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The mechanisms of liver damage in chronic hepatitis C
virus (HCV) infection are poorly understood. The transcrip-
tion factor, nuclear factor-�B (NF-�B), regulates the expres-
sion of genes involved in apoptosis, inflammation, and anti-
viral response. It plays a protective role in several forms of
liver damage. In this study, we analyzed NF-�B by gel mo-
bility shift assay and immunohistochemistry in liver biop-
sies from HCV-infected patients, and we have determined
the hepatic levels of the components of the NF-�B system
by semiquantitative polymerase chain reaction (PCR). We
found that NF-�B was activated in the liver of patients with
chronic hepatitis C. Neither NF-�B activity nor the RNA
levels of NF-�B subunits showed correlation with liver in-
flammatory activity, viral load, or HCV genotype. By con-
trast, hepatic mRNA values of RelA, the main element of
activeNF-�B, correlated inverselywith apoptosis (r� �.68;
P< .05) and with the rate of fibrosis progression (r� �.51;
P< .04). In intermediate/rapid fibrosers, RelA mRNA levels
were significantly decreased as compared with slow fibros-
ers (P < .003) and with normal livers (P < .03). In conclu-
sion, we found that NF-�B is activated in chronic HCV-
infected livers, and that the expression of RelA is inversely
correlated with liver cell apoptosis and with the rate of fi-
brosis progression. Our data thus suggest that RelA expres-
sion may protect against liver fibrosis and hepatocellular
damage. (HEPATOLOGY 2001;34:1041-1048.)

Hepatitis C virus (HCV) infection leads to chronic liver
damage in the majority of infected patients. Liver disease de-
velops gradually, with a variable progression rate to cirrhosis
in different subjects.1,2 Men who consume alcohol and are

infected after the age of 40 develop cirrhosis in 12 to 15 years.
By contrast, in women infected at younger ages, the disease
may evolve with very little liver damage for more than 40 years
after infection.1 The molecular mechanisms determining the
intensity and progression of the liver damage in different pa-
tients remain ill-defined.

The main histologic finding in chronic hepatitis C is the
presence of liver inflammation in portal and periportal areas.
In these areas and within the hepatic lobule, a variable pro-
portion of hepatocytes undergoes apoptosis.3,4 Fibrosis in the
liver appears as a consequence of intense and persistent in-
flammation.1 However, cirrhosis may occur in patients with
very low levels of serum transaminases.5,6 The relationship
between the histologic grade of inflammation and fibrosis
staging has not been clearly established. In chronic HCV in-
fection, the production of cytokines in the liver plays an im-
portant role in determining the severity of liver damage.7-9

Inflammatory cytokines such as interferon gamma and tumor
necrosis factor � (TNF-�) may activate antiviral intracellular
mechanisms,10 but they also participate in causing hepatocel-
lular injury.11 Intracellular nuclear factor-�B (NF-�B) activa-
tion occurs in response to viral infection and to cytokines
such as TNF-�.12

NF-�B is a ubiquitous factor that controls the expression of
genes involved in immune response and inflammation.13 This
factor also plays a central role in protecting cells against
apoptotic signals.14 NF-�B activity comprises homo- or het-
erodimers formed by members of the Rel/NF-�B family of
transcription factors. The functional specificity and selectivity
of the NF-�B response is thought to arise primarily from the
binding of Rel/NF-�B complexes to specific DNA regulatory
sites (�B sites) of target genes in different cell types.15,16 In
humans, there are 5 subunits of this family of proteins: RelA
(also called p65), NFKB1 (also called p50), NFKB2 (also
called p52), RelB, and c-Rel. NFKB1 and NFKB2 are originally
synthesized as the inactive precursors p105 and p100 that
have inhibitory function.17 They require proteolytic process-
ing to yield the p50 and the p52 subunits, respectively. In
mammalian cells, the most common heterodimer is formed by
RelA-p50 subunits.13,15 NF-�B is kept inactive in the cyto-
plasm by binding to one of the inhibitory proteins called
I�B-�, I�B-�, I�B-�, p105, and p100.18 As a result of the phos-
phorylation and subsequent degradation of the inhibitory
subunits, NF-�B translocates to the nucleus, binds to �B sites,
and regulates target genes.

HCV core protein can influence NF-�B activation and cell
apoptosis in vitro, but conflicting results have been obtained
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Supported by a grant from Fundación Echébano and M.J. Huarte and J. Vidal grants

(Spain). P. Boya was supported by a fellowship from Gobierno de Navarra (Spain).
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in different studies. In experiments with cell lines expressing
HCV core protein, variable data showing inhibition, no effect,
and enhancement of TNF-�–induced NF-�B activation have
been reported.19-21 On the other hand, some articles have
shown that NF-�B activity is increased in several unstimu-
lated human cell lines expressing HCV core protein,19-21 re-
sulting in protection from apoptotic stimuli.19,20 Only two
studies20,22 have addressed the status of NF-�B in livers from
HCV-infected patients. Tai et al.20 studied liver tissue ob-
tained at surgery from patients with HCV-related hepatocel-
lular carcinoma using electrophoretic mobility shift assay
(EMSA) and immunohistochemistry. Gaweco et al.22 ana-
lyzed by immunohistochemistry liver biopsies from trans-
planted patients who had recurrent HCV infection. Thus,
available information concerning NF-�B in HCV infection is
restricted to cases with advanced liver damage20 and to trans-
planted patients,22 the latter being a situation that does not
reflect the course of natural infection and in which immuno-
suppressive therapy can influence the status of NF-�B activa-
tion.23 To our knowledge, there are no clues in the literature
on the role of the Rel/NF-�B family of transcription factors on
the evolution of HCV-induced liver disease.

In the present work, we investigated the NF-�B activation
status and the transcriptional expression of the elements of
the Rel/NF-�B family of proteins in liver biopsies from pa-
tients with chronic hepatitis C. We show that the NF-�B sig-
naling pathway is activated in HCV-infected livers, and that
reduced levels of RelA mRNA are associated with a higher
apoptotic rate and more rapid progression of fibrosis. Our
data suggest that RelA expression may protect against liver
fibrosis and hepatocellular damage in chronic HCV infection.

PATIENTS AND METHODS

Patients and Controls. Liver biopsy specimens were obtained from
41 patients with chronic hepatitis C. Diagnosis of chronic hepatitis C
was based on elevation of serum transaminases for more than 6
months, positivity for anti-HCV antibody (ELISA second-generation,
Ortho Diagnostic System, Raritan, NJ), presence of HCV RNA by
reverse-transcription polymerase chain reaction (PCR) in serum,
and histologic evidence of chronic hepatitis. Alcohol consumption

and other causes of liver disease were excluded in all cases. Serum
HCV RNA was determined as previously described.24 HCV genotyp-
ing was performed by PCR hybridization with specific probes for
different genotypes as previously described.25 Competitive PCR was
used to quantify the serum viral load.24 None of the patients had
received treatment with interferon alfa in the 6-month period previ-
ous to the study. The main clinical, biochemical, virologic, and his-
tologic features of the patients at the time of liver biopsy are de-
scribed in Tables 1 and 2. Liver biopsies were obtained with a Tru-cut
needle and were divided in two parts. The first was fixed in 10%
formaldehyde and embedded in paraffin for histologic examination
and apoptosis detection, and the second part was snap-frozen in
liquid nitrogen–cooled isopentane and embedded in Tissue-Tek
OCT compound (Sakura, Zoeterwoude, the Netherlands), stored at
�80°C, and used for all the NF-�B determinations. Inflammatory
liver damage and fibrosis stage were scored according to Bedossa et
al.26 The rate of fibrosis progression was calculated as described by
Poynard et al.1 In cases with known duration of the infection, the
fibrosis score was divided by the number of years after infection. In
patients who had two separated liver biopsies, the fibrosis score
change was divided by the number of years between biopsies. Only
patients with more than 8 years of disease duration were included. A
patient was considered a slow fibroser if his fibrosis progression rate
was lower than 0.07 units per year (more than 50 years to cirrhosis).
Normal liver samples were obtained from 22 controls at laparotomy
and stored at �80°C in OCT. Intervention was performed in 18 cases
because of cancer (11 colorectum, 7 stomach), 3 because of choleli-
thiasis, and 1 because of hydatidic cyst. In all these cases, histologic
examination of the surgical biopsy showed normal liver architecture.
Written consent was obtained in all cases.

RNA Extraction From Liver Biopsies: Nuclear Extracts Preparation. Be-
fore RNA extraction, the liver tissue was homogenized in 1 mL Ul-
traspec (Biotex, Houston, TX) with an Ultraturrax Driver T.25
(Janke & Kunkel, Ika-Labortechnik, Germany), and total RNA was
obtained following the Ultraspec protocol, which is based on the
method described by Chomczynski and Sacchi.27 Liver nuclear ex-
tracts were obtained following previously described methods.28

Briefly, the tissue was homogenized in a small dounce homogenizer
using pestle type B (Kontes Glass Company) in 300 �L of cold buffer
A (10 mmol/L HEPES [pH 7.9], 10 mmol/L KCl, 0.1 mmol/L EDTA,
0.1 mmol/L ethylene glycol bis-(�-aminoethyl ether)-N,N-tetraace-
tic acid, 1 mmol/L dithiothreitol [DTT], 0.5 mmol/L phenylmethyl-
sulfonyl fluoride, 10 mg/mL aprotinin, 1 mmol/L benzamidine). Af-
ter 15 minutes on ice, NP-40 at 0.5 wt/vol (Boehringer Mannheim,
Mannheim, Germany) was added and disruption was favored by
vortexing. Nuclei were collected by centrifugation, suspended in
buffer C (20 mmol/L HEPES [pH 7.9], 0.4 mol/L NaCl, 1 mmol/L
EDTA, 1 mmol/L ethylene glycol bis-(�-aminoethyl ether)-N,N-tet-
raacetic acid, 1 mmol/L DTT, 1 mmol/L phenylmethylsulfonyl fluo-
ride, 10 mg/mL aprotinin, 1 mmol/L benzamidine), incubated on ice
for 15 minutes, and spun at 14,000g for 5 minutes. Supernatants
containing the protein nuclear extracts were collected and stored at
�80°C. One small aliquot of total and nuclear extracts was used to
determine protein concentration with the Bradford reagent (Brad-
ford Bio-Rad protein assay, Bio-Rad, Hercules, CA).

TABLE 1. Clinical Characteristics of the HCV-Positive Patients and
Control Subjects Enrolled in the Study

Characteristics HCV� Controls

Number of subjects 41 22
Male/female 25/16 13/9
Mean age (range) 45.5 (19-68) 55.7 (45-70)
Serum biochemistry (mean � SD)

AST (IU/L) 50.9 � 40 19.3 � 9.0
(n � 19)

ALT (IU/L) 83.5 � 66.7 14.7 � 9.0
(n � 19)

GGTP (IU/L) 38.1 � 37.0 30.1 � 16.3
(n � 19)

Albumin (g/dL) 4.1 � 0.3 (n � 33)
Median viremia (copies/mL) (range) 3.1 � 108 (106-109)

(n � 33)
Genotype (n)

1b 26
Non-1b 13
Not determined 2

Abbreviations: AST, aspartate transaminase; ALT, alanine transaminase;
GGTP, �-glutamyl transpeptidase.

TABLE 2. Histologic Inflammatory Activity (Grade) and Fibrosis Score
(Stage) in the 3 Cohorts Studied

Liver
Histology

Gene
Expression EMSA Immunohistochemistry

Grade 1 7* 2 2
Grade 2 6 2 6
Grade 3 8 4 4
Stage 0-1 11 8 7
Stage 2, 3, 4 10 0 5

*Number of patients.
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Analysis of mRNA Expression by Reverse-Transcription PCR. Total RNA
was extracted from liver tissues, and NFKB1 (p50) and RelA (p65)
mRNA were determined by semiquantitative RT-PCR in a Perkin-
Elmer Gene Amp PCR System 2400 (Perkin Elmer, Foster City, CA).
One and a half micrograms of total RNA was reverse-transcribed (60
minutes at 37°C) with 500 U of Moloney murine leukemia virus
reverse transcriptase (Gibco-BRL, Gaithersburg, MD) in 50 �L vol-
ume of 5� RT buffer (250 mmol/L Tris-HCl [pH 8.3], 375 mmol/L
KCl, 15 mmol/L MgCl2), supplemented with 5 mmol/L DTT, 0.5
mmol/L deoxynucleoside triphosphate (Boehringer Mannheim), 60
U ribonuclease inhibitor (Promega Corporation, Madison, WI), and
500 ng random hexamers (Boehringer Mannheim). After heating
(95°C, 1 minute) and quick-chilling on ice, an aliquot of 10 �L (0.3
�g) of the cDNA pool was used for PCR amplification, in 40 �L of
10� PCR buffer (160 mmol/L [NH4]2SO4, 670 mmol/L Tris-HCl [pH
8.8], 0.1% Tween-20), containing upstream and downstream prim-
ers (80 ng each for NFKB1 and RelA), 1.5 mmol/L MgCl2, and 2 U of
Biotaq DNA polymerase (Bioline, London, UK).

As an internal control for each sample, PCR amplification of a
fragment of �-actin cDNA (using a 10-�L aliquot of the cDNA pool)
was performed. Validation experiments of PCR assays using known
quantities of total RNA showed linearity of the optical density of
amplification bands from 0.125 to 1 �g for all genes including �-ac-
tin. Thus, 0.3 �g was chosen as the suitable amount of total RNA to
quantify the mRNA levels. The primer’s sequences, the PCR-product
lengths, and the number of amplification cycles to avoid the plateau
effect are shown in Table 3. All liver samples have been quantified on
the linear amplification part of the curve. In the PCR conditions used,
the amplification efficiency for the 3 genes studied range from 88% to
92% in the different liver samples. After PCR amplification, 20-�L
aliquots of the PCR reactions were electrophoresed in 2% agarose gel
stained with ethidium bromide. To ensure accurate DNA band quan-
tification, less than 50 ng of DNA was loaded in each case. The bands
were visualized with a UV lamp and analyzed with commercial soft-
ware (Molecular Analyst/PC, Bio-Rad). Finally, values correspond-
ing to NFKB1 and RelA mRNA were normalized to those of �-actin
mRNA. We previously reported24 that �-actin mRNA expression
does not change in liver or peripheral blood mononuclear cells from
patients with chronic hepatitis C; thus, it is a reliable gene to nor-
malize mRNA values. The identity of the PCR products was verified
by automatic sequencing (ABI PRISM 310 Genetic Analyzer, Perkin
Elmer).

Determination of NF-�B Activity by EMSA. NF-�B binding activity
was determined by EMSA with a commercial oligonucleotide con-
taining the �B consensus site (Promega) labeled with [�-32P]–aden-
osine triphosphate. Seven micrograms of liver nuclear extract was
incubated with 100,000 cpm of the labeled probe in 10 mmol/L
Tris-Cl (pH 7.5), 1 mmol/L EDTA, 1 mmol/L DTT, 4% glycerol, and
1 �g poly dI-dC (Boehringer Mannheim) during 20 minutes at room
temperature. For competition and supershift experiments, a molar
excess of the unlabeled �B oligonucleotide or 1 �g of the specific
antibodies against RelA and p50 were incubated on ice for 20 min-
utes before the addition of the labeled probe. Separation of the com-
plexes was performed in a 5% nondenaturing polyacrylamide gel
electrophoresis in 0.5� Tris borate EDTA (TBE) during 2 hours at
150 V. The gel was dried and exposed overnight to x-ray film. Band
intensities were analyzed with commercial software.

Immunohistochemical Detection of Activated RelA. A mouse monoclo-
nal IgG3 Ab (Chemikon International, Temecula, CA) raised against

the nuclear localization signal was used to detect activated NF-�B.
The antibody binds to the RelA subunit only after release from in-
hibitory I�B-�, and thus specifically recognizes activated RelA, al-
lowing for the assessment of the NF-�B activation in situ. Tissues
were sectioned in a cryostat at 4 to 6 �m, air-dried, and fixed in
acetone for 10 minutes. Endogenous peroxidase was inhibited for 15
minutes with 0.3% hydrogen peroxide in methanol. Sections were
sequentially blocked with avidin-blocking solution, biotin-blocking
solution (Vector Laboratories, Burlingame, CA), and normal goat
serum (Vector Laboratories). Anti–NF-�B p65Mab was used at a
dilution of 1:75 overnight at 4°C in a humid chamber. Secondary
anti-goat biotinylated antibody was used at 1:200 dilution and incu-
bated for 45 minutes. Tissues were then incubated with streptavi-
dine-coupled peroxidase (Amersham), 1:200, and developed using a
Dako Liquid DAB substrate chromogen system (Dalo, Carpinterı́a,

FIG. 1. NF-�B activation is observed in the liver of HCV-positive patients
by EMSA. (A) Representative EMSA of 2 healthy liver samples (C1 and C2)
and 5 patients with HCV infection (P1 to P5). Open arrowhead represents the
free DNA probe. (B) Densitometric analysis of the blots showing increased
NF-�B levels in patients with HCV infection in comparison with healthy
livers (C). (C) Competition experiments demonstrate the specificity of the
bands obtained. Lane 1, HCV-positive patient. Lane 2, the same sample as in
lane 1 but including a 50-molar excess of unlabeled �B probe. The �B cold
probe was incubated on ice for 20 minutes with the extract before the addition
of the labeled �B probe. Specific bands (open arrows) show decreased inten-
sity in lane 2 with respect to lane 1. Unspecific band (closed arrow) shows
similar intensity in both lanes. (D) Supershift assay with antibodies, anti-p50
and anti-RelA. Complex I and II showed in lane 3 are supershifted with
anti-p50 antibody (lane 4), whereas only complex II is supershifted with
anti-RelA antibody (lane 5), indicating that complex I is formed by p50 ho-
modimers, whereas complex II is composed of p50/RelA heterodimers.

TABLE 3. Primer Sequences, PCR Amplification Product Length, and Number of Amplification Cycles for RelA, NF-�B1, and �-Actin

Gene Upstream Primer* Downstream Primer
Product Length
(base pair) Cycles

RelA TGCTGTGCGGCTCTGCTTCC AGGCTCGGGTCTGCGTAGGG 321 26
NF�B1 CTGCTCCTTCCAAAACACTT TCCTTCCTGCCCATAATCAT 332 24
�-Actin TCTACAATGAGCTGCGTGTG GGTGAGGATCTTCATGAGGT 314 22

*Primer sequences for both primers are named (5�-3�).
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CA). Control reactions were performed without primary antibody in
all patients and controls. All preparations were counterstained with
methyl green.

In Situ Detection of Apoptosis. Sections from the liver biopsies
were deparaffinized, transferred to xylene, and rehydrated in de-
scending concentrations of alcohol. After rehydration, the slides
were incubated with 20 mg/mL of proteinase K in phosphate-
buffered saline. Endogenous peroxidase was inactivated by 3%
hydrogen peroxide. Tissue sections were stained with an ApopTag
system (Oncor, Purchase, NY) that identifies cells with internu-
cleosomal fragmentation of DNA. The procedure was performed
according to the manufacturer’s instructions. The method is
based on the preferential binding of terminal deoxynucleotidyl
transferase to the 3�-hydroxyl ends of DNA.29 ApopTag staining
was validated with a tissue known to exhibit a high rate of pro-
grammed cell death (i.e., human infarcted myocardium).30

Tissue sections from each specimen were examined microscopi-
cally at 300� magnification, and all brown hepatocyte nuclei were
counted. The apoptotic index was calculated by dividing the number
of positive-staining hepatocytes by the total surface of the specimen
expressed in square micrometers. The pathologist who analyzed the

specimens was unaware of the clinical and experimental data for all
the biopsies examined.

Quantitative Analysis of Liver Fibrosis. Morphometric analysis (Olympus
MicroImage 2.0, Hamburg, Germany) was performed in a manner
similar to that described previously31 using specimens stained
with Sirius red.32 A magnified image (40�) of a specimen cap-
tured by the camera mounted on the microscope was processed by
the image-analysis computer. The collagen fibers stained red and
the entire area of the liver tissue were automatically calculated
and expressed in square micrometers. Collagen fibers that nor-
mally exist in the portal tract or central vein were also included in
the measurement.

Statistical Analysis. Results are given as mean � SEM unless other-
wise stated. Normality was assessed with the Shapiro-Wilks test.
Statistical analyses were performed using parametric (Student t) and
nonparametric (Mann-Whitney U) tests. Associations between
quantitative variables were studied with the Spearman or Pearson’s
correlation coefficients. All P values were 2-tailed and were consid-
ered significant if the associated value was less than 0.05. SPSS 6.0 for
Windows was used for statistical analysis.

FIG. 2. Immunohistochemical de-
tection of activated RelA in a healthy
liver (A) and in the liver biopsy from
an HCV-positive patient (B). Histo-
logic sections were counterstained
with methyl green. Hepatocyte nu-
clei stained in green indicate absence
of nuclear NF-�B. Arrows indicate
hepatocyte nuclei positive for NF-�B
(brown staining).
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RESULTS

Liver NF-�B Activity and Rel/NF-�B mRNA Levels in HCV Infec-
tion. We studied NF-�B binding activity in 8 HCV-positive
and 5 control livers by EMSA. We detected the NF-�B binding
signal in 6 of 8 patients and in 1 of 5 controls (P � .05). A
representative EMSA from 2 healthy livers and 5 HCV-posi-
tive cases is shown in Fig. 1A. Figure 1B shows NF-�B activity
values (as estimated by densitometric analysis of the autora-
diograms) in patients with chronic hepatitis C and healthy
controls. As shown in this figure, NF-�B activation is signifi-
cantly higher in patients than in controls (12.1 � 3.6 vs. 2.1 �
0.86; P � .01). Competition experiments with cold probe
confirmed the specificity of the bands obtained (Fig. 1C). To
identify the NF-�B subunits present in the complexes, we
performed supershift analysis, which revealed that the active
NF-�B present in cell nuclei from HCV-positive patients was
composed of p50/p50 homodimers and p50/RelA hetero-
dimers (Fig. 1D). RelB and c-Rel were not encountered when
supershift analysis was performed with the appropriate anti-
bodies (data not shown).

To ascertain by other methods the presence of active NF-�B
in HCV-infected livers, we studied NF-�B by immunohisto-
chemistry in frozen liver sections using a monoclonal anti-
body that recognizes activated RelA. We studied 12 HCV-
positive patients and 6 healthy livers (as negative controls).
Two controls showed faint nuclear staining, whereas the other
4 showed no positive signal. By contrast, all patients with
chronic hepatitis C showed nuclear staining in liver cells (5
faint and 7 intense nuclear staining; HCV-positive cases vs.
negative controls: P � .01) (Fig. 2).

We also analyzed the transcriptional expression of Rel A
and NFKB1 (the gene from which p50 is transcribed) in the
liver specimens. We found that hepatic RelA mRNA values
were not significantly different in patients and controls,
whereas NFKB1 mRNA levels were lower in the liver from
subjects with chronic hepatitis C than in healthy livers (P �
.005) (Table 4).
NF-�B and Liver Damage. Despite the important role of

NF-�B in inflammation, we did not find any correlation be-
tween NF-�B activity or Rel/NF-�B mRNA values in the liver
and the histologic inflammatory activity or serum transami-
nases. Interestingly, however, we found a relationship be-
tween NF-�B and fibrogenesis. Thus, patients with liver fibro-
sis (stage 2 or higher, as determined by METAVIR score; n �
10) had lower values of RelA mRNA than patients with absent
or minimal fibrosis (stage 0 or 1; n � 11) (1.59 � 0.05 vs.
1.96 � 0.17; P� .05). Similarly, 3 of 5 patients with minimal
RelA nuclear staining had fibrosis stage 3, whereas 5 of 7
patients with intense positive nuclear staining had absent or
minimal fibrosis (stage 0 or 1). Although these immunohisto-

chemical data indicate a tendency for higher fibrosis in pa-
tients with lower RelA nuclear staining, the differences were
not significant.

To further investigate the relationship between NF-�B ex-
pression and fibrosis, we measured collagen content of the
liver by Sirius red staining of the samples. We found a signif-
icant inverse correlation between liver collagen content and
RelA mRNA expression (r � �.57; n � 17; P � .05). In 17
patients, we were able to calculate the rate of fibrosis progres-
sion per year either because we had two separated liver biop-
sies (5 cases; time between biopsies ranged from 6 to 14
years), or because the duration of the infection could be pre-
cisely established (3 had received blood transfusions, 3 had
been drug abusers, 5 had had major surgical procedures or
parenteral exposures, and 1 was infected by vertical transmis-
sion). In these 17 patients, RelA was inversely correlated with
the yearly rate of fibrosis progression (r� �.51; n � 17; P�
.04). The group of intermediate/rapid fibrosers (i.e., fibrosis
progression rate higher than 0.07 units/year) had significantly
lower RelA mRNA than slow fibrosers (P � .003) and than
normal controls (P � .03). No differences were detected be-
tween slow fibrosers and controls (Fig. 3).

To investigate whether expression of NF-�B subunits were
related to the degree of apoptotic cell death in hepatocytes, we
determined by TdT-mediated dUTP nick end labeling
(TUNEL) staining the apoptotic index (number of apoptotic
hepatocytes per square micrometer) in 18 patients and 5 nor-
mal controls. The apoptotic index in normal livers ranged
from 2.31 to 3.79 (mean � SD: 2.80 � 0.27). Apoptosis was
markedly variable among HCV-infected patients, ranging
from 0.66 to 9.29 (mean � SD: 4.09 � 0.58). Figure 4 shows
TUNEL staining in a healthy liver and in a HCV-positive liver.
We found that in patients with evidence of increased pro-
grammed cell death rate (mean apoptotic index of controls
plus 2 SD), the apoptotic index was inversely correlated with
RelA-mRNA values (r � �.68; n � 9; P � .05) (Fig. 5).
Apoptosis was not correlated with the extent of liver fibrosis,
nor with the inflammatory activity.

FIG. 3. RelA mRNA expression in the liver of HCV-positive patients with
a known duration of infection divided into slow fibrosers (fibrosis progres-
sion rate lower than 0.07 units/year; n � 8) and intermediate/rapid fibrosers
(n � 9).

TABLE 4. NF-�B Subunits in the Liver of HCV-Infected Patients
and in Healthy Livers

Controls n† HCV (�) n

NFKB1 mRNA* 0.95 � 0.08 11 0.67 � 0.06‡ 21
RelA mRNA 2.02 � 0.19 11 1.81 � 0.01 21

NOTE. Levels of mRNA were determined by quantitative PCR in whole-
liver extracts.

*Data are expressed as mean values � SEM.
†Number of subjects.
‡P � .005, HCV� patients vs. healthy liver controls.
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Hepatic NFKB1-mRNA levels did not show any correlation
with fibrosis or apoptosis.
Hepatic NF-�B Expression and Viral Replication. NF-�B is acti-

vated by viral proteins. HCV core protein has been reported as
a plausible NF-�B activator.19-21 However, no relationship
was found between the expression of NF-�B and serum viral
load or viral genotype.

DISCUSSION

In the present study, we analyzed, in the liver from patients
with chronic hepatitis C, the status of Rel/NF-�B family of
transcription factors to determine whether there is a relation-

ship between these parameters and liver damage or disease
progression. Our EMSA data show that HCV infection is
associated with nuclear translocation of p50/p65 het-
erodimers and p50/p50 homodimers. In agreement with these
findings, the immunohistochemistry study also revealed the
presence of active RelA in the nuclei of hepatocytes. Increased
NF-�B function is consistent with the enhanced expression of
several NF-�B–dependent genes such as interferon beta,8
TNF-�,24,33,34 inducible NO-synthase,35 and intercellular ad-
hesion molecule-136 found in the liver of chronic hepatitis C
patients. NF-�B is an important mediator of the inflammatory
response, and persistent NF-�B activation has been detected

FIG. 4. TUNEL staining in a
healthy liver (A) and in an HCV-pos-
itive liver (B). Arrows show hepato-
cytes with evidence of apoptosis.
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in several inflammatory diseases such as asthma,37 rheuma-
toid arthritis,38 and inflammatory bowel disease.39 However,
our data show that, in the setting of chronic hepatitis C, nei-
ther the hepatic DNA binding activity of NF-�B (as estimated
by EMSA and immunohistochemistry) nor the transcriptional
expression of RelA or NFKB1 in the liver were associated with
the histologic grade of inflammation.

Gaweco et al.22 assessed by immunohistochemistry the
NF-�B status in liver allografts from patients with recurrent
hepatitis C. These authors found that NF-�B staining corre-
lated positively with the histologic grade of inflammation and
with the stage of fibrosis.22 The discrepancy between results
from these authors and our data might be the result of the
different clinical setting of the two studies: transplanted pa-
tients in the study by Gaweco et al. and nontransplanted pa-
tients in ours. It should be noted that immunosuppressive
drugs can significantly influence NF-�B activity.23

Interestingly, in the present study, we found an inverse
correlation between RelA expression and apoptotic index in
those cases with chronic hepatitis C manifesting increased
apoptotic rate. This is in agreement with the role of NF-�B as
a stress-response regulator within the cell. It has been shown
that NF-�B activation protects against TNF-�40-41 and trans-
forming growth factor �–induced42 apoptosis. In particular,
RelA, the main component of the active NF-�B heterodimer,
displays antiapoptotic functions in embryonic liver43 and in
remnant liver posthepatectomy.44 It has also been shown that
NF-�B activation in hepatocytes is protective against cyto-
kine-induced damage.45 Our data in patients with chronic
hepatitis C suggest that RelA might be implicated in defense
against cell death in this viral infection.

The main event with prognostic consequences in the evolution
of chronichepatitis is thedevelopment of cirrhosis. Thus, progres-
sion of the disease would be better estimated by the fibrosis stage
than by the grade of histologic activity.1 Progression to cirrhosis
varies widely from patient to patient, and subjects with HCV in-
fection can be classified as slow fibrosers (time from infection to
cirrhosis, more than 50 years), and intermediate/rapid fibrosers
(with a shorter timeof evolution to cirrhosis). It has been convinc-
ingly shownthat individual factors suchas sexandageat infection,
together with alcohol consumption rather than viral parameters
(viral load, genotype), determine the speed of progression to cir-

rhosis in chronic HCV infection.1 The molecular mechanisms de-
termining the individual proneness or resistance to develop cir-
rhosis have not been characterized. Our results show that patients
with substantial fibrosis had lower RelA mRNA levels than those
with absent or minimal fibrosis. Also, a significant negative corre-
lation was found between liver collagen content and transcrip-
tional RelA expression. In addition, we observed a significant, in-
verse correlation between progression of fibrosis and RelA mRNA
levels. As shown in Fig. 3, intermediate/rapid fibrosers showed
RelA values significantly lower than slow fibrosers and than nor-
mal livers. Our findings are in agreementwith observations show-
ing that RelA is a negative regulator of collagen gene expression in
human stellate cells.46

On the other hand, by protecting liver cells against mito-
chondrial damage and apoptosis, RelA might reduce liver ox-
idative stress and subsequent fibrogenesis. Although the set of
genes that NF-�B regulates in livers from patients with hepa-
titis C should still be determined, our data suggest that in
chronic HCV infection, RelA-regulated genes might exert an-
tiapoptotic and antifibrogenic effects, which may delay the
development of cirrhosis.

HCV core has been found to activate NF-�B when ex-
pressed in selected cell lines,19-21 but not in others.47-49 In this
study, we did not find any relationship between viral load
and NF-�B status. It seems that other factors including cyto-
kines that are up-regulated in chronic hepatitis C, such
as TNF-�,24,33,34 could influence NF-�B activity in this con-
dition.

Our finding of increased activity of NF-�B with decreased
expression of RelA in a significant number of cases suggests a
rather complex regulation of RelA mRNA. On the other hand,
NF-�B is retained in the cytoplasm by binding to one of the
inhibitory proteins called I�B-�, I�B-�, I�B-�, p105, or
p100.18 As a result of activating signals, proteolytic degrada-
tion of the inhibitor releases NF-�B, which translocates to the
nucleus regulating target genes. In our study, activation of
NF-�B is associated with normal values of both total and
phosphorylated I�B-� (data not shown), but with reduced
levels of NFKB1 mRNA. Because the NFKB1 gene codifies a
105-kd protein, which functions as an inhibitory subunit by
retaining NF-�B components in the cytosol,15,17 it could be
suggested that reduced NFKB1 expression may favor NF-�B
nuclear translocation in HCV-infected livers.

In conclusion, NF-�B is activated in the liver of subjects
with chronic hepatitis C, and expression of RelA in the liver of
these patients is associated with lower apoptosis, less fibrosis,
and slower progression to cirrhosis. Our data point to a pro-
tective role of hepatic RelA against cirrhosis development in
chronic HCV infection.
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