TITLE: Analysis of volatile compounds by GC-MS of a dry fermented sausage: chorizo de Pamplona.

AUTHORS: Diana Ansorena, Olga Gimeno, Iciar Astiasarán,* and José Bello.

Departamento de Bromatología, Tecnología de Alimentos y Toxicología, Facultad de Farmacia, Universidad de Navarra, 31080-Pamplona, Spain. Phone: 948-425600 (Ext 6264). Fax 948-425649. E-Mail: iastiasa@unav.es

*To whom correspondence should be addressed

ABSTRACT

The profile of volatile compounds of a typical Spanish dry fermented sausage, chorizo de Pamplona, has been analyzed by GC-MS, using a simultaneous distillation-extraction (SDE) system. Qualitative and quantitative differences were found in the volatile profiles obtained in the five analyzed commercial brands. One hundred and ninety three different substances were isolated, the group of acids being the most important from a quantitative point of view in all brands, accounting at least for the 60% of the total area. Aldehydes, basically from lipid oxidation, contributed between 7.72% and 13.97% to the total amount. Acids and aldehydes were the chemical families that showed the lowest variability among brands. In contrast, esters showed the highest coefficient of variation among brands (111%), followed by phenols (82%) and terpenes (76%). The variability observed in these three families could be attributed respectively to the different starter cultures, smoking process and spices employed in their production. Butylated hydroxytoluene (added as an antioxidant, E-321) was the third most abundant compound in 3 of the 5 brands.

Keywords: Chorizo de Pamplona; volatile profile; SDE extraction Running head: Volatile profile of Chorizo de Pamplona

INTRODUCTION

Chorizo de Pamplona is a traditional dry fermented sausage with a relevant interest in the meat industry of Spain. Some studies about the chemical and microbiologycal processes that take place during the ripening (Gorospe et al., 1989; Astiasarán et al., 1990a; Astiasarán et al., 1900b; Gimeno et al., 2000), which are the origin of the sensorial properties of this product, have been carried out.

One important sensory property which has been hardly studied is the "flavour" of the product. Many studies have been carried out to study the flavour of different cured meat products. Volatile components of dry cured ham have been studied by Berdagué et al. (1991), Buscailhon et al. (1993), Hinrichsen et al. (1995) and Dirinck et al. (1997). Aroma components from dried sausages fermented with *Staphylococcus xylosus* were described by Stahnke (1994, 1995, 1999a, 1999b) and Johansson et al. (1994) followed the evolution of volatile compounds during the ripening of a fermented sausage elaborated with *Pediococcus pentosaceus* and *Staphylococcus xylosus* as starter cultures. Berger et al. (1990) identified 68 different compounds in dry salami whereas Croizet et al. (1992) identified 53 in dry saucisson. Meynier et al. (1999) studied the relationship between the volatile compounds isolated from commercial Milano salami and their olfactory properties. In chorizo, Mateo et al. (1996b) published results of the analysis of both traditional and industrial chorizo and detected 126 peaks among which 115 were identified. In this paper, these authors found that acetic acid, allyl-1-thiol and phenol were the major components for their products.

Most of these studies have been carried out using a dynamic headspace system of extraction of the volatile compounds. However, a simultaneous steam distillation-extraction (SDE) with a modified Likens-Nickerson apparatus for the isolation of the compounds was used by Mateo et al. (1996b) and Dirinck et al. (1997). The latter authors compared the SDE extraction and the dynamic headspace isolation to study

3

differences between northern and southern European cured hams. They concluded that because reliable semi-quantitative data were aimed at, SDE extraction should be preferred over dynamic headspace isolation. In this work, in order to make a "total volatile analysis" of the product, the Likens-Nickerson system of isolation of these compounds was chosen.

The objective of the present study was to analyze the profile of the volatile compounds of different commercial brands of chorizo de Pamplona to increase the knowledge of the substances responsible for its characteristic flavour.

MATERIAL AND METHODS

Four sausages of five different commercial brands of chorizo de Pamplona were randomly purchased at different supermarkets of the city (Pamplona, Navarra, Spain). They were frozen and stored at -20°C until the analysis. The common ingredients used in this type of products are: lean pork meat, pork back fat, salt, sugars (dextrin, lactose, dextrose), sodium ascorbate, nitrites and/ or nitrates, red pepper, spices, colorants (Ponceau 4R E-124) and exogenous proteins (powdered milk or sodium caseinate). The technological process include: mincing of lean pork meat and pork back fat in a cutter to a particle size reduction of 3mm, mixing with the other ingredients in a vacuum kneading machine, stuffing into artificial casings and a further fermentation, smoking and drying process, during a period of about 30 days.

Likens-Nickerson extraction

A total of 25 g of frozen sausage was ground and placed in a 250 ml flask with 100 ml of water. A second flask with 5 ml of dichloromethane and 150µg of dodecane (internal standard-i.s.) was also attached to a modified Likens-Nickerson apparatus. A total of 5 ml of dichloromethane was also added to fill the apparatus solvent return loop. Sample mixture and solvent were heated to 70°C and boiling T^a respectively, mantaining these

conditions during 2h. After cooling to ambient temperature, the extract of dichloromethane was collected and dried over anhydrous Na₂SO₄.

Analysis of volatile compounds

The volatile compounds were analyzed using a HP 6890 GC System (Hewlett-Packard) coupled to a 5973 Mass Selective Detector (Hewlett-Packard, Carretera Nacional-VI, Km. 18, 400, 28230 Las Rozas, Madrid, Spain). A total of 1 µl of the extract was injected into the GC, equipped with a capillary column (30 m x 250 µm i.d. x 0.25 µm film thickness HP-5MS, Las Rozas, Madrid, Spain). Carrier gas was He (1ml/min) and the chromatographic conditions were as follows: initial oven temperature was maintained at 40°C for 10 min, and subsequently programmed from 40°C to 120°C at a rate of 3°C/min and at a rate of 10°C/min from 120°C to 250°C where it was held for another 5min. Injector T^a: 250°C ; Mass range: 30-350 amu ; Solvent Delay: 4 min. ; Electron impact at 70 eV.

Identification of the peaks was based on comparison of their mass spectra with the spectra of the WILEY library and in addition, in some cases, by comparison of their retention times with those of standard compounds. The Kovats indices were also calculated according to Tranchant (1982) and compared with available literature data (Kondjoyan and Berdagué, 1996). Peaks obtained are shown in Table 1. Semiquantitative determination of the volatile compounds was based on the ratio of their peak areas obtained from the total ion chromatogram, to that of dodecane (i.s.), and the results were expressed as ng dodecane /g dry matter.

Data analysis

Data analysis was carried out with SPSS program. Means of eight determinations are shown (four distillations per brand of sausage and two injections per distillation were carried out). ANOVA and a posteriory Tukey test were used to determine significant differences (p<0.05) among the five brands of sausages for every compound.

RESULTS AND DISCUSSION

The efficiency of the simultaneous steam ditillation-extraction method for its isolation of volatiles in meat products over dynamic headspace has been proven. Dirink et al. (1997) compared the two procedures for isolation of volatiles from hams concluding that SDE extraction have advantages especially due to the higher number of different volatiles isolated and better reproducibility.

One hundred ninety three different compounds were isolated from the five analyzed commercial brands of chorizo de Pamplona (Table 1). From a quantitative point of view, acids were the chemical family with the highest proportion in all brands, accounting for at least 60% of the total area. It was also the group that showed the lowest variability among the 5 brands (Coefficient of variation C.V.=10.95%). Long (C14-C18) and medium (C6-C12) chain fatty acids were found in all analyzed brands (except for hexanoic acid in brand 4). They come from the hydrolysis of triacylglycerols and phospholipids and from degradation of lipids, respectively (Girard and Bucharles,1991). These fatty acids can act as precursors of compounds affecting taste or aroma, but they are not directly responsible for sensory improvements in cured products (Arbolés and Juliá, 1992).

Short chain fatty acids (C<6) with greater implications in flavour development due to the very strong cheesy odours and to their lower threshold values have also been detected in some samples (brands 3 and 1). 2-methylpropanoic acid, 3-methylbutanoic acid and 2-methylbutanoic acid, which have been isolated from microbial metabolism of Val, Leu and Ile, respectively, have been attributed to a characteristic "sweet" odour (Mateo et al., 1996b). These 3 acids may also have a positive impact on aroma due to their conversion into fruity esters (Stahnke, 1994). Also butanoic acid, whose origin has been poorly established was found in 4 of the 5 brands. It imparts a sour and cheesy note to the aroma (Stahnke, 1994). A similar percentage for the chemical group of acids (71%) for an industrial chorizo was found by Mateo et al. (1996b), but the profile of acids was different. Whereas oleic acid was the most abundant acid in 3 of the 5 brands analyzed in our work and palmitic in the 2 others, acetic acid was the most abundant one in their sausages. Acetic acid was not detected in this work, probably as a consequence of the employed method. Compounds like acetic acid, butanoic, 3-methylbutanoic and pentanoic acids could be present even if they have been not identified (Stahnke, 1994). In salami, some studies showed the presence of acetic acid (Berger et al., 1990; Schmidt and Berger, 1998), whereas Meynier et al. (1999) did not find it.

Butylated hydroxytoluene (E-321) and butylated hydroxyanisole (E-320) are additives of common use in food industry to prevent oxidation process. Butylated hydroxytoluene accounted for 0.03% to 14.04% of the total area in the five different brands. It was the third predominant compound in three brands. Its presence can be associated to both the addition of this substance to pig feed (Pascal and Desmoulin, 1973) and the direct addition (simultaneously to butylated hydroxyanisole) to the sausage mixture to act as an antioxidant.

Aldehydes accounted for percentages refered to the total area that ranged between 7.72% and 13.97%, which meant a C.V. among brands of 28.16%. Most of them come from lipid oxidation (hexanal, heptanal, 2-heptenal, octanal, 2-octenal, nonanal, 2-nonenal, 2,4-nonadienal, 2-decenal, 2,4-decadienal and 9-octadecenal) and certain off-flavours have been associated to them (Berdagué et al. 1993; Stahnke, 1994; Mac Leod, 1994). Also from lipid oxidation it has been detected 1-octen-3-ol, with a marked odour of mushroom and very low odour threshold, 2-heptanone (spicy, blue cheese odour) and n-alkanes with a poor contribution to aroma due to their high threshold values. As found

by Dirinck et al. (1997) in isolates of cured ham by SDE, we have also observed the presence of high molecular weight aldehydes (tetradecanal, pentadecanal, hexadecanal and octadecanal), but their importance to flavour development is only due to the fact that they can act as precursors of lower molecular weight alkanals and alkenals. Among other aldehydes, 2-phenylacetaldehyde (with a harsh, hawthorn odour) comes from the catabolism of phenylalanine (Berdagué et al., 1993) and it could serve as an indicator of proteolysis. Another compound from metabolism of amino acid was indol. Mateo et al. (1996b) associated this product to catabolism of tryptophan. A certain almond flavour has been associated with benzaldehyde, which was present in all sausages and is considered to be one of the substances that gives specific flavour notes in pork (Shahidi, 1994).

Terpenes were the chemical group that showed the highest differences among brands (range between 0.11% to 11.76% of the total area, with a C.V. among brands of 75.78%). 24 different terpenes have been isolated among the 5 analyzed brands, being only 17 identified and quantified. Although some of them (α -terpinene and limonene) have been found in meat as a consequence of their presence in animal feedstuffs, the major sources are related to the use of spices in preparation of sausages. Thus, molecules such as thujene, α -pinene, sabinene, α -phellandrene, 3-carene, γ -terpinene and α -terpinolene have been detected by Ekundayo et al. (1988) in pepper and β -caryophyllene, cubebene, limonene were isolated in paprika (Guadayol et al., 1997). Some of them were described as fruity, floral and fresh rather than spicy (Meynier et al., 1999). Other non terpenic compounds from spices found in sausages tested were eugenol (with spicy, honey-like odour), safrole and myristicine (spicy, nutmeg-odour) detected by Russel and Jennings (1969) in pepper and geranylacetone, β -ionone, methylsalicylate and tetramethylpyrazine detected in paprika by Guadayol et al. (1997).

Also due to the use of garlic as an ingredient, it has been possible to isolate sulphur compounds already detected in this spice by other authors (Kuo et al., 1990 and Mateo et al., 1996b) such as 1-propene,3,3'-thiobis, diallyl disulphide, diallyl trisulphide, 2-vinyl 4H-1,3-dithiin and methyl allyl disulphide. The variability observed among the brands in the content of terpenes showed that different amount of spices had been added in the production of the different brands.

One of the step involved in the elaboration process of industrial chorizo de Pamplona is smoking, which contributes to increase the phenolic fraction of the sausages due to the production of those compounds from pyrolysis of lignin (Hollenbeck, 1994). Also phenol is produced from benzaldehyde and phenylalanine by some bacteria (GenomeNet, 1998). Percentages of phenolic compounds for the samples ranged between 0.15% and 3.38% of the total area, with different profiles depending on the brand, and showing a C.V. among brands of 81.97%. As found by other authors, guaiacol and 4-methylphenol were 2 of the most predominant phenols detected, and have been associated with certain smoky and pungent flavour (Hollenbeck, 1994). Furthermore, due to their low odour thresholds, they would contribute considerably to the flavour of chorizo. Hydrocarbons such as toluene, xylene and ethylbenzene have also been previously detected in smoke aromas used to flavour processed meats (Wittkowski, 1989).

Numerous methyl and ethyl esters have been detected in one of the 5 brands, accounting for the 5% of the total area. They may have originated from esterification of alcohols and acids (Shahidi et al., 1986), with certain microbial involvement (Edwards et al., 1991; Stahnke, 1994).

In relation to the presence of alcohols, the most abundant one in 4 of the 5 brands was one with terpenic structure, the 4-terpineol. Linalool (floral odour), α -terpineol (peach

odour), geraniol (rose odour) and phenylethylalcohol (warm rose-honey odour) were other alcohols detected.

In summary, the study of the different volatile profiles showed evident flavour differences among commercial brands due to differences in the process conditions and in the type and amount of some ingredients. The greatest variability corresponded to esters (C.V. of 111%), related basically to the different starter cultures employed, phenols (C.V. of 82%) variability related specially to differences in the smoking process, and terpenes (C.V. of 76%), whose variability could be attributed to differences in the use of spices. The lowest variability corresponded to acids (C.V. of 11%) and aldehydes (C.V. of 28%).

RESULTS

KI	RI	Compound	Brand 1	Brand 2	Brand 3	Brand 4	Brand &
	C	Acids			700		
		Propanoic acid, 2-methyl	04.41	75.	720		445
		Butanoic acid	314b	75a	77a		115a
845			75a		15211c		289b
881		Butanoic acid, 2-methyl			1870		
1001	А	Hexanoic acid	1851c	793a	963ab		1351b
1190			1661b	2206bc	3013c	352a	2962c
1386	А	Decanoic acid	2065a	9157b	12058bc	1413a	143360
		Dodecanoic acid	1854b	1875b	2565bc	873a	3204c
1768	А	Tetradecanoic acid	3717a	11771c	7870b	3872a	10747b
		9-Hexadecenoic acid	507a	6115c	2852b	2052ab	5860c
1975	А	Hexadecanoic acid	9747a	132108c	60336b	48407b	67081b
2157	А	9,12-Octadecadienoic acid	9492a	33031b	19423a	20437a	41002
	А	9-Octadecenoic acid	26681a	70332bc	50837ab	65159b	996310
		Subtotal	57966	267463	177797	142568	246580
			61,50%	77,08%	68,56%	59,76%	61,71%
		Alcohols					
		1-Pentanol, 4-methyl			61		
853				235a	238a	191a	
		Hexanol	59a	51a		70b	82c
881			236				
		1-Octen-3-ol	94a	272c	87a	89a	136b
1034	В	Hexanol, 2-ethyl	131c		87a	114b	
1038			60a	105b			
1101	А	Linalool	362bc	198a	412c	312b	413c
1113	С	Phenylethylalcohol	118a	46a	1316b	206a	1074b
1120	В	2-Cyclohexen-1-ol,					300
		1-methyl 4-(1-methylethyl)-trans					
1165	В	Borneol	151ab		75a	150ab	234b
1176	С	4-Terpineol	2020a		2665a	2291a	3644b
1190	D	1,6-Octadien-3-ol / α-Terpineol	37a		216b	278b	
1262	В	Geraniol			82		
		Subtotal	3270	908	5241	3701	5885
			3,47%	0,26%	2,02%	1,55%	1,47%
		Aldehydes					
802	А	Hexanal	237b	357c	309bc	364c	145a
827			1168d	880c	218a	145a	472b
		Heptanal	54a	83bc	98c	69ab	572d
959	В	Benzaldehyde	374d	131ab	167b	102a	214c
960				51a		64a	
		Octanal		153			
1012						40	
1043		2-phenylacetaldehyde	1616c	1096b	933ab	633a	710a
1060		2-Octenal		78a		121b	
1105		Nonanal	490ab	513b	372a	442ab	538b
1161		(E)-2-Nonenal	63a	153b	142b	176b	198b
1213		2,4-Nonadienal				31	
1263				96a	86a	114a	
1276	С	2-phenylacetaldehyde,α-ethylidene			91		
1318	В	2,4-Decadienal	24a		62ab	81bc	123c
1615		Tetradecanal	103a	134a	162a	136a	575b
1712	В	Pentadecanal	438a	880b	378a	438a	946b
1819		Hexadecanal	7055a	18615b	15328b	13116b	249810
1999		9-Octadecenal	540a	1196bc	1425bc	1041b	1465c
	-	Octadecanal	1007a	2353c	2254bc	1678b	3194b
2037	U	Octadecaliai					
	C	Subtotal	13170	26771	22025	18792	34134

 Table 1. Profiles of volatile compounds of five brands of chorizo de Pamplona. (*)

i	Votomoo		1	1		
892 B	Ketones 2-Heptanone	74b	42a	64b	37a	
915 C	2(3H)-Furanone, dihydro		128			
956 C				92a	117a	202b
1118 C 1140 B	2-Cyclohexen-1-one, 3,5,5-trimethyl Camphor	274b			93a	114 52a
1205 B	Verbenone	272a		277a	251a	024
1458 B	Geranylacetone		51a		43a	483b
1430 B	b-Ionone	122a	514		232a	400b 860b
1538 C	2(4H)-Benzofuranone,5,6,7,7a-		218a			505b
1((1 0	tetrahydro-4-4-7a-trimethyl			201-	7046	
1661 C 1682 C	2(3H)-Furanone, dihydro-5-(2- g-dodecalactone	59a	290c	291a	731b 327c	218b
1696 B	2-Pentadecanone	263a	630bc	439ab	816c	1203d
1897 B	1	253a		223a	259a	204a
	Subtotal	1318	1360	1387	2906	3843
	Fatana	1,40%	0,39%	0,53%	1,22%	0,96%
С	Esters Butanoic acid methyl ester			39		
-	Butanoic acid ethyl ester					88
810 C						21
813 B 877 B	2-Hydroxypropanoic acid ethyl ester Acetic acid 3-methylbutyl ester	91a				1207b 332
1003 B		47a				41a
1062 C	2-Hydroxy-4-methylbutanoic acid					254
1107 4	ethyl ester	26a	37a	24a	74b	020
1127 A 1170 B	Octanoic acid methyl ester Benzoic acid ethyl ester	20a	5/a	24a	740	93c 161
1191 C	Methyl salicylate	39a			51ab	67b
1199 B	-					690
1246 C 1252 C	-					86 98
1252 C 1257 C						3770
1285 C	Bornyl acetate	53a		101ab	127b	134b
1298 C	•	00-	175b	166b	455h	101
1329 A 1398 B	Decanoic acid methyl ester Decanoic acid ethyl ester	86a 43a	1750	25a	155b 112a	199b 3513b
	Dodecanoic acid methyl ester	iou	161	200	1120	00100
1597 B						930
1646 C 1723 A	3-Methylbutyl decanoate Tetradecanoic acid methyl ester	83a	419d	79a	170b	164 277c
1725 R	Tetradecanoic acid ethyl ester	74a	4100	750	23a	1952b
1928 A	Hexadecanoic acid methyl ester	1209c	1401c	338a	476ab	687b
1996 C 2111 A	Hexadecanoic acid ethyl ester 9,12-Octadecadienoic acid methyl	54a	41a 180b	116a	59a 189b	2598b 254c
	9-Octadecenoic acid methyl ester		33a	128c	1090	69b
2171 C	9,12-Octadecadienoic acid ethyl ester					1463
C	2	4000	0447	1017	4 4 0 7	666
	Subtotal	1808	2447	1017	1437	19919
	Sulphur compounds	1,92%	0,71%	0,39%	0,60%	4,98%
848 B	1-Propene, 3,3'-thiobis	136a	234c	163ab	219bc	178abc
908 B	Propanal, 3-methylthio	189b	343c	206b	126a	219b
913 C		227b	208b	165a	356c	228b
1076 C 1133 C	Diallyl disulphide Sulphide allyl methyl	1074b 140b	1930c	981ab	2304d 100a	763a
1206 C		1400			1000	727
1296 C	Trisulphide, di-2-propenyl	322b	288b	151a	348b	675c
	Subtotal	2089	3004	1666	3454	2791
	A	2,22%	0,87%	0,64%	1,45%	0,70%
С	Aromatic hydrocarbons Toluene	75c	55ab	44a	46a	64bc
851 B	Ethylbenzene	11a	15a	25b	13a	
860 B	m-xylene	199ab	201ab	177ab	166a	233b
886 B 888 B	Styrene p-Xylene			26a	25a 35	
1 000 D	r <i>j</i>		I	I	55	I I

990 B 1023 B	1,2,4-Trimethylbenzene m-Cymene	50b 265a		21a 634b	514b	81c 1342c
1176 C 1288 D	Naphthalene Methylnaphthalene	43	92b	19a	13a	8a
1304 D	Methylnaphthalene		68			
1530 D	Trimethylnaphthalene Trimethylnaphthalene		62		18	
1566 D 1592 D	Trimethylnaphthalene		62b		18a	
1372 D	Subtotal	644	557	945	849	1728
		0.68%	0.16%	0.36%	0.36%	0.43%
	Terpenes	0,00%	0,10%	0,30%	0,30%	0,43%
926 B	Thujene	266a		334ab	368b	385b
931 B	α-Pinene	1229bc	119a	1402c	1706d	1088b
	Camphene	40a	100-	45a	61ab	82b
972 A 992 B	Sabinene+β-Pinene β-Myrcene	5109c 311a	199a	7146d 633c	10654c 747d	2777b 404b
1000 B		5114		0000	185a	172a
1006 B	3-Carene	418a		2115c	1142b	383a
1014 B	α-Terpinene	87a			242b	681c
	Limonene	1951b	64a	2757d	2592d	2325c
	γ-Terpinene	604a		862b	968b	1338c
1086 B 1210 D	α-Terpinolene Terpene	350a		511b 247	455b	493b
1210 D 1214 D	Terpene	97a		247		206b
1271 D	Terpene	0.0		nq		2000
1297 D	Terpene				nq	
1340 D	Terpene			75a	138b	nq
1352 B	Cubebene				53b	25a
1354 D 1355 D	Terpene Terpene				nq ng	ng
1379 D	Copaene	43a		243c	611d	173b
1410 C	Cis-Caryophyllene	100a		367b		
1422 B	, , , , , , , , , , , , , , , , , , , ,	419a		1629c	2264d	846b
1440 C	α-Bergamotene			65a	85a	154b
1458 C	Humulene Subtotal	60a	202	101b	140c	11500
	Subioiai	11087	382	18533	22413	11533
	Phenols	11,76%	0,11%	7,15%	9,40%	2,89%
995 B	Phenol	182a	703b	221a	291a	
1066 B	Phenol, 2-methyl	51a	643c	299b	253b	
1087 B	Phenol, 4-methyl	105a	2113c	428b	388b	
1089 B	Phenol, 2-methoxy (Guaiacol)	264a	1242c	544b	419b	
1109 B	Phenol, 2,5-dimethyl		46	0.1	00	
1148 B 1157 D	Ethylphenol Phenol, 2,?-dimethyl	94a	66b 486c	31a 213b	23a 242b	
1137 D 1175 B	Ethylphenol	34a	137	2150	2420	
1175 D	Phenol, 2,?-dimethyl		414			
1184 B	Ethylphenol		62			
1192 B	Phenol,4-methyl, 2-methoxy		510			
1229 C			258			
1234 D 1238 D	Phenol ethyl-methyl Phenol ethyl-methyl		93 68			
1238 D 1245 D			104b		74a	
1248 B	Dimethoxyphenol		249b		67a	
1271 D	Phenol, trimethyl		56			
1276 D		50-	83	2045	200-	
1280 C 1316 B	Phenol, 4-ethyl, 2-methoxy Phenol, 4-Vinyl, 2-methoxy	58a 64a	656c 484b	321b 157b	229b 160b	100a
1310 B 1359 C		97a	484D 1050c	310b	415b	1000
1364 B	Eugenol	99a	155b	92a	139b	96a
1373 C	Phenol, 4-propyl, 2-methoxy		235			
1408 B	Methyleugenol	31a		219b	193b	195b
			40			
1412 C	Eugenol o isomer		42	702	1049	210h
	Eugenol o isomer Phenol,2,6-bis(1,1-dimethylethyl)	8a	42 160c	79a 189d	104a 67b	210b

1490 C 1519 C 1609 C	Phenol,2,4-bis(1,1-dimethylethyl)		1314 152 152b	69a	133b	
1007 0	Subtotal	1055	11737	3173	3198	602
		1,12%	3,38%	1,22%	1,34%	0,15%
	Nitrogen compounds					
1086 C	Tetramethylpyrazine		236b			173a
1294 B	Indole		38a	98a	47ab	67b
	Subtotal		273	98	47	240
			0,08%	0,04%	0,02%	0,06%
	Others					
806 B	Tetrachloroethylene	227b	100a	63a	90a	97a
992 B	2-Pentylfuran		176		100	
1120 D	2-Cyclohexen-1-ol,1-methyl				183	
1151 C	4-(1-methylethyl)- <i>trans</i> Benzene,1,2-dimethoxy		230d	42b	90c	19a
1191 C			2300	420	11	154
1243 C	-		116b		82a	
1287 B		110b		15a	222c	215c
1317 C	Benzene,1,2,3-trimethoxy		532			
1408 C			357			
1478 C	2,6-di(t-butyl)-4-hydroxy			397a	173a	1884b
	-4-methyl-2,5-cyclohexadien-1-one					
1483 C	2,6-di-t-butyl-4-methylene-			190a	662a	2635b
1407 C	2,5-cyclohexadiene-1-one 3-tert-Butyl-4-hydroxyanisole	13a	30042c	10720	17070	00106
1497 C 1515 C	Dibenzofurane	158	103	1972a	1787a	9019b
1515 C 1518 B	BHT	1120a	119a	22790b	32790c	56114d
1510 D 1528 B	Myristicine	105a	Tibu	724b	1006c	1736d
1562 C	-	104a		1209b	1279b	263a
1793 D	Anthracene				31	
	Subtotal	1679	31775	27403	38408	71982
		1,78%	9,16%	10,57%	16,10%	18,01%
	Alkanes					
800 B		20a	33a	39a	69b	
900 B	Nonane				nq	
1000 B	Decane	47a	64b		nq	
1100 B	Undecane				nq	
1200 B	Dodecane	20-			22	1105
1300 B 1400 B	Tridecane Tetradecane	30a 6a			nq 160b	116b
1400 B 1500 B	Pentadecane	70a			160b 168b	
1500 B 1600 B	Hexadecane	104			241a	238a
1700 B	Heptadecane		202b		145a	2000
1800 B	Octadecane					
	Subtotal	173	298	39	784	355
		0,18%	0,09%	0,02%	0,33%	0,09%
	Total	94259	346977	259325	238558	399592

(*) Results are mean values expressed in ng dodecane/g dry matter. In every brand, the percentage of each group refere to the total area of the compounds is shown.

KI: Kovats Indices for the DB5 column. **RI**: Reliability of identification, indicated by the following symbols: A, mass spectrum and retention time identical with those of an autentic sample; B, mass spectrum and Kovats index in agreement with the corresponding literature data; C, mass spectrum consistent with spectra reported in the Wiley library data; D, tentative identification by mass spectrum. nq:not quantified.

Whithin a row, different letters denote significant differences (p<0.05) between the analyzed brands.

ACKNOWLEDGEMENTS

We thank Prof. Mohino for scientific advice. We also thank the Government of Navarra, the Fundación Roviralta and the Fundación Empresa-Universidad for their finacial support.

REFERENCES

- Arbolés, J. & Juliá, E. (1992) Aroma in cured meat products. In New Technologies for meat and meat products.; Ed. by ECCEAMST Utrecht. 109-125.
- Astiasarán, I., Santamaría, I., Villanueva, R. & Bello, J. (1990a). Modificaciones de la fracción nitrogenada durante el proceso de curación del chorizo, en función de la tecnología aplicada. *Revista Agroquímica y Tecnología de Alimentos*, 30/2, 211-218.
- Astiasarán, I, Lizarraga, T., Melgar, J., Villanueva, R. & Bello, J. (1990b). Estudio comparativo de las características del chorizo según la tecnología de elaboración empleada. *Alimentaria*, Ene-Feb. 57-62.
- Berdagué, J.L., Monteil, P., Montel, M.C. & Talon, R. (1993). Effects of starter cultures on the formation of flavour compounds in dry sausage. *Meat Science*. 35, 275-287.
- Berdagué, J.L., Denoyer, C., Le Quéré, J.L. & Semon, E. (1991). Volatile components of dry-cured ham. *Journal of Agricultural and Food Chemistry*, **39**, 1257-1261.
- Berger, R.G., Macku, C., German J.B. & Shibamoto, T. (1990). Isolation and identification of dry salami volatiles. *Journal of Food Science*, 55(5), 1239-1242.
- Buscailhon, S., Berdagué, J.L. & Monin, G. (1993). Time related changes in volatile compounds of lean tissue during processing of French dry-cured ham. *Journal of the Science of Food and Agriculture*, **63**, 69-75.

- Croizet, F., Denoyer, C., Tran, N. & Berdagué, J.L. (1992). Les composés volatils du saucisson sec. Evolution au cours de la maturation. *Viandes et Produits Carnés* 13(6), 167-170.
- Dirinck, P., Van Opstaele, F. & Vandendriessche, F. (1997). Flavour differences between nothern and southern European cured hams. *Food Chemistry*, **59**(4), 511-521.
- Edwards, R.A., Dainty, R. & Ordoñez, J.A. (1991). Poster, 2nd Int. Symposium on the Interface between Analytical Chemistry and Microbiology: Chromatography and Mass Spectrometry in Microbiology. Lund, Sweden.
- Ekundayo, O., Laakso, I., Adegbola, R.M., Oguntimein, B., Sofowora, A. & Hiltunen,
 R. (1988). Essential oil constituents of Ashanti pepper (*Piper guineense*) fruits (Berries). *Journal of Agricultural and Food Chemistry*, 36, 880-882.

GenomeNet WWW Server: <u>www.genome.ad.jp</u> (December, 1998).

- Gimeno, O., Ansorena, D., Astiasarán, I., & Bello, J. (2000). Characterization of Chorizo de Pamplona: analysis of colour and texture. *Food Chemistry*, **69**,195-200.
- Girard, J.P. & Bucharles, C. (1991). La acidificación. In *Tecnología de la carne y los productos cárnicos*. Girard, J.P., Ed. Acribia, S.A. : Zaragoza, Spain.
- Gorospe, O., Astiasarán, I., Sánchez-Monge, J.M. & Bello, J. (1989). Estudio del desarrollo del color en derivados cárnicos crudos curados, valorado por medidas químicas y físicas. *Alimentaria*, Oct., 37-41.
- Guadayol, J.M., Caixach, J., Cabañas, J. & Rivera, J. (1997). Extraction, separation and identification of volatile organic compounds from paprika oleoresin (Spanish type). *Journal of Agricultural and Food Chemistry*, 45, 1868-1872.

- Hinrichsen, L.L. & Pedersen, S.B. (1995). Relationship among flavor, volatile compounds, chemical changes, and microflora in Italian-type dry-cured ham during processing. *Journal of Agricultural and Food Chemistry*, **43**, 2932-2940.
- Hollenbeck, C.M. (1994). Contribution of smoke flavourings to processed meats. In *Flavour of meat and meat products*. Shahidi, F.(Ed.) Blackie Academic and Profesional, London.
- Johansson, G., Berdagué, J.L., Larsson, M., Tran, N. & Borch, E. (1994). Lipolysis, proteolysis and formation of volatile components during ripening of a fermented sausage with *Pediococcus pentosaceus* and *Staphylococcus xylosus* as starter cultures. *Meat Science*, **38**, 203-218.
- Kondjoyan, N. & Berdagué, J.L. (1996). A compilation of relative retention indices for the analysis of aromatic compounds. Laboratoire Flaveur (INRA), Theix, France.
- Kuo, M.C., Chien, M. & Ho, C.T. (1990). Novel polysulfides identified in the volatile components from Welsh Onions (*Allium fistulosum* L. var. maichuon) and Scallions (*Allium fistulosum* L. var. caespitosum). Journal of Agricultural and Food Chemistry, **38**, 1378-1381.
- Mateo, J. & Zumalacárregui, J.M. (1996^a). El flavor de los embutidos crudos-curados. *Alimentación, Equipos. y Tecnología*, Sept.59-34.
- Mateo, J. & Zumalacárregui, J.M. (1996b). Volatile compounds in Chorizo and their changes during ripening. *Meat Science*, **44**(4), 255-273.
- MacLeod, G. (1994). The flavour of beef. In *Flavour of meat and meat products*. Shahidi, F.(Ed.) Blackie Academic and Profesional, London.

- Meynier, A., Novelli, E., Chizzolini, R., Zanardi, E. & Gandemer, G. (1999) Volatile compounds of commercial Milano salami. *Meat Science*, **51**, 175-183.
- Pascal, G. Desmoulin, B. 1973 *Proceedings, XIXth Meeting of Meat Research Workers*. pp 929-937. Teagasc, Dublin.
- Russel, & Jennings (1969). Constituents of black pepper. Some oxigenated compounds. Journal of Agricultural and Food Chemistry, **17**, 1107-1112.
- Schmidt, S., & Berger, R.G. (1998). Microbially formed aroma compounds during the maturation of dry fermented sausage (Salami). Advances of Food Science, 20, 5/6, 144-152.
- Shahidi, F., Rubin, L.J. & D'Souza, L.A. (1986). Meat flavour volatiles: a review of the composition, technique of analysis and sensory evaluation. CRC Critical Rewiev of Food Science and Nutrition, 24, 219-227.
- Shahidi, F. (1994). *Flavour of meat and meat products*. Shahidi, F.(Ed.) Blackie Academic and Profesional, London.
- Stahnke, L.H. (1994). Aroma compounds from dried sausages fermented with *Staphylococcus xylosus. Meat Science*, **38**, 39-53.
- Stahnke, L.H. (1995). Dried sausages fermented with Staphylococcus xylosus at different temperatures and with different ingredient levels- Part II. Volatile components. Meat Science, 41(2), 193-209.
- Stahnke, L.H. (1999a). Volatiles produced by Staphylococcus xylosus and Staphylococcus carnosus during growth in sausage minces. Part I. Collection and identification. Lebensm.-Wiss u.-Technol., 32, 357-364.

- Stahnke, L.H. (1999b) Volatiles produced by Staphylococcus xylosus and Staphylococcus carnosus during growth in sausage minces. Part II. The influence of growth parameters. Lebensm.-Wiss u.-Technol., 32, 365-371.
- Tranchant, J. (1982). *Manuel pratique de chromatographie en phase gazeuse;* Masson. Paris, pp 301-337.
- Wittkowski, R. (1989) Analysis of liquid smoke and smoked meat volatiles by headspace gas chromatography. In Agriculture, Food Chemistry and the Consumer. Proceedings of the 5th European Conference on Food Chemistry. INRA. Versailles, Vol 2, pp 639-643.