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Abstract 

Humans are exposed to the hepatotoxic aflatoxin B1 (AFB1) and nephrotoxic  

ochratoxin A (OTA) through diet. However, kinetic and toxicological data after their 

co-administration are scarce.  

In this study, a single oral dose of AFB1 (0.25 mg/kg bw)+OTA (0.5 mg/kg bw) was 

administered to fasted F344 rats. Blood, liver and kidney were harvested at different 

timepoints for mycotoxins quantification, relative weight calculation, clinical 

biochemistry and histopathology analysis.  

Toxicity parameters pointed to acute toxicity in liver due to AFB1. No remarkable 

toxicity was observed in kidneys or immunological organs. Maximum observed 

concentrations in plasma (Cmax) were at 10 min and 2 h for AFB1 and OTA, 

respectively. AFB1 plasma concentration could indicate a rapid absorption/ metabolism 

of the mycotoxin; and AFB1 liver and kidney concentrations were lower than LOQ and 

LOD, respectively. For OTA, Cmax was 4326.2 µg/L in plasma. In kidney and liver 

Cmax was reached at 8 h and concentrations were very similar between both organs at 

all timepoints.   

Due to the low levels of AFB1, the effect of OTA on AFB1 kinetics could not be 

assessed. However, AFB1 seems not to affect OTA kinetics, as its profile seems very 

similar to kinetic studies performed only with OTA in similar conditions.  
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1. Introduction 

Mycotoxins are secondary metabolites produced by different fungal species that can be 

found in many agricultural commodities and processed food (Bennett and Klich, 2003). 

Aflatoxin B1 (AFB1) and ochratoxin A (OTA) are some of the most relevant 

mycotoxins due to their toxic effects and demonstrated human exposure (EFSA, 2006; 

EFSA, 2007). 

AFB1 causes acute hepatotoxicity in humans and animals, and in severe intoxications 

may cause death. The International Agency for Research on Cancer (IARC) concluded 

that there was sufficient evidence of carcinogenicity of naturally occurring AFB1 in 

humans (IARC, 1993, 2002); therefore, the authorities cannot estimate a safe intake 

following the ALARA principle (as low as reasonably achievable) (EC, 2002). It has 

been described that, in humans, orally administered AFB1 follows a two-compartment 

model of absorption and elimination, with a rapid distribution phase followed by a 

slower elimination phase (EFSA, 2007). In rats, intestinal absorption of AFB1 is very 

fast and follows first-order kinetics (Ramos and Hernandez, 1996). Absorbed AFB1 

reaches the liver through the portal system and is bioactivated by P450 cytochromes. 

The resulting epoxide attacks DNA forming an adduct (McLean and Dutton, 1995). 

AFB1 metabolism is well known (McLean and Dutton, 1995; El-Khatib et al., 1998; 

Smela et al., 2002; Bedard and Massey, 2006); on the contrary, data regarding kinetics 

of AFB1 in humans and in laboratory animals are sometimes contradictory or 

incomplete (IARC, 2012). In the majority of the studies carried out, the authors used 

methods that could not detect the AFB1 molecule or differentiate it from the resulting 

metabolites (Wong and Hsieh, 1980; Coulombe Jr and Sharma, 1985; Cupid et al., 

2004; Jubert et al., 2009; Firmin et al., 2010). 

With regard to OTA, this mycotoxin has been related with the spontaneous avian and 

porcine nephropathy, and with the Balkan endemic nephropathy in humans. It is a 

potent nephrocarcinogenic compound in rodents. However, its mechanism of 

genotoxicity remains controversial despite the increasing number of studies devoted to 

this issue. Some studies have reported formation of DNA adducts (Pfohl-Leskowicz and 

Castegnaro, 2005; Pfohl-Leskowicz and Manderville, 2007; Mantle et al., 2010) while 

others have proposed indirect genotoxic or epigenetic mechanisms (Arbillaga et al., 

2004; 2007; Mally et al., 2004; 2005; Mally and Dekant, 2005; Turesky, 2005; Marin-
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Kuan et al., 2008). Some of the hypothesis regarding the mechanism of action of OTA 

would completely account for tumor formation, whereas others have been considered as 

possible contributors to it (WHO, 2008). For these reasons, the IARC classified OTA as 

a possible carcinogenic compound (IARC, 1993). In most animal species, the kinetic 

behavior of OTA has been described as a two compartment open model, although recent 

data regarding the accumulation in kidneys suggests that these models are too simple 

and should be re-analyzed using multi-compartment models (EFSA, 2006). Upon 

absorption from the gastrointestinal tract, OTA binds to serum proteins (approximately 

99%). This binding mostly determines its half-life in the body and considerable 

variations across species have been reported due to different affinity and degrees of 

protein binding (O'Brien and Dietrich, 2005). Reabsorption of OTA from the intestine 

back to the circulation can take place as a consequence of biliary recycling and may also 

explain some of the inter-species differences observed. Once in circulation, OTA 

mainly accumulates in kidney, liver and muscle (Ringot et al., 2006). In addition, 

reabsorption of OTA can occur in the kidney proximal and distal tubules (Ringot et al., 

2006) which may also contribute to the long half-life of OTA and increased 

nephrotoxicity. Regarding its elimination, there are several publications supporting a 

different contribution of the urinary, biliar or faecal excretion routes depending on 

several factors such as route of administration, dose and inter-species differences in 

degrees of entero-hepatic circulation (Dietrich et al., 2005; Kuiper-Goodman and Scott, 

1989). Vettorazzi et al. (2009, 2010, 2011) have performed a series of kinetic studies 

and reported that sex, age and fasting conditions may have an impact on the kinetic 

profile of OTA. 

Human and animal populations are exposed to multiple mycotoxins because the same 

food might be contaminated by more than one mycotoxin, and mycotoxins might reach 

humans from different sources. Co-exposure to different mycotoxins, could originate 

synergic or additive toxic effects on human or animal health; however, knowledge 

regarding this aspect or regarding the influence of co-occurrence on toxicokinetic or 

toxicological characteristics of the mycotoxins is still limited. There are few in vivo 

toxicology studies with AFB1 and OTA mixtures which gave contradictory results with 

respect to the endpoint studied: mortality, histopathology findings, blood parameters… 

In most of them the doses administered are some orders of magnitude higher than those 

potentially in nature and that increases the difficulty in making proper comparisons. In 

poultry, high doses of these mycotoxins increased mortality in a synergetic way but on 
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the contrary, OTA inhibited lipid accumulation normally induced by AFB1 (Huff and 

Doerr, 1981; Huff et al., 1983, 1988, 1992). Other authors could not find any interaction 

between these mycotoxins with regard to mortality (Micco et al., 1988), relative weight 

of most organs, blood parameters or immunological status (Ringot et al., 2006). In 

swine, AFB1 and OTA had additive interactions according to liver weight and blood 

chemistry but they were antagonists with regard to the degree of renal cortical 

interstitial fibrosis and relative kidney weight (Harvey et al., 1989). On the contrary, 

Tapia and Seawright (1985) reported in pigs no interactions in liver and kidney toxicity 

at low doses, similar to real exposure. In rats, AFB1 and OTA showed no interaction 

regarding the measurement of mortality, weight gain, or most serum biological 

parameters but the anaplastic and hyperchromatic nuclei, necrosis and bile duct 

proliferation observed were more pronounced in the combined toxin group after 4 

months (Rati et al., 1981). In rats and rabbits, the combination resulted less teratogenic 

than OTA alone, although some new manifestations appeared (Wangikar et al., 2004; 

2005).   

The main objective of this work was to study the kinetic behavior of AFB1 and OTA 

after a single oral dose of both mycotoxins in rats, in order to study possible changes in 

their pharmacokinetic profiles in relation to those reported in previous studies, due to 

the presence of both mycotoxins; another objective was to determine whether or not this 

kinetic behavior could have a role in their interaction. Moreover, toxicity parameters 

like clinical signs, clinical biochemistry parameters or histopathology were studied so as 

to obtain a more ample approach to the mixture interaction (ICH, 1994). 

2. Material and methods 

2.1. Safety precautions 

Aflatoxin B1 and ochratoxin A are toxic substances. They were always manipulated in 

solution, avoiding the formation of dust and aerosols. Nitrile gloves were used for all 

the procedures that were carried out. During the manipulation of treated animals or 

contaminated samples, FPP3 masks were used.  

2.2. Chemicals and reagents 
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For administration to the animals, AFB1 and OTA were purchased in powder form 

Sigma (Steinheim, Germany). AFB1 was dissolved in dimethyl sulfoxide (DMSO) to an 

initial concentration of 4.73 g/L. OTA was dissolved in 0.10 M NaHCO3 (pH 7.4) 

(Riedel-deHaën, Seelze, Germany) to an initial concentration of 1.00 g/L. All the 

solutions were maintained at -20ºC until use. Aflatoxin B1 was kept in the dark to avoid 

degradation. The mixture of AFB1 and OTA that was administered (0.025 g/L and 

0.050 g/L respectively) was prepared from the initially concentrated forms. 

For analytical quantification of the mycotoxins, AFB1 was purchased as a solution of 2 

mg/L in acetonitrile (ACN) and OTA was purchased as a solution of 10 mg/L in ACN, 

both from OEKANAL® Fluka (Schnelldorf, Germany) as certified reference materials. 

Different reference solutions were prepared mixing AFB1 and OTA in a mixture of 

acetonitrile: methanol 50:50 v/v. For the tissue homogenates, NaH2PO4.H2O (Merck, 

Darmstadt, Germany) at 0.05 M, pH 6.50, was used. All the reagents used for the HPLC 

analysis were of analytical grade. ACN and methanol (MeOH) HPLC grade and formic 

acid (HCOOH) were obtained from Sigma Aldrich (St. Quentin Fallavier, France).  

2.3. Animals 

All the animals used, ten-week-old male Fisher 344 (F344) rats, were purchased from 

Harlan (Horst, The Netherlands). On the day of arrival, the animals were weighed 

(weight variation did not exceed ± 20% (OECD, 1984; OECD, 2009) and then 

distributed into polycarbonate cages with stainless steel covers for one week in order to 

allow acclimatization to the environmental conditions: 12 h day/night cycle, 

temperature 22 ± 2ºC, relative humidity 55 ± 10%, standard diet (Harlan Iberica, Spain) 

and water ad libitum. The experiments were performed under fasting conditions, so the 

food was removed 12 h before administration. On the day of the administration, the 

mean weight of the animals was 187.2 ± 5 g. The in vivo experiments were approved by 

the Ethics Committee on Animal Experimentation of the University of Navarra. 

2.4. Study design and sample collection 

The animals were randomly distributed into 5 groups of 3 animals per group. After at 

least five days of acclimatization, the animals received oral administration of a single 

dose of a mixture of 0.25 mg/kg bw of AFB1 and 0.5 mg/kg bw of OTA in 

NaHCO3·H2O (0.1M pH 7.4) (0.5% DMSO). The volumes of administration were 10 
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mL/kg bw; therefore, the volume and dose administered were adjusted to the animal 

weight. A control group with two rats was added in order to obtain control samples and 

assure that no cross-contaminations occurred during the study. They received oral 

administration of a mixture of NaHCO3.H2O (0.1 M pH 7.4) with 0.5% DMSO.  

In order to determine the AFB1 and OTA concentrations in plasma at 10 min, 30 min, 2 

h and 4 h, approximately 2 mL of blood from 3 animals per time point were collected 

from the retro-orbital sinus under isoflurane anesthesia. At 8 h, 24 h, 48 h, 72 h and 96 

h, plasma was obtained by decapitation (n=3 per endpoint). Blood was extracted from 

each animal only once before sacrificing; extraction time points for each rat were 

chosen taking into account the time for volemia recovery (Diehl et al., 2001). After 

retro-orbital extraction or decapitation, blood was collected into heparinized tubes (BD 

Vacutainer system) for clinical biochemistry analysis and AFB1 and OTA 

determination. Blood samples were centrifuged (1085 ×g for 15 min at 4°C) in order to 

obtain plasma, which was stored at −80°C.  

The livers and kidneys were extracted from the animals, washed with water until the 

external blood was removed, blotted on filter paper, and finally weighed. Kidneys were 

sliced longitudinally into two halves (in order to have a representative sample of all 

kidney parts) and the liver was cut into five pieces. One half of each kidney and a piece 

of the biggest lobe of each liver were fixed in 4% formaldehyde solution, dehydrated 

and embedded in paraffin for histopathological analysis. The other three halves of 

kidney and the rest of the liver pieces were packed individually (each piece), flash-

frozen in liquid N2 and stored at -80°C for mycotoxin determination. In order to prevent 

cross contamination between samples, all the dissection material was cleaned with water 

and rinsed with ethanol after each animal necropsy. 

2.5. Clinical biochemistry and histopathology 

In order to analyze possible weight changes in the target organs due to administration of 

the mycotoxins, the relative weights (RW) of liver and kidneys were calculated dividing 

the weight of each organ by the total weight of the animal.  

Biochemical analyses of plasma samples were performed with a Hitachi 911™ (Roche 

Diagnostics) analyzer using the protocols for determining standard patterns in plasma 

obtained from Roche: total protein (g/dL), albumin (g/dL), glucose (mg/dL), aspartate 
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transaminase (AST) (U/L), alanine transaminase (ALT) (U/L), alkaline phosphatase 

(U/L) and urea (mg/dL). 

For the histopathological examination, paraffin sections (3 µm) were cut, mounted onto 

glass slides, and dewaxed and stained with hematoxylin and eosin (H&E). In the 

observation and evaluation of each sample, the systemic anatomopathological protocol 

was applied, with special attention to: 

• Normalcy or alteration of the architecture and proportions of the 

cutaneous structures. 

• Presence of circulatory phenomena. 

• Evaluation and quantification of degenerative or necrotic phenomena. 

• Existence or absence of inflammatory phenomena, types and intensity. 

• Abnormal growths: atrophy, hyperplasia, hypertrophy, neoplasia. 

• Particular or special findings. 

The evaluation of some of these alterations (circulatory, degeneration and/or necrosis, 

inflammation and growth abnormalities) was carried out by calculating the different 

“fields” with the adequate increases for their correct observation. Whenever necessary, 

measurements were taken by means of the calibrated digital system. 

2.6. Determination of mycotoxins in plasma, liver and kidney 

The concentration of mycotoxins in plasma and tissues was determined by UHPLC with 

fluorescence detection. The extraction procedure and the UHPLC-FLD quantification 

method were previously set up and validated for these biological samples (Corcuera et 

al., 2011). One piece of kidney or liver was homogenized in a round-bottom plastic tube 

with 4µL of cold sodium phosphate buffer (0.05 M, pH 6.50) per mg of tissue. The 

tissue homogenates were aliquoted and stored for at least one day at -80ºC until 

mycotoxin extraction was carried out. The plasma samples or the tissue homogenates 

were kept at room temperature for 30 min before the extraction step. Next, 100 µL of 

plasma or tissue homogenate were treated with 300 µL of the extractive solution (ACN 

acidified with formic acid (HCOOH) 1%) which precipitated the proteins and released 

the mycotoxins. After mixing this in a vortex during 2 min approximately, it was 

8 
 



centrifuged at 6200 x g for 15 min at 4ºC in order to separate the protein fraction from 

the supernatant that contained the mycotoxins. The supernatant (200 µL) was 

evaporated under vacuum and the solid residue was resuspended in 200 µL of: H2O (1% 

HCOOH): MeOH:ACN 50:50 (0,1%HCOOH), 60:40.  

Analyses were performed on a total of 63 samples (29 plasma, 17 liver and 17 kidney) 

in an Agilent Technologies 1200 liquid chromatographic system equipped with a 

fluorescence detector (G1321A model) controlled by ChemStation B.03.02 software 

(Hewlett-Packard). Mycotoxins were separated on an Ascentis® Express C18 column 

(150 mm x 2.1 mm; 2.7 µm) from Supelco (PA, USA). The injection volume was 40 µL 

and the flow rate was 0.9 mL/min. Chromatography was performed at 60ºC. The mobile 

phase was a mixture of an organic phase (A) (MeOH-ACN, 50:50, v/v) and water (B), 

both acidified with 0.5 % of formic acid. Proportions of both organic and aqueous 

phases were switched between isocratic and gradient profiles during the entire analysis 

procedure. The elution program starts with the isocratic profile until minute 2.4 with 

30% of A, then from minute 2.4 to 2.5 min the organic phase increases up to 43%, from 

minute 2.5 to 8.3 min another isocratic profile at 43% of A, from minute 8.3 to 10.0 

there is a last increase up to 65% of A and finally, from minute 10.0 the system returns 

to 30% of A to restore the starting conditions during 5 minutes. The retention times 

under these conditions were 2.5 minutes for AFB1 and 8.4 minutes for OTA. Before the 

sample entered the fluorescence detection cell, and in order to increase sensitivity for 

AFB1, a photoderivatization device (AURA Industries, NY, USA) with a mercury lamp 

(λ = 254 nm) and a knitted reactor coil of 0.25 mL (5 m x 0.25 mm) was included. 

During the first 4 minutes of analysis, fluorescence conditions were optimized for AFB1 

(excitation 366 nm and emission 433 nm wavelengths), and after that, for OTA 

(excitation 225 nm and emission 461 nm wavelengths). 

The LOQ were 2 µg/L in plasma and 8 µg/kg in liver and kidney for both mycotoxins. 

The LODs for AFB1 were as follows: 0.1 µg/L in plasma and 0.01 µg/kg in kidney and 

liver; the LODs for OTA were: 0.3 µg/L in plasma and 0.01 µg/kg in kidney and liver. 

Recovery was very efficient for both mycotoxins in plasma and tissues (between 93% 

and 96% for AFB1 and between 94% and 96% for OTA), and the relative standard 

deviation (RSD) obtained within and between day experiments was below 10% in all 

the matrices studied. All the mycotoxin levels obtained have been corrected by the 

recovery value for each matrix.  
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2.7. Statistical analysis 

Data are presented by descriptive analysis as mean ± standard deviation (SD) of three 

animals. The distribution of the data was checked for normality using the Shapiro-Wilks 

test. The homogeneity of the variance was verified by the Levene test. The comparisons 

were performed using the Kruskal-Wallis test followed by the DMS test. P-values equal 

to or below 0.05 were accepted as the level of significance.  

3. Results 

3.1. Clinical biochemistry and histopathology 

The treated animals did not show any clinical signs of toxicity such as weakness, 

anorexia or abdominal distension during the experiment. However, during the 

necropsies, after 48 h, 72 h and 96 h, the livers of the treated animals were light red with 

a visible loss of color in comparison to the control animals. Moreover, in treated 

animals, the relative weight of the livers after 48 h, 72 h and 96 h was significantly 

higher than in the control animals (table 1).  

The biochemical parameters of the treated animals were comparable to the control 

values with the exception of the transaminases: ALT and AST (table1). The increases in 

ALT and AST are signs of hepatocyte death due to hypoxia, fatty change or necrosis 

(Smith et al., 2002). Their values increased after administration of the mycotoxins, and 

AST reached a maximum after 48 h, while ALT reached the maximum after 72 h. 

Afterwards, the levels returned to control levels, showing a recovery of the liver after 

acute damage.  

The most evident alterations were detected in liver while the renal alterations are the 

least significant. The lymphoid organs represented by the spleen, thymus and Peyer’s 

patches showed no differences between the control and treated groups at the different 

observation times. 

In the liver, a progressive lesional state was observed. It is characterized as follows: at 8 

h diffuse hepatocyte necrosis, accompanied by focal hepatitis, stands out. At 24 h 

hepatocyte necrosis continues to be observed in porta spaces and parenchyma (figure. 1 

B). At the same time, discreet degeneration begins to be observed in the cytoplasm of 

the hepatocytes and a few of these appear to be binucleated or with large nuclei. At 48 h 
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a large number of hepatocytes present intense tumefaction and degeneration in the 

cytoplasms (figure. 1 C), while others show necrosis surrounded by inflammatory 

infiltrates. In the porta spaces, they proliferate with bile canaliculi and a process of 

fibrosis begins (figure. 1 C). At 72 h, diffuse hepatocyte necrosis and the inflammatory 

response in the parenchyma are maintained. Degeneration of the hepatocytes in the 

cytoplasm is scarcely evident. Fibrosis and proliferation of bile canaliculi in the porta 

spaces as well as focal fibrosis of the parenchyma are notable (figure. 1 D). This fibrosis 

is interpreted as small areas of cicatrization due to the loss of hepatocytes. Together, 

these findings can be defined as the very initial stages of cirrhosis. At 96 h hepatocyte 

necrosis is no longer observed and the inflammatory response is either stabilized or has 

decreased. The cytoplasm of the hepatocytes presents tumefaction and moderate 

degeneration. Proliferation of bile canaliculi and portal fibrosis are largely present 

(figure. 1 E) as well as regenerative phenomena in the hepatocytes with numerous 

binucleated cells (figure. 1 F). 

In the kidney, the proximal convoluted tubules progressively lost the renal glucogen. At 

the same time, in the glomerules, hypercellularity was observed due to the infiltration of 

inflammatory cells, resulting in glomerulonephritis. Over time, sclerosis and moderate 

glomerular atrophy were observed. The alterations in the renal tubules were not evident 

and even though there was an increase of interstitial nephritis and interstitial fibrosis 

observed as of 48 h, no previous serious tubular lesion was found. 

3.2. Plasma and tissue mycotoxin concentrations 

After administration of mycotoxins, OTA was found in plasma and tissues at all the 

timepoints, and very low levels of OTA were detected in control samples (<LOQ), 

presumably due to OTA contamination of standard animal diet (Vettorazzi et al., 2009; 

Zepnik et al., 2003; Mantle, 2008). The amount in plasma increased as of 10 minutes 

and reached a maxima at 2 h (Cmax obs = 4326.6 µg/L) (figure 2A). In tissues, the OTA 

concentration was similar in liver and kidney, reaching maximum levels at 8 h (figure 

2B). 

AFB1 could only be quantified in plasma at 10 and 30 minutes (24.8 and 9.5 µg/L, 

respectively). In liver, levels below the LOQ were observed 8 h after administration, 

and no AFB1 was detected in kidney. In plasma, chromatograms showed a wide front 

peak, very different from the control or AFB1-spiked plasma samples. This indicated 
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the presence of new compounds with more hydrophilic properties than AFB1 or OTA. 

In order to enlarge the front peak, chromatographic conditions were modulated and at 

least 8 different peaks appeared (figure 3). They had maxima at 10 min and then 

decreased in a time-dependent manner until 24 h. After 48 h, no peaks appeared in the 

front. 

4. Discussion 

The ICH guideline S3A highlights the need to integrate pharmacokinetics into toxicity 

testing, which should aid in the interpretation of the toxicology findings (ICH, 1994). 

With this aim, our study attempted to learn more about the toxic and kinetic behavior of 

mycotoxins AFB1 and OTA when they are administered together. Wong and Hsieh, 

(1980) described that rats are one of the most sensitive species to AFB1 acute toxicity 

and carcinogenic effects. OTA has been described as a potent nephrocarcinogen in male 

rodents and its kinetic profile could be influenced by sex, age and fasting conditions 

(Vettorazzi et al., 2010; 2011). Due to the aforementioned, young male rats were 

selected for this experiment. To avoid the interaction of food, the mycotoxins were 

administered in fasting conditions. In rats, doses from 0.2 to 12.5 mg/kg bw were used 

in single or repeated oral dose toxicity studies of AFB1 toxicity (Wong and Hsieh, 

1980; Coulombe Jr and Sharma, 1985; Rati et al., 1981; Bannasch et al., 1985; Raj et 

al., 1998; Ellinger-Ziegelbauer et al., 2006; Theumer et al., 2010). A low dose of AFB1 

(0.25 mg/kg bw) which corresponds to approximately 3% of LD50 (Wong and Hsieh, 

1980) (EFSA, 2007) was administered in order to avoid strong acute toxicity of AFB1. 

The single OTA dose selected (0.5 mg/kg bw) was slightly higher than carcinogenic 

doses (NTP, 1989; Castegnaro et al, 1998; Mantle et al 2005). It corresponds to 2.5% of 

the LD50 (NTP, 1989), has been used in recent studies (Zepnik et al., 2003), and was the 

same as that used by Vettorazzi et al. 2009; therefore, some comparisons could be 

made.  

Although there were no signs of general toxicity during the experiment, the biochemical 

and histopathological results pointed to acute toxicity in liver and no remarkable 

toxicity in kidney or other organs. The signs of hepatotoxicity appeared 48 h after 

administration, with paleness of livers, increases in transaminases, cell necrosis and 

inflammatory infiltration. In concordance, the relative liver weight showed significant 

increases due to inflammation processes. However, the liver started a repairing process 

12 
 



after 72 h and its effects were evident after 96 h because AST and ALT almost returned 

to normal values. At that time, the regenerative phenomena were evident by the 

numerous binucleated cells present. These findings coincide with the observations made 

by Rati et al.1981 regarding acute toxicity of AFB1, and it appears that the AFB1 

and/or its toxic metabolites are eliminated (metabolized and excreted) in a range of 48 

h-96 h. No remarkable toxicity was observed in kidneys or immunological organs 

(spleen, thymus and Peyer’s patches) so OTA did not cause acute toxicity at this dose,. 

Therefore, we can assume that the acute toxic effects observed after the combined 

treatment of AFB1 and OTA were mostly due to AFB1 effect.  

 Very low levels of AFB1 were found in plasma after 10 or 30 min (1% and 0.4% of the 

administered dose, respectively). The liver AFB1 levels were lower than the LOQ (8 

µg/kg) at all time points and AFB1 was undetectable in kidney. For this reason, it was 

not possible to calculate any kinetic parameter. These findings suggest that the 

absorption of AFB1 was very fast, and that the molecule was rapidly metabolized in the 

liver. Moreover, almost none of the unmetabolized AFB1 was distributed outside the 

liver, into the plasma and onto the kidneys. The compounds detected in the front peak 

are assumed to be AFB1 metabolites because they have not been detected in the spiked 

plasma sample with AFB1 and OTA nor in recent OTA kinetic studies (Vettorazzi et 

al., 2009; 2010; 2011). These compounds had a maxima at 10 min, decreased in a time-

dependent manner until 24 h, after which they were undetectable. Coulombe and 

Sharma (1985) described a two-compartmental model for AFB1 kinetics in Sprague-

Dawley rats, reaching the maximum concentration after 3 h and with the plasma half-

life being 91.8 h. A more recent study found the maximum concentration 4 h after 

administration, with plasma half-life of 53 h (Firmin et al., 2010). These data describe 

long plasma half-lives, with long elimination phases after quantifying only AFB1 or 

mixed with its metabolites. These observations do not coincide with our findings in 

which AFB1 disappeared from plasma in 30 minutes, and its metabolites in 24h, and 

this suggested an extremely fast uptake and metabolism of AFB1. Jubert et al. 2009, 

observed a rapid uptake (T max = 1 h) in humans, with urinary elimination of 95% of 

the dose in 24 h, which is closer to our findings; in their work, they could not 

differentiate among AFB1 and its metabolites. It might be possible that OTA 

modifies/accelerates AFB1 metabolism in liver into very hydrophilic compounds that 

are rapidly excreted (24 h) through the kidney, but there are no studies available about 
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AFB1 molecule kinetics without taking into account its metabolites, so it was hard to 

make proper comparisons.  

With regard to OTA, the concentration profiles in plasma, liver and kidney and some of 

the kinetic parameters are comparable to the ones that Vettorazzi et al. (2010, 2011) 

obtained under similar conditions (figure 2A) but with OTA alone. The maximum 

concentration in plasma was obtained after 2 h and corresponded to 87% of the initial 

dose, which was similar to the 83% that Vettorazzi et al.2010 had reported. Moreover, 

as in Vettorazzi et al. (2011), the same parallelism between plasma and tissue 

concentrations was observed. No significant differences were observed in the OTA 

tissue concentrationss after 24 h between previous kinetic studies performed with OTA 

alone and the current results of OTA and AFB1 co-administration. Comparing the 

obtained OTA profile with other experiments and models of OTA kinetics, the 

differences seem to be more closely related to the age of the rats than to the presence of 

AFB1 in the system (Vettorazzi et al., 2009; 2010; 2011).  

5. Conclusions 

 

In conclusion, more specific information has been obtained regarding the behavior of 

the mycotoxins AFB1 and OTA in F344 rats after one oral administration. Toxicity has 

been observed in liver, while no remarkable toxic effects were observed in kidney. The 

acute toxic effects observed in liver, which were attributed to AFB1, together with the 

fact that AFB1 and its metabolites disappeared from plasma in 24 h, suggest a rapid 

absorption and metabolization of the mycotoxin. The low AFB1 plasma levels 

prevented to have kinetic data and therefore to assess the influence of OTA on AFB1 

kinetics. 

With regard to OTA, it appeared that its plasma and tissues levels were not affected by 

the presence of AFB1 as the kinetic profile seemed very similar to studies performed 

only with OTA in similar conditions. So further investigations to confirm this 

hypothesis would be of great interest. 
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Legend to figures:  

Figure 1: Microscopic images of liver samples. A progressive lesional state can be 

observed. A) Normal liver of a control sample. B) Focal cell necrosis and discreet 

degeneration of cytoplasm after 24 h. C) Intense tumefaction of hepatocytes, cell 

proliferation and initial fibrosis in porta spaces after 48 h. D) Necrosis and 

inflammatory response maintained fibrosis around bile canaliculi in porta spaces after 

72 h. E) Moderate tumefaction of cytoplasms, proliferation of bile canaliculi and portal 

fibrosis after 96 h, and also F) binucleated hepatocytes in regenerative phenomena. 

Magnification of E x100. Magnification of A, C and D x200. Magnification of B and F 

x400. 

Figure 2: Plasmatic (A) or tissue (B) concentrations of OTA overtime after a single oral 

administration of AFB1+OTA (0.25 mg/kg bw of AFB1 and 0.5 mg/kg of OTA in 

NaHCO3·H2O (0.1 M pH 7.4)). The plasma Cmax and Tmax and tissue values obtained 

at 24h in this study and in Vettorazzi et al. (2010, 2011) under similar experimental 

conditions have been included.  

Figure 3: Superimposed chromatograms of plasma samples collected 10 and 30 

minutes, 4, 8 and 24 h after administration. Chromatographic conditions were 

modulated in order to show the AFB1 metabolites that appeared in plasma samples. 

Chromatograms of a control plasma sample and a spiked plasma sample with AFB1 and 

OTA have been superimposed in the plot.  
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