inis-
t re-
s

inis-
t d in
t
o

3
a
r

oth
c tigen
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w tec-
t ere
i n-
t
r Vac-
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a three
t ative
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i -
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o u-
To test whether PEI–DNA complexes could induce
ific immune responses against a given antigen, incre
mounts (from 5 to 150�g of DNA) of PEI–pgp120 com
lexes at a N/P ratio of 4 in 400�l 5% glucose were in

ected i.v. into five BALB/c mice per group (Fig. 2A). For
omparative purposes, mice were also immunized i.m.
hree doses of 100�g of pgp120 naked DNA, a single do
f 100�g of pgp120 naked DNA injected i.v. and a sin

.p. dose of 5× 107 of a recombinant vaccinia virus expre
ng gp120 (Fig. 2B). Spleen cells from the mice were o
ained 2 weeks after immunization and the numbers of gp
pecific IFN-�-secreting CD8+ T cells were determined
n ELISPOT assay. Mice carrying H-2d haplotype, such a
ALB/c mice, generate CD8 T cell responses specific
n epitope (p18 epitope) within V3 loop of gp120, and
mino acid sequence is RIQRGPGRAFVTIGK. Theref

he p18 peptide was incubated with P815 plasmacytoma
hich were used for in vitro stimulation of splenocytes

ained from gp120-immunized mice. As shown inFig. 2A,
here was a dose-dependent, gp120-specific CD8+ T ce
ponse, when the dose of the plasmid used was below 10�g.
owever, when higher amounts of DNA were administe

o the mice, the CD8+ T cell response was diminished
p120-specific response was observed in the spleen of

mmunized with PEI–pluciferase, a control immunogen (
ot shown).

As shown in Fig. 2B, the relative number of gp12
pecific, IFN-�-secreting CD8+ T cells obtained after a sin

.v. immunization with 100�g of PEI–pgp120 was 20 tim
igher than that elicited after three i.m. immunizations w
00�g of pgp120 and similar to that elicited after a sin
f PEI–pgp120. Similarly to cellular response, the adm
ration of the higher doses resulted in a lower antibody
ponse.

The level of antibody response after a single i.v. adm
ration of 100�g PEI–pgp120 was similar to that observe
he group of mice immunized i.m. with three doses of 100�g
f naked DNA.

.4. Administration of PEI–gp120 complex protects
nimals against a systemic and mucosal challenge with
ecombinant vaccinia expressing gp120

We have shown that PEI–DNA immunization induces b
ellular and humoral immune responses against the an
f interest. However, our ultimate goal is to induce a

ective response against a viral challenge. Therefore, t
hether the PEI–DNA vaccination could induce a pro

ive immune response against a viral infection, mice w
mmunized with 100�g of PEI–pgp120, followed by an i
raperitoneal or intranasal challenge with 5× 107 PFU of a
ecombinant vaccinia virus expressing gp120 antigen (
p120). Ten control mice received 100�g of PEI–luc. Five
ays after challenge, ovaries and lungs were removed

he mice, and the virus titers were measured by a sen
uantitative PCR assay, as well as by conventional pl
ssay method. Challenge experiments were replicated

imes;Fig. 3shows the results obtained in one represent
xperiment. In the ovaries of mice immunized with PEI–p

.p. challenge showed viral titers higher than 106 PFU. In con
rast, no viral replication in the ovaries was observed in 8
f 10 PEI–pgp120 immunized mice. Thus, 80% of imm
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Fig. 3. Vaccinia virus titers in ovaries and lungs after intraperitoneal and
intranasal challenge with Vac-gp120. Ten BALB/c mice per group were
immunized with 100�g of PEI–pgp120 i.v.; 2 weeks later, immunized mice
were challenged with 5× 107 PFU each of vaccinia virus encoding gp120
i.p. or i.n. As controls, mock-immunized mice were challenged with the
same virus. The ovaries and lungs were harvested 5 days after challenge,
and vaccinia virus titers were determined by quantitative PCR. Data are
shown for each mouse, and the mean vaccinia titer is indicated.

nized mice were completely protected from vaccinia chal-
lenge, with no viral DNA detected in the ovaries. A similar
result was obtained after i.n. challenge with the virus, with
only 1 mouse out of 10 possessing vaccinia genome parti-
cles in the lungs, whereas control mice i.n. challenged with
Vac-gp120 showed viral titers higher than 104 PFU (Fig. 3).

The analysis of viral loads by the conventional plaque
assay method gave similar results with a correlation index of
0.9253; however, the plaque assay was less sensitive, since
some of the mice that were positive by the quantitative PCR
assay were negative by plaque assay (data not shown).

3.5. Toxicity

The toxicity associated with i.v. administration of
PEI–DNA complexes has been described as lung embolism
and liver injury [34]. In order to assess the toxicity of our
PEI–pgp120 complexes, we looked at the morbidity and mor-
tality of injected mice, and measured biochemical parame-
ters that indicate liver injury. More specifically, groups of five
BALB/c mice received different doses of PEI–pgp120 com-
plexes intravenously, with control mice receiving the high-
est dose of PEI or DNA (150�g) dissolved in 5% glucose
solution. As a positive control, a group of mice received a
single injection of Concanavaline A (ConA), a compound
t pto-
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Fig. 4. Biochemical markers of liver injury. BALB/c mice received an i.v.
injection of different doses of PEI–pGp120 (from 50 to 150�g), PEI,
100�g of pGp120, or ConA. Biochemical markers of liver injury ALT
(�), AST (�) were determined after 6 h in all the groups. A group of five
näıve mice was used as control. UI, international units.n= 9–10 mice/group.
Means± standard errors. Significantly different from control **p< 0.01.

observed in the rest of the groups, suggesting that lower doses
of the PEI–pgp120 complexes are non-toxic. Interestingly,
the toxicity associated with the highest doses of PEI–pgp120
complexes correlates with the lower immune responses in-
duced by these doses (Fig. 2A).

3.6. Role of macrophages in the immune response
induced by PEI–DNA complexes

In mice, a single i.v. injection of clodronate lipo-
somes results in the depletion of splenic and bone mar-
row macrophages and liver Kupffer cells 24 h after injection
[31,32]. To test the influence of macrophages on the immune
response induced by PEI–DNA complexes, clodronate lipo-
somes were i.v. injected into BALB/c mice, and 24 h later,
these as well as non-treated control mice received a single i.v.
dose of 100�g PEI–pGp120 complexes. Six hours after DNA
immunization, sera were collected from the mice, and the
level of IL-12 measured. As shown inFig. 5A, the depletion
of macrophages prior to PEI–DNA immunization resulted in
decreased serum levels of IL-12. We then measured the levels
of gp120-specific T cell response by an ELISPOT assay in
macrophage-depleted mice and non-depleted mice 2 weeks
after DNA immunization. As shown inFig. 5B, macrophage-
depleted mice failed to mount a gp120-specific CD8+ T cell
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Fig. 5. Effect of macrophage depletion on the immune response induced after PEI–pgp120 administration. A group of three BALB/c mice were intravenously
injected with clodronate containing liposomes; 24 h later, treated and untreated mice were immunized with 100�g of PEI–pgp120 via tail vein. (A) Six hours
later, blood from each mouse was collected and IL-12 serum level analyzed by ELISA individually. (B) Two weeks after immunization, splenic lymphocytes were
isolated and the number of IFN-�-secreting p18-specific CD8 cells was determined by an ELISPOT assay. (C) The sera obtained 6 h after the administration
of PEI–DNA complexes were analyzed to test the presence of liver injury marker ALT (�), AST (�). UI, international units. Significantly different from
non-depleted mice **p< 0.01.

4. Discussion

The primary observation from this study is that intra-
venous administration of PEI–DNA complexes induces a
strong innate immune response, with high levels of IL-12 and
IFN-� expression within 6 h of administration. Furthermore,
an administration of PEI–DNA complex expressing a viral
antigen induces a generation of a strong antigen-specific cel-
lular immune response and systemic and mucosal protection
against a viral challenge.

DNA vaccination that can induce both cellular and hu-
moral immune responses has become an attractive strategy
for combating infectious diseases that require such responses
for clearance, such as HIV, malaria, viral hepatitis or tuber-
culosis. Unfortunately, clinical trials have shown the limited
efficacy of DNA vaccination in human volunteers, which ne-
cessitates the identification of technologies that can enhance
DNA vaccines[20,21]. Among the strategies being evaluated
to increase the efficiency of DNA vaccination is the use of
non-viral vectors to deliver the DNA. One such vector, PEI
22, has been previously described to efficiently deliver re-
porter genes in vivo, with particularly high expression in the
lungs and lower expression in other organs like the spleen,
kidney and liver[34]. Here, we show that PEI22–DNA com-
plex shortly—6 h—after intravenous injection, induces high
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that elicited by three doses of intramuscular immunization
with 100�g of pgp120 DNA vaccine. The number of gp120-
specific CD8+ T cells elicited by a single immunizing dose
of PEI–pgp120 was comparable to that induced in mice vac-
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toneally with a sublethal dose of a recombinant vaccinia virus
expressing gp120 antigen and monitoring viral loads. A sin-
gle dose of PEI–pgp120 vaccine vector afforded a significant
degree of protection against a vaccinia-gp120 challenge re-
gardless of the route the virus was administered. These results
indicate that a systemic administration of PEI–DNA complex
can elicit strong mucosal and systemic protective responses.

Although side-effects associated with PEI–DNA complex
administration have been reported, the evidence is still contra-
dictory[34]. This has been mainly due to the use of PEIs with
different molecular weights, structures and chemical modifi-
cations, and to the use of different nitrogen/phosphate ratios.
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dronate, a widely accepted approach to deplete macrophages,
completely abolished IL-12 production, as well as gp120-
specific CD8+ T cell response, after PEI–DNA administra-
tion. Our data indicate that macrophages mediate IL-12 pro-
duction following PEI–DNA complex immunization, result-
ing in enhanced systemic and mucosal immune responses.

In this paper, we show that PEI is likely to act as a pow-
erful adjuvant to generate high levels of antigen-specific im-
mune response. Most of the currently available adjuvants ap-
proved for humans fail to enhance cellular immune responses
against an antigen, while others that do enhance cellular im-
mune response have associated side-effects that make them
unsuitable for human use[37]. We have demonstrated that a
single immunizing dose of PEI–DNA complex is able to in-
duce a strong cellular immune response capable of providing
both systemic and mucosal protections against a viral infec-
tion. We also show that an optimal immune response can be
induced by PEI–DNA vaccination without causing any tox-
icity. A strong advantage of PEI–DNA-based vaccine over
other immunization agents, such as recombinant viruses, is
that PEI–DNA immunization does not generate neutralizing
antibodies to the vector, and therefore, it can be adminis-
tered repeatedly. Overall, our results indicate that PEI–DNA
complex is a highly efficient vector for generating a strong
antigen-specific CD8+ T cell response and systemic and mu-
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