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Gene therapy consists of the transfer of genetic material
to cells to achieve a therapeutic goal. In the field of
gastroenterology and hepatology gene therapy has
produced considerable expectation as a potential tool
in the management of conditions that lack effective
therapy including non-resectable neoplasms of the liver,
pancreas and gastrointestinal tract, chronic viral
hepatitis unresponsive to interferon therapy, liver
cirrhosis, and inflammatory bowel disease.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BASIC CONCEPTS
Gene therapy is a new approach to treat human

diseases based on the transfer of genetic material

to the cells. The transferred genetic material is

most commonly a natural gene but it can also be

a chimeric gene or subgenomic molecule. A cell is

said to be transduced when it has incorporated

and expresses a foreign gene.1 To facilitate cell

transduction, the genetic material is packaged

into molecular constructs named vectors, which

can be of viral2 and non-viral nature.3 Viral vectors

are frequently preferred because of their higher

transduction efficiency and can be classified as

long term and short-term expression vectors

(retroviruses, adeno-associated viruses (AAV),

gutless adenoviruses belong to the first category

and first generation adenoviruses to the second).

For a gene to be expressed inside a cell its cod-

ing DNA sequence should be linked to appropri-

ate regulatory DNA sequences. Gene promoters

(and other regulatory elements) may allow trans-

gene expression in every transduced cell (univer-

sal promoters)4 or, alternatively, only in selected

cells containing transcription factors able to

interact specifically with the promoter (as in the

case of tumour specific promoters).5 On the other

hand, promoters may determine a continuous

and fixed expression of the transgene in the

transduced cell or, alternatively, promoter activity

can be sensitive to certain drugs that when given

to the patient can modulate promoter function,

permitting regulatable expression of the

transgene.6 The most challenging issues for a suc-

cessful application of gene therapy to treat

human diseases concern the choice of the

relevant therapeutic gene, of appropriate pro-

moter and regulatory sequences and of an

effective vector for delivering the transgene or

trangenes into target cells. Thus gene therapy is a

matter of genes, vectors, promoters, and regula-

tory elements. Promoter and vector features

determine transduction efficacy and specificity,

duration of transgene expression, and eventually
appearance of side effects.

Several approaches have been developed for
transferring genes to human tissues. Plasmidic
DNA can be transferred either directly, or
attached to cell specific ligands, or embedded in
lipidic formulations (liposomes).3 On the other
hand the transgene(s) can be incorporated into
defective viral particles to facilitate the entry into
the cells. Viral vectors are, in fact, the most
efficient vehicles for gene transfer. Different
viruses have served to construct gene therapy
vectors, including adenoviruses,7 retroviruses8

(including lentivirus), AAV,9 herpesvirus,10

baculovirus,11 SV40 virus,12 vacciniavirus,13 and
others. The list of viral vectors is still expanding
and modifications of already existing systems will
increase the number of potential applications of
gene therapy.

Murine retroviruses are single stranded RNA
viruses, which after interaction with a retrovirus
receptor can integrate in the genome of a dividing
cell. Cells that do not proliferate actively under
physiological conditions, such as hepatocytes, are
difficult to transduce with retroviral vectors. Fur-
thermore, transduction efficacy is limited by the
low titre of virus obtained with the production
procedures currently used.8 The recent develop-
ment of human lentiviral (human immuno-
deficiency virus) based vectors offers promising
perspectives for gene transfer into non-dividing
cells

Adenoviruses are double stranded DNA viruses
and serotypes 2 and 514 have been used exten-
sively for gene therapy of cancer. Adenoviral vec-
tors have a natural tropism for the liver, especially

in rodents, do not integrate into genomic DNA,

can infect very efficiently non-dividing cells and

are easily produced at high titres.15 Transgenes

carried by adenoviral vectors are expressed

transiently because of the host’s immune re-

sponse against viral proteins and the lack of DNA

integration into the host’s genome.6 Recently, the

so called large capacity or “gutless” adenovirus,

lacking all the viral sequences except the packag-

ing signals, have been shown to permit prolonged

transgene expression.17

AAV are non-pathogenic human parvoviruses

that, after deletion of all viral genes except ITR,

have been used successfully as gene therapy vec-

tors. AAV vectors do not induce significant

immune response and are able to transduce
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dividing and non-dividing cells. Because they can become

integrated into the host’s genome these vectors permit long

term transgene expression.18 After systemic injection AAV

demonstrate significant liver tropism.19 It has been shown that

AAV mediated gene transfer of Factor IX to mouse liver

induces persistent, curative levels of active factor IX.20 AAV

based vectors, as indicated for gutless adenoviruses, have con-

siderable potential in the treatment of central nervous system

disorders21 and also in diseases affecting muscle,22 a cell type

that is readily transduced by this type of viral agents.

Herpes simplex virus (HSV) is a promising vector for gene

transfer especially to the nervous system because of its

characteristic neurotropism.23 Additionally HSV transduces

effectively murine liver tissue in vivo.24

GENE THERAPY OF HEPATIC AND DIGESTIVE
TUMOURS
Primary liver cancer and tumours of the pancreas and GI tract

are very common neoplasms that frequently represent a

medical challenge because of the lack of curative treatment

when the progression of the disease precludes surgical resec-

tion. Transfer of therapeutic genes to the tumour mass or to

the peritumoral tissue provides a promising new approach to

treat these processes. Intense efforts are being made at both

preclinical and clinical level to develop gene therapy strategies

for advanced digestive tumours. Different gene therapy based

approaches have been tested to treat cancer including replace-

ment of functional tumour suppressor genes, inhibition of

oncogenes, transference to tumoral cells of genes conferring

sensitisation to a specific prodrug (“suicide genes”), stimula-

tion of antitumoral immunity, and inhibition of the formation

of tumoral neovessels (fig 1).

Data from pilot clinical studies have shown a limited

efficacy of treatments based on suicide genes and tumour

supressor genes. Considerable hope is placed in the antitu-

moral effect of cytokines, such as interleukin (IL) 12, endowed

with potent antitumoral activity. IL12 acts by inducing a TH1

type of response, activating NK cells and cytotoxic T

lymphocytes, inhibiting tumoral neoangiogenesis, and in-

creasing the expression of adhesion molecules on endothelial

cells thus facilitating the traffic of lymphocytes to the

tumour.25 This cytokine, however, is toxic when administered

systemically as a recombinant protein.26 The rational for IL12

gene therapy is to allow local production of the cytokine at the

tumour site thus achieving high intratumour or peritumoral

levels but low serum concentration, a scenario that might

result in maximal antitumoral effect with minimal systemic

toxicity.

In an orthotopic model of primary liver cancer in Buffalo

rats we have shown that intratumoral administration of

recombinant adenovirus encoding IL12 (Ad.IL12) caused

complete tumour eradication in most of animals and

increased long term survival. Interestingly when two tumours

were separately implanted in the same liver, treatment of only

one of them resulted in regression of both.27 This effect has

been attributed to the fact that a proportion of the

adenoviruses injected into a neoplastic nodule escapes to the

general circulation and, because of their strong liver tropism,

will infect the whole liver. The IL12 produced by the tumour

and by hepatocytes surrounding the neoplastic nodules

strongly activates NK cells, induces specific anti-tumour

immunity, stimulates expression of adhesion molecules in the

tumour vessels and displays a powerful anti-angiogenic effect

with resulting tumour regression.27 Ad.IL12 given by intra-

hepatic arterial route was also shown to be efficient in the

treatment of a very aggressive model of multifocal hepatocel-

lular carcinoma in rats (induced by DENA) causing a signifi-

cant reduction of tumour burden and prolongation of

survival.27 Ad.IL12 was also found to induce potent anti-

tumour effects in animal models of colorectal cancer

metastatic to the liver either by intratumoral injection or by

systemic administration resulting in peritumoral gene

transfer.28

Although IL12 based gene therapy demonstrates an intense

anti-tumour effect it may also cause toxicity because of the

ability of IL12 to induce interferon gamma production. To

increase the anti-neoplastic activity of IL12 while reducing the

risk of toxicity we have tested the therapeutic effect of inject-

ing intratumorally a suboptimal dose of Ad.IL12 when given

in combination with an adenovirus expressing the chemokine

IP-10. The rationale was to attract immunoeffector cells to the

neoplasm through IP-10 production and to activate the

attracted lymphocytes with IL12. We found that this combined

treatment allows reducing the dose of Ad.IL12 without losing

anti-tumour efficacy but with less risk of toxicity.29

It is known that dendritic cells are the most efficient

antigen presenting cells. As activation of dendritic cells is

critical for the induction of anti-tumour immunity, another

possible way to take advantage of the therapeutic effect of

IL12 is to infect dendritic cells with Ad.IL12 ex vivo and to

inject these engineered dendritic cells into the tumour. In ani-

mal models of colon cancer this strategy has proved to be

extremely potent at eliminating neoplastic lesions and at elic-

iting anti-tumoral immunity.30

Stimulation of dendritic cells is widely dependent on

activation by costimulatory molecules like B7 and CD40

ligand. We observed that adenovirus mediated gene transfer of

CD40 ligand completely abolished the tumourigenicity of ex

vivo infected rat hepatocellular carcinoma cells and that intra-

tumoral injection of this adenovirus into established intrahe-

patic tumour nodules in rats resulted in tumour regression

and prolongation of survival. Treatment of rat liver cancer with

an adenovirus coding for CD40 ligand induced protective

anti-tumour immunity and was devoid of significant

toxicity.31

Although many of these strategies have proved very

efficient antitumoral treatments in animals, there is still little

information concerning the safety and efficacy of these thera-

peutic modalities in the different forms of malignancies in

humans. Efficacy and toxicity depends greatly on the

therapeutic gene, the type of the vector, the dose and route of

administration, and the type of tumour being treated. Despite

the fact that the total number of phase I/II clinical studies

already done and presently conducted is substantial, the

diversity of vectors, doses and routes of administration, and

the variety of therapeutic genes used to treat different

tumours make very premature the analysis of the potential of

cancer gene therapy in humans. Moreover because gene

therapy is still an investigational procedure many of the trials

have been performed in patients with advanced tumours who

have progressed despite chemotherapy (fig 2). Thus the infor-

mation of the efficacy of gene therapy in early cancer in

patients with intact immune system is very limited.

Figure 1 Different gene therapy strategies to treat cancer.
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Gene therapy of chronic viral hepatitis
Gene therapy is a promising procedure to treat chronic viral

infections and to modulate chronic inflammatory processes.

Chronic viral hepatitis C or B affect several hundred million

people worldwide and more than 70% of patients with chronic

viral hepatitis are resistant to the standard antiviral therapy

with interferon (IFN) alfa. This is an important medical prob-

lem as unresolved chronic viral hepatitis may evolve to liver

cirrhosis and eventually to hepatocellular carcinoma. Recent

progress has taken place with the introduction of lamivudin in

the treatment of chronic hepatitis B,32 with the use of combi-

nation therapy of IFN alfa plus ribavirin in chronic hepatitis

C33 34 and with the development of pegylated IFN alfa, which

generates sustained levels of IFN alfa in the blood after one

weekly injection.35 However, despite these improvements a

high percentage of patients with chronic viral hepatitis are still

resistant to existing antiviral therapies. Gene therapy opens

new avenues to treat these patients. Thus the transfer of the

IFN alfa gene to liver cells would convert these cells into an

IFN factory permitting high and sustained intrahepatic levels

of IFN with lower serum concentration of the cytokine thus

increasing the therapeutic index of this substance. To achieve

this goal it would be necessary to use hepatotropic long term

expression vectors encoding IFN alfa gene under the control of

regulatable promoters responding to drugs such doxicycline or

mefipristone. This therapeutic modality will make it possible

to control the intrahepatic production of IFN alfa by adjusting

the oral dose of the inducer drug, thus permitting the increase

of the synthesis of IFN or to stop its production according to

the evolution of the viraemia. As IFN has demonstrated

significant antifibrogenic and anti-tumoral activities, IFN alfa

gene therapy of chronic viral hepatitis might also prove of

efficacy to prevent fibrosis progression36 and the development

of hepatocellular carcinoma.37

The fact that the transfer of IFN alfa gene to the liver

induces strong antiviral effects has recently been shown by

using adenoviral vectors in the prevention of viral hepatitis in

a mouse model.38 Proof of the concept that IFN alfa gene

therapy might be an efficient and tolerable procedure to treat

chronic viral hepatitis will stem from studies using appropri-

ate long term expression vectors in animals chronically

infected with hepatitis viruses such as woodchucks with

chronic woodchuck hepatitis virus (WHV) infection.

Another therapeutic approach to treat viral hepatitis is the

use of antisense DNA/RNA39 40 or ribozymes41 to inhibit the

expression of viral genes. By conveying these molecules in

long term expression vectors capable of integration into the

host genome, a certain proportion of hepatocytes (and their

progeny) would be rendered resistant to viral infection. As

these cells might enjoy a biological advantage over infected

cells, it is hoped that the replacement of dead hepatocytes

might take place preferentially by the transduced cells, which

finally might repopulate the entire liver. These assumptions

should be tested in the future in experimental animal models.

Antiviral immunity can be stimulated by the use of genetic

vaccination that is an efficient system to induce prophylactic

or therapeutic immune responses. Injection of naked DNA or

vectors containing viral genes, which can be combined with

genes of immunostimulatory cytokines, has been shown to

afford antiviral protection. In a recent work we found that

gene gun bombardment of woodchucks with DNA containing

the nucleocapsid of WHV together with another plasmid cod-

ing for woodchuck IL12, resulted in the generation of a strong

TH1 type immune response that efficiently protected the ani-

mals against viral inoculation.42 This protection was not

observed when animals were vaccinated with DNA encoding

WHV nucleocapsid alone. Similarly we found that combined

administration of an adenovirus containing the core and E1

sequences from HCV (AdCE1) and another one containing the

genes of IL12 (Ad.IL12) generated a TH1 immune response

that was more intense than that obtained after the injection of

Ad.CE1 alone.43 Therefore, genetic vaccination offers the

possibility of combining the genes coding for the antigen with

genes encoding immunomodulatory cytokines thus enabling

to steer the immune response in the desired direction.

Gene transfer to GI tract and gene therapy of
inflammatory bowel disease
There are a number of disorders of the intestinal epithelium

that could be amenable to gene therapy. In addition, the intes-

tine could be used as an alternative site for the production of

proteins that need to be secreted to the blood for the correction

of disorders such as haemophilia.

The intestinal tract has many features that make it an

attractive target for therapeutic gene transfer: (a) easy acces-

sibility via the intestinal lumen; (b) large surface area of the

epithelium; (c) the possibility of in situ gene transfer by

endoscopy; (d) known location of stem cells within the intes-

tinal crypt, (e) intestinal cells can secrete foreign protein into

the circulation.

Methods of gene transfer to the gastrointestinal tract
Several methods of gene transfer to the GI tract have been

used. Most of the techniques target the epithelium but a sub-

mucosal approach may transduce cells of the muscularis

mucosae.44

It has been demonstrated in vivo gene transfer to various

locations of the gastrointestinal tract such as oesophagus,

stomach, and colon using cationic liposomes.45 46 Gene transfer

was achieved by luminal instillation using catheter infusion. A

high efficiency of transfection was observed in colonic epithe-

lium, with near 100% of epithelial cells expressing the

transgene. Transgene expression was transient and did not

persist beyond four days, a finding that is consistent with the

normal turnover time of gut epithelium. However, repeated

treatments can achieve maintained expression of the foreign

gene. Intramural injection of liposomes through a needle is

also possible and in this case the transgene is expressed pref-

erentially in fibroblasts.44

Genes can be transferred into the intestinal epithelium

using retroviral vectors introduced intraluminally.47 Given the

continual proliferation of this tissue, these vectors would be an

appropriate choice because of their ability to transduce divid-

ing cells. However, transduction efficiency is comparatively

low in the intestine of rat and mice and thus retroviral vectors

would not satisfy the requirements of gene therapy in

humans.

Adenoviral vectors have been shown to transduce intestinal

cells in vivo when administered through an oral-duodenal

Figure 2 Echo guided intratumoral injection of an adenoviral
vector encoding IL12 in a patient with non-resectable hepatocellular
carcinoma.
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tube.48 The considerable transduction efficiency of adenovi-

ruses most probably reflects the fact that the intestine is a

normal site of infection for this virus. Transfer of genetic

material with adenoviruses is more successful in the small

intestine as compared with the colon. Interestingly, single or

repeated challenge with adenoviral vector did not cause

increased host immune responses to this virus, suggesting

that this type of vectors could be a good candidate for gene

therapy of intestinal diseases.48 Also it has been demonstrated

that adenovirus mediated gene transfer to intestinal epithelial

cells can effectively deliver proteins to the circulation indicat-

ing that intestinal cells have the potential to be used as

heterotopic sites for production of peptidic hormones,

cytokines, and proteins that should function in plasma.49

As the epithelium turns over rapidly (two to four days), the

ideal targets for a stable gene transfer would be the intestinal

stem cells. Permanent gene transfer is conceivable if the gene

of interest can be integrated into intestinal stem cells. Acces-

sibility of these cells to vectors delivered into the intestinal

lumen is limited by their deep location and by the mucus that

lines the epithelium. In vitro experiments have shown that

intestinal mucus can be solubilised by a variety of agents

including proteases, detergents, and sulfhydryl compounds.50

In vivo pilocarpine pretreatment followed by a phosphate

buffered saline flush may effectively reduce the mucus barrier

in the crypts for a period of time facilitating gene transfer by

either adenoviruses or other vectors.51

Another promising vector for gene transfer to the gut is the

one based on AAV. It has been demonstrated that an orally

administered AAV vector leads to persistent expression of a

β-galactosidase transgene in both gut epithelial and lamina

propria cells, and that this approach results in long term phe-

notypic recovery in an animal model of lactose intolerance.52

AAV has several features that make it particularly useful for

gene therapy: wild type AAV is non-pathogenic in humans, the

vector lacks all viral genes minimising any possible recombi-

nation and induces only very mild immunological responses.

Another singularity that makes AAV especially suitable as an

orally delivered vector is its hardiness being very resistant to

changes in pH and temperature and to solvents. The persistent

and stable gene expression for almost six months is also

another interesting feature. As enterocyte turnover is three to

five days, this prolonged expression indicates that progenitor

cells lying within the crypts can be transduced by AAV vectors.

All these features make AAV an attractive vector for GI gene

transfer with potential application for vaccination purposes

and for maintained protein replacement, particularly when

the release of the protein into the portal circulation is a desired

goal.

Gene therapy for inflammatory bowel disease
Crohn’s disease and ulcerative colitis are chronic inflamma-

tory bowel diseases of unknown aetiology, which show a rising

incidence in Western countries. Although important advances

have been made in the treatment of these conditions, the

process is ill controlled in a substantial number of patients

with severe disease. The chronic inflammatory reaction seems

to result from a pronounced activation of local mucosal type I

proinflammatory immune response. IL10 plays a crucial part

in the balance of the mucosal immune system, promoting

physiological activation, and preventing the pathological

inflammation that characterises such diseases.53 Evidence

from murine models suggests that IL10 induces tolerance to

luminal antigen by inhibiting both proinflammatory cytokine

release and antigen presentation, and also by the generation of

antigen specific regulatory T cell clones.54 Gene targeted IL10

deficient mice develop transmural inflammation of the small

and large bowel, reminiscent of Crohn’s disease. This type of

inflammation is aggravated by the presence of bacteria within

the gut lumen, and can be prevented by administration of

IL10.55 These data lead to the consideration of IL10 as a cyto-

kine with potential application in inflammatory bowel

diseases. However, side effects have limited the use of

systemically administered recombinant human IL10

(rHuIL10) in these conditions. Gene transfer of IL10 to the

diseased tissues is a alternative therapeutic approach for

inflammatory bowel diseases as this procedure might permit

the generation of high local levels of the cytokine and concen-

trate its immunoregulatory activity in the bowel while avoid-

ing systemic side effects.56 At present there is an ongoing

clinical trial using liposomes with IL10 DNA for local delivery

to patients with inflammatory whose results are awaited with

interest.57

GI directed gene therapy of inflammatory bowel disease can
also use molecular constructs directed to inhibit expression of
proinflammatory cytokines such as IL18 that has been shown
to be highly upregulated in Crohn’s disease. Recent work has
shown that an adenovirus expressing IL18 antisense RNA was
able to suppress IL18 by intestinal cells and to reduce IFN
gamma production and the activity of experimental colitis in
a murine model.58

CLINICAL IMPLEMENTATION OF GENE THERAPY
As gene therapy is in its infancy, this procedure remains an

experimental therapeutic modality, which is reserved for

clinical trials of serious, frequently deadly, human diseases

lacking effective treatment. A great proportion of clinical

studies being presently conducted concern patients with

advanced untreatable tumours. These pilot studies are phase

I/II trials using escalating doses of the vector to determine

toxicity in the first place and secondly efficacy. Data from these

trials will be essential for a real understanding of the potential

of gene therapy in humans because although there is a wealth

of data in rodents regarding the ability of gene therapy vectors

to transduce different organs and to combat many types of

malignancies, it seems possible, and even probable, that the

tropism of gene therapy vectors is not the same for human and

rodent tissues. Moreover, it is plausible that the antitumoral

effect or the toxicity of a given vector with a specific therapeu-

tic gene is different in rodents and in humans. Thus progress

in gene therapy is basically dependent on data obtained in

clinical trials.
The success or failure of a defined viral vector with a specific

transgene (or transgenes) to control the growth of a particu-
lar tumour depends not only of the intrinsic biological activity
of the transferred therapeutic gene but also, and very
importantly, from the ability of the viral vector to infect the
target tissue. To consider a particular case, although gene
transfer of IL12 could be a very attractive procedure to treat
metastatic colon cancer to the liver, this treatment will not
succeed if the vector conveying the therapeutic gene fails to
infect the tumour or the peritumoral tissue in humans. It is
clear therefore that the use of appropriate molecular imaging
techniques to trace the expression of the transgene are critical
to analyse what are the factors determining the efficacy or lack
of efficacy of a given vector to fight cancer. In other words,
clinical data from pilot clinical trials of cancer gene therapy
will not give all the necessary information without the
knowledge of the localisation of transgene expression
provided by in vivo imaging methods such as positon emission
tomography59 60 (fig 3). This procedure will also be important
to establish comparisons of different vectors and routes of
vector administration with respect their ability to transduce a
given human neoplasm. At the birth of cancer gene therapy
this information is essential for the rational progress of the
field.

THE FUTURE
Gene therapy has emerged as a powerful and very plastic tool

to govern biological functions of the tissues with a therapeu-

tic aim. Animal models of human diseases and pilot clinical
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studies clearly show that there is a future for genes to be used

as curative drugs. Gene therapy is at its beginning and much

remains to be done before this procedure becomes of general-

ised use. New vectors with improved transduction efficiency,

transgene capacity, toxicity profile, and duration of expression

should be designed. Systems to control gene expression

should be improved. Efficient therapeutic genes or combina-

tion of genes to treat those entities amenable to gene therapy

should be identified. Different routes and procedures for vec-

tor administration should be tested. A regulatory policy

aiming at patient and environment safety on one side and

functionality of gene therapy programmes on the other should

be implemented and harmonised among different countries.

Innovative methods for large scale industrial production of

gene therapy vectors to permit cheap dispensation of these

new drugs should be developed. Finally, creative methods for

the in vivo tracing of transgene expression in humans should

be introduced to monitor vector distribution and transduction

efficiency. In conclusion, the field of gene therapy is new but

wide open. No doubt it will represent a historical step in the

advancement of clinical medicine.

. . . . . . . . . . . . . . . . . . . . .
Authors’ affiliations
J Prieto, M Herraiz, B Sangro, C Qian, G Mazzolini, I Melero,
J Ruiz, Division of Hepatology and Gene Therapy, Department of
Medicine, Clinica Universitaria, University of Navarra, Pamplona, Spain

REFERENCES
1 Blau HM, Springer ML. Gene therapy—a novel form of drug delivery. N

Engl J Med 1995;333:1204–7.
2 Günzburg WH, Salmons B. Virus vector design in gene therapy.

Molecular Medicine Today 1995;1:410–17.
3 Ledley FD. Nonviral gene therapy: the promise of genes as

pharmaceutical products. Hum Gene Ther 1995;6:1129–44.
4 Wilkinson GW, Akrigg A. Constitutive and enhanced expression from

the CMV major IE promoter in a defective adenovirus vector. Nucleic
Acids Res 1992;20:2233–9.

5 Dachs GU, Dougherty GJ, Stratford IJ, et al. Targeting gene therapy to
cancer: a review. Oncol Res 1997;9:313–25.

6 Clackson T. Regulated gene expression systems. Gene Ther
2000;7:120–5.

7 Chengalvala MV, Lubeck MD, Selling BJ, et al. Adenovirus vectors for
gene expression. Curr Opin Biotechnol 1991;2:718–22.

8 Kalpana GV. Retroviral vectors for liver-directed gene therapy. Semin
Liver Dis 1999;19:27–37.

9 Bueler H. Adeno-associated viral vectors for gene transfer and gene
therapy. Biol Chem 1999;380:613–22.

10 Kirn DH, McCormick F. Replicating viruses as selective cancer
therapeutics. Molecular Medicine Today 1996;2:519–27.

11 Boyce FM, Bucher NL. Baculovirus-mediated gene transfer into
mammalian cells. Proc Natl Acad Sci USA 1996;93:2348–52.

12 Procopio A, Marinacci R, Marinetti MR, et al. SV40 expression in
human neoplastic and non-neoplastic tissues: perspectives on diagnosis,
prognosis and therapy of human malignant mesothelioma. Dev Biol
Stand 1998;94:361–7.

13 Grimm CF, Ortmann D, Mohr L, et al. Mouse alpha-fetoprotein-specific
DNA-based immunotherapy of hepatocellular carcinoma leads to tumor
regression in mice. Gastroenterology 2000;119:1104–12.

14 Bett AJ, Prevec L, Graham FL. Packaging capacity and stability of human
adenovirus type 5 vectors. J Virol 1993;67:5911–15.

15 Zhang WW. Development and application of adenoviral vectors for
gene therapy of cancer. Cancer Gene Ther 1999;6:113–38.

16 Yang Y, Nunes FA, Berencsi K, et al. Cellular immunity to viral antigens
limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci USA
1994;91:4407–11.

17 Kochanek S. High-capacity adenoviral vectors for gene transfer and
somatic gene therapy. Hum Gene Ther 1999;10:2451–9.

18 Patijn GA, Kay MA. Hepatic gene therapy using adeno-associated virus
vectors. Semin Liver Dis 1999;19:61–9.

19 Lau JY. Adeno-associated virus as a gene delivery vector for liver cells. J
Hepatol 1999;31:385.

20 Snyder RO, Miao C, Meuse L, et al. Correction of hemophilia B in
canine and murine models using recombinant adeno-associated viral
vectors. Nat Med 1999;5:64–70.

21 Clark KR, Sferra TJ, Lo W, et al. Gene transfer into the CNS using
recombinant adeno-associated virus: analysis of vector DNA forms
resulting in sustained expression. J Drug Target 1999;7:269–83.

22 Amiss TJ, Samulski RJ. Methods for adeno-associated virus-mediated
gene transfer into muscle. Methods Mol Biol 2001;175:455–69.

23 Andersen JK, Frim DM, Isacson O, et al. Herpesvirus-mediated gene
delivery into the rat brain: specificity and efficiency of the neuron-specific
enolase promoter. Cell Mol Neurobiol 1993;13:503–15.

24 Pawlik TM, Nakamura H, Yoon SS, et al. Oncolysis of diffuse
hepatocellular carcinoma by intravascular administration of a
replication-competent, genetically engineered herpesvirus. Cancer Res
2000;60:2790–5.

25 Shurin MR, Esche C, Péron JM, et al. Antitumor activities of IL-12 and
mechanisms of action. Chem Immunol 1997;68:153–74.

26 Lui VW, Falo LD, Huang L. Systemic production of IL-12 by naked DNA
mediated gene transfer: toxicity and attenuation of transgene expression
in vivo. J Gene Med 2001;3:384–93.

27 Barajas M, Mazzolini G, Genove G, et al. Gene therapy of orthotopic
hepatocellular carcinoma in rats using adenovirus coding for interleukin
12. Hepatology 2001;33:52–61.

28 Mazzolini G, Qian C, Xie X, et al. Regression of colon cancer and
induction of antitumor immunity by intratumoral injection of adenovirus
expressing interleukin-12. Cancer Gene Ther 1999;6:514–22.

29 Narvaiza I, Mazzolini G, Barajas M, et al. Intratumoral coinjection of
two adenoviruses, one encoding the chemokine IFN-gamma-inducible
protein-10 and another encoding IL-12, results in marked antitumoral
synergy. J Immunol 2000;164:3112–22.

30 Melero I, Duarte M, Ruiz J, et al. Intratumoral injection of bone-marrow
derived dendritic cells engineered to produce interleukin-12 induces
complete regression of established murine transplantable colon
adenocarcinomas. Gene Ther 1999;6:1779–84.

31 Sun Y, Peng D, Lecanda J, et al. In vivo gene transfer of CD40 ligand
into colon cancer cells induces local production of cytokines and
chemokines, tumor eradication and protective antitumor immunity. Gene
Ther 2000;7:1467–76.

32 Dienstag JL, Schiff ER, Wright TL, et al. Lamivudine as initial treatment
for chronic hepatitis B in the United States. N Engl J Med
1999;341:1256–63.

33 Davis GL, Esteban-Mur R, Rustgi V, et al. Interferon alfa-2b alone or in
combination with ribavirin for the treatment of relapse of chronic hepatitis
C. International Hepatitis Interventional Therapy Group. N Engl J Med
1998;339:1493–9.

34 McHutchison JG, Gordon SC, Schiff ER, et al. Interferon alfa-2b alone
or in combination with ribavirin as initial treatment for chronic hepatitis
C. Hepatitis Interventional Therapy Group. N Engl J Med
1998;339:1485–92.

35 Zeuzem S, Feinman SV, Rasenack J, et al. Peginterferon alfa-2a in
patients with chronic hepatitis C. N Engl J Med 2000;343:1666–72.

36 Sobesky R, Mathurin P, Charlotte F, et al. Modeling the impact of
interferon alfa treatment on liver fibrosis progression in chronic hepatitis
C: a dynamic view. The Multivirc Group. Gastroenterology
1999;116:378–86.

37 Yoshida H, Shiratori Y, Moriyama M, et al. Interferon therapy reduces
the risk for hepatocellular carcinoma: national surveillance program of
cirrhotic and noncirrhotic patients with chronic hepatitis C in Japan. IHIT

Figure 3 Positron emission tomography permits visualisation of
transgene expression, when the transgene is an enzyme, by
administration of a radioactive labelled substrate, as the substrate
will be selectively incorporated into the tissue(s) expressing the
transgene. This figure shows the positron emission tomographic
image of two rats: one had received intravenous injection of 1011

PFU of an adenovirus encoding the reporter gene LacZ (Ad.LacZ)
and the other the same dose of an adenovirus encoding HSV-tk
(Ad.tk). Adenoviruses have strong liver tropism and a great
proportion of the injected dose transduces liver cells. Two days after
vector injection animals received a dose of 18FHBG, a substrate of
HSV-tk. It can be seen that the radioactive label accumulates in the
liver only in the animal injected with Ad.tk, while in the one that
received Ad.LacZ most of the radioactivity is excreted by the kidneys
and accumulates in the bladder. This study shows that PET represents
a useful method to trace transgene expression.

Liver

Kidneys

Bladder

Rat Ad LacZ Rat Ad tk

Gene therapy in GI and liver diseases ii53

www.gutjnl.com

 group.bmj.com on April 25, 2012 - Published by gut.bmj.comDownloaded from 

http://gut.bmj.com/
http://group.bmj.com/


Study Group. Inhibition of Hepatocarcinogenesis by Interferon Therapy.
Ann Intern Med 1999;131:174–81.

38 Aurisicchio L, Delmastro P, Salucci V, et al. Liver-specific alpha 2
interferon gene expression results in protection from induced hepatitis. J
Virol 2000;74:4816–23.

39 Alt M, Renz R, Hofschneider PH, et al. Specific inhibition of hepatitis C
viral gene expression by antisense phosphorothioate
oligodeoxynucleotides. Hepatology 1995;22:707–17.

40 Blum HE, Galun E, Weizsacker FV, et al. Inhibition of hepatitis B virus
by antisense oligodeoxynucleotides. Lancet 1991;337:1230.

41 Welch PJ, Yei S, Barber JR. Ribozyme gene therapy for hepatitis C virus
infection. Clin Diagn Virol 1998;10:163–71.

42 Garcia-Navarro R, Blanco-Urgoiti B, Berraondo P, et al. Protection
against woodchuck hepatitis virus (WHV) infection by gene gun
coimmunization with WHV core and interleukin-12. J Virol
2001;75:9068–76.

43 Lasarte JJ, Corrales FJ, Casares N, et al. Different doses of adenoviral
vector expressing IL-12 enhance or depress the immune response to a
coadministered antigen: the role of nitric oxide. J Immunol
1999;162:5270–7.

44 Takehara T, Hayashi N, Yamamoto M, et al. In vivo gene transfer and
expression in rat stomach by submucosal injection of plasmid DNA. Hum
Gene Ther 1996;7:589–93.

45 Schmid RM, Weidenbach H, Draenert GF, et al. Liposome mediated
gene transfer into the rat oesophagus. Gut 1997;41:549–56.

46 Westbrook CA, Chmura SJ, Arenas RB, et al. Human APC gene
expression in rodent colonic epithelium in vivo using liposomal gene
delivery. Hum Mol Genet 1994;3:2005–10.

47 Lau C, Soriano HE, Ledley FD, et al. Retroviral gene transfer into the
intestinal epithelium. Hum Gene Ther 1995;6:1145–51.

48 Cheng DY, Kolls JK, Lei D, et al. In vivo and in vitro gene transfer and
expression in rat intestinal epithelial cells by E1-deleted adenoviral
vector. Hum Gene Ther 1997;8:755–64.

49 Foreman PK, Wainwright MJ, Alicke B, et al. Adenovirus-mediated
transduction of intestinal cells in vivo. Hum Gene Ther 1998;9:1313–21.

50 Mantle M, Mantle D, Allen A. Polymeric structure of pig small-intestinal
mucus glycoprotein. Dissociation by proteolysis or by reduction of
disulphide bridges. Biochem J 1981;195:277–85.

51 Sandberg JW, Lau C, Jacomino M, et al. Improving access to intestinal
stem cells as a step toward intestinal gene transfer. Hum Gene Ther
1994;5:323–9.

52 During MJ, Xu R, Young D, et al. Peroral gene therapy of lactose
intolerance using an adeno-associated virus vector. Nat Med
1998;4:1131–5.

53 Duchmann R, Schmitt E, Knolle P, et al. Tolerance towards resident
intestinal flora in mice is abrogated in experimental colitis and restored
by treatment with interleukin-10 or antibodies to interleukin-12. Eur J
Immunol 1996;26:934–8.

54 Kuhn R, Lohler J, Rennick D, et al. Interleukin-10-deficient mice develop
chronic enterocolitis. Cell 1993;75:263–74.

55 Sellon RK, Tonkonogy S, Schultz M, et al. Resident enteric bacteria are
necessary for development of spontaneous colitis and immune system
activation in interleukin-10-deficient mice. Infect Immun
1998;66:5224–31.

56 Lindsay JO, Ciesielski CJ, Scheinin T, et al. The prevention and
treatment of murine colitis using gene therapy with adenoviral vectors
encoding IL-10. J Immunol 2001;166:7625–33.

57 Rogy MA, Beinhauer BG, Reinisch W, et al. Transfer of interleukin-4 and
interleukin-10 in patients with severe inflammatory bowel disease of the
rectum. Hum Gene Ther 2000;11:1731–41.

58 Wirtz S, Becker C, Blumberg R, et al. Treatment of T cell-dependent
experimental colitis in SCID mice by local administration of an
adenovirus expressing IL-18 antisense mRNA. J Immunol
2002;168:411–20.

59 Lyer M, Barrio JR, Namavari M, et al. 8-[18F]Fluoropenciclovir: an
improved reporter probe for imaging HSV1-tk reporter gene expression in
vivo using PET. J Nucl Med 2001;42:96–105.

60 Gambhir SS, Barrio JR, Phelps ME, et al. Imaging adenoviral-directed
reporter gene expression in living animals with positron emission
tomography. Proc Natl Acad Sci USA 1999;96:2333–8.

ii54 Prieto, Herraiz, Sangro, et al

www.gutjnl.com

 group.bmj.com on April 25, 2012 - Published by gut.bmj.comDownloaded from 

http://gut.bmj.com/
http://group.bmj.com/


doi: 10.1136/gut.52.suppl_2.ii49
 2003 52: ii49-ii54Gut

 
J Prieto, M Herraiz, B Sangro, et al.
 
gastrointestinal and liver diseases
The promise of gene therapy in

 http://gut.bmj.com/content/52/suppl_2/ii49.full.html
Updated information and services can be found at: 

These include:

References

 http://gut.bmj.com/content/52/suppl_2/ii49.full.html#related-urls
Article cited in: 
 

 http://gut.bmj.com/content/52/suppl_2/ii49.full.html#ref-list-1
This article cites 60 articles, 17 of which can be accessed free at:

service
Email alerting

box at the top right corner of the online article.
Receive free email alerts when new articles cite this article. Sign up in the

Collections
Topic

 (1708 articles)Pancreas and biliary tract   �
 (262 articles)Cirrhosis   �

 
Articles on similar topics can be found in the following collections

Notes

 http://group.bmj.com/group/rights-licensing/permissions
To request permissions go to:

 http://journals.bmj.com/cgi/reprintform
To order reprints go to:

 http://group.bmj.com/subscribe/
To subscribe to BMJ go to:

 group.bmj.com on April 25, 2012 - Published by gut.bmj.comDownloaded from 

http://gut.bmj.com/content/52/suppl_2/ii49.full.html
http://gut.bmj.com/content/52/suppl_2/ii49.full.html#ref-list-1
http://gut.bmj.com/content/52/suppl_2/ii49.full.html#related-urls
http://gut.bmj.com/cgi/collection/cirrhosis
http://gut.bmj.com/cgi/collection/pancreas_and_biliary_tract
http://group.bmj.com/group/rights-licensing/permissions
http://journals.bmj.com/cgi/reprintform
http://group.bmj.com/subscribe/
http://gut.bmj.com/
http://group.bmj.com/

