Research article

Open Access

DNA polymorphism analysis of *Brucella* lipopolysaccharide genes reveals marked differences in O-polysaccharide biosynthetic genes between smooth and rough *Brucella* species and novel species-specific markers

Michel S Zygmunt^{*1}, José M Blasco², Jean-Jacques Letesson³, Axel Cloeckaert¹ and Ignacio Moriyón⁴

Address: ¹INRA, UR1282, Infectiologie Animale et Santé Publique, IASP, Nouzilly, F-37380, France, ²Unidad de Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria (CITA) de Aragón, Gobierno de Aragón, Av Montañana, 930 50059 Zaragoza, Spain, ³Laboratoire d'Immunologie et Microbiologie, Unité de Recherche en Biologie Moléculaire (URBM), Facultés Universitaires, Notre-Dame de la Paix (FUNDP), Namur, Belgium and ⁴Departamento de Microbiología, Universidad de Navarra, Aptdo 177, 31080, Pamplona, Spain

Email: Michel S Zygmunt* - mzygmunt@tours.inra.fr; José M Blasco - jblasco@unizar.es; Jean-Jacques Letesson - jeanjacques.letesson@fundp.ac.be; Axel Cloeckaert - Axel.Cloeckaert@tours.inra.fr; Ignacio Moriyón - imoriyon@unav.es * Corresponding author

Published: 13 May 2009

BMC Microbiology 2009, 9:92 doi:10.1186/1471-2180-9-92

This article is available from: http://www.biomedcentral.com/1471-2180/9/92

© 2009 Zygmunt et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<u>http://creativecommons.org/licenses/by/2.0</u>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Received: 10 November 2008 Accepted: 13 May 2009

Abstract

Background: The lipopolysaccharide is a major antigen and virulence factor of *Brucella*, an important bacterial pathogen. In smooth brucellae, lipopolysaccharide is made of lipid A-core oligosaccharide and N-formylperosamine O-polysaccharide. *B. ovis* and *B. canis* (rough species) lack the O-polysaccharide.

Results: The polymorphism of O-polysaccharide genes wbkE, $manA_{O-Ag}$, $manB_{O-Ag}$, $manC_{O-Ag}$, wbkF and wbkD) and wbo (wboA and wboB), and core genes $manB_{core}$ and wa^{**} was analyzed. Although most genes were highly conserved, species- and biovar-specific restriction patterns were found. There were no significant differences in putative N-formylperosamyl transferase genes, suggesting that *Brucella* A and M serotypes are not related to specific genes. In *B. pinnipedialis* and *B. ceti* (both smooth), $manB_{O-Ag}$ carried an IS711, confirming its dispensability for perosamine synthesis. Significant differences between smooth and rough species were found in wbkF and wbkD, two adjacent genes putatively related to bactoprenol priming for O-polysaccharide polymerization. *B. ovis wbkF* carried a frame-shift and *B. canis* had a long deletion partially encompassing both genes. In smooth brucellae, this region contains two direct repeats suggesting the deletion mechanism.

Conclusion: The results define species and biovar markers, confirm the dispensability of $manB_{O-Ag}$ for O-polysaccharide synthesis and contribute to explain the lipopolysaccharide structure of rough and smooth *Brucella* species.

Background

The members of the genus *Brucella* are gram-negative bacteria that cause brucellosis, a zoonotic disease of great importance worldwide. Currently, several *Brucella* species are recognized [1]. *B. abortus, B. melitensis, B. suis, B. neotomae, B. ovis,* and *B. canis* have been known for a long

time and are traditionally distinguished according to their preferential host, biochemical tests and cell surface characteristics [2]. In addition, *Brucella* strains isolated from cetaceans and pinnipeds during the last fifteen years have been grouped into *B. ceti* and *B. pinnipedialis*, [3]. Very recently, some *Brucella* strains have been isolated from the common vole and a new species, *B. microti*, proposed [4]. *B. abortus*, *B. melitensis* and *B. suis* have been classically subdivided into biovars according to H₂S production, CO_2 -dependence, dye sensitivity and distribution of the A and M epitopes (see below) [2]. However, because these tests are difficult to standardize, molecular markers have been investigated [5-9].

Wild type B. melitensis, B. abortus, B. suis, B. neotomae, B. ceti, B. pinnipedialis and B. microti express a smooth (S)type lipopolysaccharide (LPS) formed by an O-polysaccharide connected to a core oligosaccharide which, in turn, is linked to lipid A, the section embedded into the outer membrane. However, both B. ovis and B. canis lack the O-polysaccharide and, accordingly, their LPS is termed rough (R) (R-LPS). Brucella LPS is of great interest not only because of these species differences but also because it is the foremost diagnostic antigen and a major virulence factor [10]. Despite this, the structure and genetics of Brucella LPS is only partially understood. The Opolysaccharide is a homopolymer of N-formyl-perosamine in α (1–2) or in α (1–2) plus α (1–3) linkages [11], and these variations relate to the main serovars in Brucella S species (A dominant, related to the α (1–2) linkage; M dominant $[\alpha (1-2) plus \alpha (1-3) in a 4:1 propor$ tion]; or A = M [α (1-2) plus α (1-3) in a > 4:1 proportion]). Previous studies in *B. melitensis* 16 M and H38 (both biovar 1) have identified two genetic regions involved in O-polysaccharide synthesis and translocation (Figure 1)(reviewed in [12]). Region wbo encodes two putative glycosyltransferases (wboA and wboB) and region *wbk* contains the genes putatively involved in perosamine synthesis (gmd [GDP-mannose 4, 6 dehydratase] and per [perosamine synthetase]), its formylation (*wbkC*) and polymerization (glycosyltransferases) (wbkA and wbkE), as well as those for bactoprenol priming (*wbkD* and *wbkF*) and O-PS translocation (wzm and wzt). In addition, wbk contains genes $(manA_{O-Ag'}, manB_{O-Ag'}, manC_{O-Ag})$ which may code for the enzymes that furnish mannose, the perosamine precursor. Intriguingly, wbkB and manB_{O-Ag} do not generate R phenotypes upon disruption [12,13], and B. ovis and B. canis carry wbk genes despite the absence of the O-polysaccharide [14]. Much less is known on the Brucella core oligosaccharide. Reportedly, it contains 2keto, 3-deoxyoctulosonic acid, mannose, glucose, glucosamine and quinovosamine [12,15] but the structure is unknown. Thus far, only three genes have been proved to be involved in core synthesis: pgm (phosphoglucomutase, a general biosynthetic function), manB_{core} (mannose synthesis) and wa^{**} (putative glycosyltransferase) [12]. Obviously, genetic analysis encompassing a variety of strains could shed light on the differences behind the phenotypes of S and R species, confirm or rule out a role for known genes, and identify differences that could serve as serovar or biovar markers. With these aims, wbkE, $manA_{O}$. Ag', $manB_{O-Ag'}$, $manC_{O-Ag'}$, wbkF, wkdD, wboA, wboB, wa^{**} and $manB_{core}$ were analyzed for polymorphism in the classical *Brucella* spp., *B. ceti*, and *B. pinnipedialis*.

Results

LPS genes in Brucella spp. and biovars

Figure 1 shows the organization of LPS genes in B. melitensis 16 M [12]. PCR amplification of wbkE, manB_{O-Ag}, manA_{O-Ag'} manC_{O-Ag'} wkdD, wbkF, wboA and wboB, wa** and manB_{core} was conducted on representative strains of each of the Brucella species included in this study and their biovars with attention to the LPS characteristics (i.e. S versus R; and A dominant, M dominant, or A = M for the S-LPS). Except for wboA and wboB in B. ovis, all genes were successfully amplified in the strains of all Brucella species and biovars tested. These results confirm the absence of the wbo region in B. ovis [16,17]. They also suggest that conservation of *wbk* extends beyond those genes (*wbkA* to *wbkC*) examined in a previous work [14] and that *wa*** and *manB_{core}* were are also conserved in the genus. Further analyses were then conducted to examine these possibilities.

Gene polymorphism in wbk wbkE

For all strains, the *wbkE* PCR-amplified product displayed the same *Eco*RV, *HinfI*, *PstI* and *PvuII* RFLP patterns. Although *B. melitensis* 63/9 biovar 2 showed a different *StyI* pattern, only one of eight additional *B. melitensis* biovar 2 strains tested showed this *StyI* pattern (data not shown).

manA_{O-Ag}

B. neotomae had a distinct $manA_{O-Ag}$ restriction pattern consisting of an additional *AvaII* site (Figures 2 and 3, Table 1). Moreover, *in silico* analysis showed a specific profile for *B. ovis* consisting of a nucleotide substitution (GAA to GGA) at position 497 which modified the ManA C-terminal sequence at amino acid 165 (not shown). Also, a single nucleotide deletion (CAAT to CA-T) was detected at position 738; this frame shift leads to a change in amino acid sequence after position 246. Nucleotide sequence of PCR products from several strains confirmed the deletion in $manA_{O-Ag}$ as characteristic of *B. ovis* (not shown).

manC_{O-Ag}

Despite the use of several endonucleases (*Bam*HI, *Ava*I, *Ava*II, *Bg*II, *Cla*I, *Pst*I), *manC*_{O-Ag} restriction patterns were

wbk region

Figure I

Regions and genes encoding LPS biosynthetic enzymes in B. melitensis 16 M Region wbk contains genes coding for: (i), enzymes necessary for N-formylperosamine synthesis (gmd, per, wbkC); (ii), two O-PS glycosyltrans-ferase (wbkE, wbkA); (iii), the ABC transporter (wzm, wzt); (iv) the epimerase/dehydratase necessary for the synthesis of an N-acetylaminosugar (wbkD); and (v), the polyisoprenyl-phosphate N-acetylhexosamine-I-phosphate transferase enzyme that primes bactoprenol (wbkF). Genes manA_{O-Ag}, manB_{O-Ag}, manC_{O-Ag} could be involved in the synthesis of mannose, the perosamine precursor. Restriction sites: A, Alul; AvI, Aval; Av, Aval; B, Bg/l; Bg, Bg/ll; C, Clal; E, EcoRI; EV, EcoRV; H, HindIII; Ha, HaelI; Hf, Hinfl; P, PstI; Pv, PvulI; S, Sau3A; Sa, SalI; St, Styl.

Table	1:	Brucella	strains	used	in	this	study.
-------	----	----------	---------	------	----	------	--------

					O-chain biosynthetic gene restriction patterns: wbk region wb region										
Species	Biovar	Serotype	Strain	Host/ source	Geographic origin	wbkE	manA O-Ag	manC O-Ag	manB O-Ag	wbkF	wbkD	wboA	wboB	manB core	wa**
Terrestrial m	ammal:														
B. melitensis	I	М	16 M (ATCC 23456; BCCN R1)	Goat	United States	A	A	A	A	A	A	A	A	A	A
	2	A	63/9 (ATĆĆ 23457; BCCN R2)	Goat	Turkey	A	A	A	В	В	A	A	A	A	A
	3	AM	Ether (ATCC 23458; BCCN R3)	Goat	Italy	A	A	A	В	A	A	A	A	A	A
B. abortus	Ι	A	544 (ATCC 23448; BCCN R4)	Cattle	England	A	А	A	С	А	В	В	A	A	A
	2	A	86/8/59 (ATCC 23449; BCCN R5)	Cattle	England	A	A	A	С	С	В	В	A	A	А
	3	A	Tulya (ATCC 23450; BCCN R6)	Human	Uganda	А	A	A	A	Α	В	В	A	А	Α
	4	Μ	292 (ATCC 23451; BCCN R7)	Cattle	England	Α	Α	A	С	Α	В	В	Α	А	А
	5	Μ	B3196 (ATCC 23452; BCCN R8)	Cattle	England	А	А	A	С	А	В	В	А	А	А
	6	A	870 (ATCC 23453; BCCN R9)	Cattle	Africa	А	А	A	С	А	В	В	А	А	А
	9	Μ	C68 (ATCC 23455; BCCN R11)	Cattle	England	Α	Α	A	С	Α	В	В	Α	А	A
		R	45/20 (BCCN V2)	Cattle	England	A	A	A	С	С	В	В	A	A	A
B. suis	I	A	1330 (ATCC 23444; BCCN R12)	Swine	United States	A	A	A	D	A	В	A	A	A	A
	2	A	Thomsen (ÁTCC 23445; BCCN R13)	Swine	Denmark	А	A	A	E	A	В	A	А	A	В

	3	A	686 (ATCC 23446; BCCN R14)	Swine	United States	A	A	A	D	A	В	A	A	A	A
	4	AM	40 (ATCC 23447; BCCN R15)	Reindeer	Russia	Α	Α	Α	D	Α	В	Α	Α	Α	А
	5	Μ	513 (BCCN R21)	Wild rodent	Russia	A	A	A	D	A	В	A	A	A	A
B. ovis			63/290 (ATCC 25840; BCCN R17)	Sheep	Africa	A	A	A	F	A	В	NA	NA	A	С
			Reo 198 (BCCN R22)	Sheep	United States	A	A	A	F	A	В	NA	NA	A	С
			BCCN 76-250	Sheep	France	A	A	А	F	A	В	NA	NA	A	С
B. canis			RM6/66 (ATCC 23365; BCCN R18)	Dog	United States	A	А	A	D	D	С	A	А	A	A
			D519 (BCCN CI)	Dog	Madagascar	Α	A	А	D	D	С	A	A	Α	A
			BCCN 87.65	Dog	Canada	A	A	А	D	D	С	А	A	A	A
B. neotomae		A	5K33 (ATCC 23459; BCCN R16)	Desert rat	United States	A	В	A	D	A	A	A	A	A	A
Marine mammal B. þinniþedialis	:	A	B2/94	Common seal	Scotland	A	A	A	G	A	A	A	A	A	A
B. ceti		А	B1/94	Porpoise	Scotland	А	А	А	G	А	А	А	А	Α	А

^a ATCC, American Type Culture Collection; BCCN, Brucella Culture Collection, Nouzilly, France. NA: Not Amplified

Table I: Brucella strains used in this study. (Continued)

Figure 2

Restriction maps of the core- and O-polysaccharide genes with the restriction enzymes used. For each gene, restriction map A corresponds to that deduced from the nucleotide sequence of *B. melitensis* 16 M. Only differences compared to the nucleotide sequences of *B. melitensis* 16 M are indicated in restriction maps B, C, D, E, F and G. The restriction patterns A, B, C, D, E, F and G are further indicated in Table 1 for each gene and for each *Brucella* strain studied. Additional sites and their most probable location according to restriction patterns are indicated by the restriction name (e.g. Hf) and by the position name and an asterisk.

Figure 3

PCR-RFLP analysis of Brucella LPS genes manA_{O-Ag}, manB_{O-Ag}, wbkD, wbkF, wboA and wa**. Panel A. Lanes: I, molecular size markers; 2, $manA_{O-Ag}$ from B. melitensis 16 M uncut; 3, $manA_{O-Ag}$ from B. melitensis 16 M cut by Avall; 4, manA_{O-Ag} from B. neotomae cut by Avall; 5, wbkF from B. melitensis 16 M uncut; 6, wbkF from B. melitensis 16 M cut by Alul; 7, wbkF from B. melitensis bv2 cut by Alul; 8, wbkF from B. abortus bv2 cut by Alul; 9, wbkF2* from B. melitensis 16 M uncut; 10, wbkF2* from B. canis uncut; 11, wbkF2* from B. melitensis 16 M cut by EcoRV; 12, wbkF2* from B. canis cut by EcoRV; 13, wboA from B. melitensis 16 M uncut; 14, wboA from B. melitensis 16 M cut by Alul; 15, wboA from B. abortus cut by Alul; 16, wa** from B. melitensis 16 M uncut; 17, wa** from B. melitensis 16 M cut by Avall; 18, wa** from B. suis bv2 cut by Avall; 19, wa** from B. melitensis 16 M cut by Hinfl; 20, wa* from B. ovis cut by Hinfl. Panel B. Lanes: I, molecular size markers; 2, manB_{O-Ag} from B. melitensis 16 M uncut; 3, manB_O. Ag from B. pinnipedialis uncut; 4, manB_{O-Ag} from B. melitensis 16 M cut by Sau3A; 5, manB_{O-Ag} from B. melitensis bv2 cut by Sau3A; 6, manB_{O-Ag} from B. abortus cut by Sau3A; 7, manB_{O-Ag} from B. suis cut by Sau3A; 8, manB_{O-Ag} from B. suis bv2 cut by Sau3A; 9, manB_{O-Ag} from B. ovis cut by Sau3A; 10, manB_{O-Ag} from B. pinnipedialis cut by Sau3A; 11, manB_{O-Ap}from B. ceti cut by Sau3A; 12, manB_{O-Ag}from B. melitensis 16 M cut by EcoRV; 13, manB_{O-Ag} from B. abortus cut by EcoRV. Panel C. Lanes: I, molecular size markers; 2, wbkD from B. melitensis 16 M uncut; 3, wbkD from B. abortus uncut; 4, wbkD from B. canis uncut; 5, wbkD from B. melitensis 16 M cut by Sau3A; 6, wbkD from B. abortus cut by Sau3A; 7, wbkD from B. canis cut by Sau3A.

identical in all *Brucella* strains (Figure 2, Table 1). Therefore, no polymorphism was observed by this method.

manB_{O-Ag}

B. melitensis 16 M (biovar 1) and B. abortus Tulya (biovar 3) presented a similar $manB_{O-Ag}$ restriction pattern (pattern A), and B. melitensis biovars 2 and 3 showed a Sau3A site absent in other strains (pattern B). All B. abortus (except *B. abortus* Tulya (biovar 3)) strains tested showed a specific pattern characterized by the absence of the EcoRV site at position 1238 (pattern C). B. suis biovars 1, 3, 4 and 5, B. canis and B. neotomae formed a separate group (pattern C) on the basis of the Sau3A restriction patterns of this gene. B. ovis shared this pattern only partially because it lacked one more Sau3A site (pattern F). B. suis biovar 2 strains lacked the manB_{O-Ag} Sau3A site and showed an additional HinfI site in this gene (pattern E). When this gene was amplified (primers manB-A and manB-B; (Table 2) from B. ovis 63/290, sequenced, and aligned with the homologous genes of B. melitensis biovar 1, B. abortus biovar 1, and B. suis biovar 1, polymorphism in both sequence and length was detected. As compared to B. melitensis biovar 1 and B. abortus biovar 1, two more nucleotides were found at position 1265-1266 in B. suis biovar 1 and B. ovis which should lead to a modification of C-terminal sequence of the protein (not shown). All strains isolated from marine mammals yielded restriction manB_{O-Ag} patterns very different from those of the six classical species (pattern G, Table 1) as well as a larger PCR product (2,933 bp and 2,091 bp, respectively) (Figure 3). Sequencing of the PCR product of three strains (B2/94, B1/94 and B14/94) revealed an IS711 element (842 bp) inserted into the gene (from position 780 to 1622) (Figure 2), and this insertion was confirmed by PCR in 82 additional marine mammal strains (not shown).

wbkD and wbkF

The wbkD PCR product was tested with Hinfl, Avall, Sau3A, BglI, ClaI and StyI, but a very low degree of DNA polymorphism was observed (Figures 2 and 3, and Table 1). For B. melitensis, B. neotomae and all marine mammal strains, all strains showed the same Sau3A pattern. An additional Sau3A site was observed for all B. abortus, B. suis and B. ovis strains (pattern B). Interestingly, the B. canis product showed a reduced size of around 400 bp and, therefore, yielded species specific restriction patterns(Figures 2 and 3). This result indicated the existence of a deletion in B. canis wbkD (see below). The wbkF PCR product showed also a low degree of polymorphism when tested with EcoRV, HaeII, HinfI, AluI, Sau3A and StyI (Figures 2 and 3, and Table 1). One pattern, however, was specific for B. melitensis biovar 2 which lacked an AluI site, and a distinct pattern for two B. abortus biovar 2 and 45/ 20, was also observed with AluI site. Remarkably, no amplification was obtained for B. canis, suggesting that

Target DNA	Primer name	Sequence (5'-3')	Amplicon size		
manAO-Ag	manA-A	CATCACCATCGTTCAGAGCA	1804 bp		
	manA-B	GCCAGGGGAAATGATAATGA			
manBO-Ag	manB-A	GTTGGCAGAAGTTGGCATCG	2091 Бр		
-	manB-B	CTAATGCCTGTTCCGCCACC			
manCO-Ag	manC-A	TTGAAGACTGGTTTATTGCG	2210 bp		
	manC-B	GCAAGACTGCCATAGAAACC			
wbkE	wbkE-A	CCGCAAACTGAATGGATAAA	2452 bp		
	wbkE-B	GCAACTGTCAGGTCTGGTGC			
wbkF	wecA-A	GCGGAGGAATGGACAAGGAC	1234 bp		
	wecA-B	AGGAAAGCCTGGCGGTACTG			
wbkD	wbkD-A	TGGCTGGAGTGTGCCGAAAG	2165 bp		
	wbkD-B	ACGGTTGCTGGTGCTTGTGG			
wa**	wa**-A	CATCACGCATAATGACACCG	2342 bp		
	wa***-B	TGCTTTTGACAAGCTCGTCG			
manBcore	manBcore-A	CCAGCCGACGATTGAACTGG	1589 bp		
	manBcore-B	AAGCCTTGAACCCGATCCCC			
wboA	wboA-A	TCTGCATAACGGTCCTTGCC	1334 bp		
	wboA-B	GCTTTTACGGCAACAAGTCC			
wboB	wboB-A	CTTGGGATGCGAAACTACCG	1656 bp		
	wboB-B	GCTCACGCTTCCGAATACTG			

Table 2: DNA Primers used

the sequence of the *wbkF*-B primer corresponded to a deletion extending from the adjacent *wbkD* gene (see above). In fact, when the appropriate primer was used, the *wbkF* PCR product showed a reduced size of about 400 bp. To examine this point further, the *wbkF-wbkD* locus was amplified and sequenced in *B. melitensis, B. ovis* and *B. canis.* The sequences showed a 351 bp deletion in *B. canis* extending from *wbkD* nucleotide 1594 (in BMEI 1426) to *wbkF* nucleotide 918 (in BMEI 1427) (Figure 3 and 4) as confirmed by the genome sequence of *B. canis* RM 6/66 (ATCC 23365) (Genbank accession # <u>CP000872</u> and <u>CP000873</u>). Moreover, as compared to their homologs in *B. melitensis*, *B. abortus* and *B. suis*, gene *wbkF* of *B. ovis* showed a single nucleotide deletion at position 35. This frame shift mutation necessarily leads to an extensive modification of cognate protein (Figure 5).

Figure 4

The B. melitensis 16 M chromosome I region absent in B. canis and the adjacent DNA. The two 7 bp direct repeats located in *B. melitensis* 16 M at both sides of the fragment absent in *B. canis* are in bold.

$manB_{core}$

wbkF

Bsuis Bovis	MSSNSLKFGTSGLRGLAVELNGLPAYAYTMAFVQMLAAKGQLQKGDKVFIGRDLRPSSPD 60 MSSNSLKFGTSGLRGLAVELNGLPAYAYTMAFVQMLAAKGQLQKGDKVFIGRDLRPSSPD 60

Bsuis	IAALAMGAIEDAGFTPVNCGVLPTPALSYYAMGAKAPSIMVTGSHIPDDRNGLKFYRRDG 120
Bovis	IAALAMGAIEDAGFTPVNCGVLPTPALSYYAMGAKAPSIMVTGSHIPDDRNGLKFYRRDG 120 ************************************
Bsuis	EIDKDDEAAISAAYRKLPAILAARKHVGSTETDAALQAYADRYAGFLGKGSLNGLRVGVY 180
Bovis	EIDKDDEAAISAAYRKLPAILAARKHVGSTETDAALQAYADRYAGFLGKGSLNGLRVGVY 180 ************************************
Bsuis Bovis	QHSSVARDLLMYLLTTLGVEPVALGRSDIFVPVDTEALRPEDIALLAQWGKSDRLDAIVS 240 OHSSVARDLLMYLLTTLGVEPVALGRSDIFVPVDTEALRPEDIALLAOWGKSDRLDAIVS 240
20115	**************************************
Bsuis	TDGDADRPI, IADEHGOEVRGDI, AGAITATWVGADTI, VTPVTSNTAI, ESREPKVI, RTRV 298
Bovis	TDGDADRPLIADEHGQFVRGDLAGAITATWVGRIRSSRQSPPTPHWKAAFPRFERASVRL 300

Bsuis	GSPYVIASMAQASTGNSGPVIGFEANGGVLLGSTVERNGRSLTALPTRDALLPILACLAT 358
Bovis	MSSQAWHRHPRAIPARSSGLRPMAAFCLAARSRGMDEARPCRRATPCCPFWLALPRFTKR 360
Bsuis	VHEKKTPLSTIARSYGFRVALSDRLQNIPQEASTAFLALLEDADKRASLFPAGDAIVRVE 418
Bovis	$eq:krrfqqspgpmasasrlatgcktfrrrrappssrswrmrinaprsfllatqscgwkps \ 418$
Bsuis	TIDGVKLFFQSGNAVHYRASGNAPELRCYVESSDDTQAAKLQALGLEIARKALKDATRP- 477
Bovis	TASFSFNQ AMRFIIGHRAMRRNCAAMWNLRMTHKPPSFRRLAWKSHAKHRMRRGH 473
Bovis	MRFLLVSFFVSAFSAGLGFFCCRICCQRTFLPRAVRVPTIALPPGRSADLRFPLSSRSRF 60
Bsuis	MRFLLVSFFVSALLCGIGLFLLSHLLPANFLAARMSSRSNHSIAARQIGG-LALIPAILV 59 *********** * * * * ** ** **
Bovis	SRPIKICSFSCACQAHLSCCGSSVDWMTAMNYRRSSGSVHSFWPPLQCYMASAPIFACCQ 120
Bsuis	TLAIFAPDLEVNMQLFLCLSGASLLLWVVGGLDDRYELSEIIRLGSQLLAAITVLYGLGP 119 * * * * * * 119
Bovis	TFCPIGWKQHSCLHLSSQSMPTSWMVSILPGWACLWWVSHYSAPWGRGO 169
Bsuis	DFRLLPNLLPYWLEATLIVFALIIAINVTNFMDGLDLMTVAGLGVPLVGIALGALGLTG 179
	* * * * *

 Bovis
 VAASGRWLPAGFSVLPCSTARLP--AFFSAIPEAPHWGSEQPCCCLRVKHTSWSRLFCRF
 227

 Bsuis
 LTSSGIGAVAAGGLLGFALFNRPPASIFLGDSGSPPLGLIVGTALLLLARETHIVVALVL
 239

 **
 *
 *
 *

 Bovis
 IIFWMRAPQLSCVQPKVRTSSRLTRNMPIRQNAVAGVCRKWWPMWRFIQ----SSPAWWP
 283

 Bsuis
 PLYYILDAGTTIVMRAAQGENILKAHS---KHAYOTAKPSCWOUPUTATUUT
 283

PLYYILDAGTTIVMRAAQGENILKAHS---KHAYQIAKRSGWSVPKVVAHVALLNTII * * * * * * * * CWRWIIRSHNHFCWSQPLPHSFCCSIS--AGTSGSY--- 317

Bovis CWRWIIRSHNHFCWSQPLPHSFCCSIS--AGTSGSY--- 317 Bsuis CVVALLALDHPLAQLTFLLVAAVATLILLLDFRGRFRKL 335

Figure 5

Comparison of the B. suis ManB_{core} and **WbkF with the corresponding B. ovis proteins**. Conserved amino acids are indicated by stars. The alignment was performed using the Clustal W program.

Gene polymorphism in wboA

A low degree of DNA polymorphism was observed in *wboA*. However, one pattern was specific of *B. abortus* since all strain testedlacked an *Alu*I site. As described above, no amplification was observed for any *B. ovis* strain. This confirms [16,17] that absence of *wboA* (and *wboB*) is a *B. ovis* species-specific marker.

Polymorphism in core LPS genes

Despite using six restriction enzymes, all brucellae displayed the same RFLP pattern for the *manB_{core}* amplicon. *In silico*, the four genomes available showed low polymorphism. A single nucleotide deletion at position 812 was detected in *B. ovis*, which should modify the C-terminal sequence of the protein (Figure 5). Similarly, a low degree of polymorphism was observed in *wa***. With the exception of *B. suis* biovar 2, one *PstI* pattern was specific of *B. suis*. Biovar 2 also lacked an *AvaII* site, which could be considered as a biovar marker. With *Hinf*1, a pattern was specific of *B. ovis* (Figure 2, Table 1).

Discussion

Despite the high DNA homology of brucellae, gene polymorphism and species- and biovar-specific markers have been consistently found. Concerning outer membrane molecules, both have been found in genes of proteins [16,18,19] but not in the LPS genes examined, all of the wbk region (wbkA, gmd, per, wzm, wzt, wbkB, and wbkC). Interestingly, these O-polysaccharide genes were found to be highly conserved not only in the classical S Brucella species and biovars but also in *B. ovis* and *B. canis*, the two species that lack the O-polysaccharide [14]. Therefore, an implication of these observations is that the R phenotype of B. ovis and B. canis cannot be explained by the absence of any of those seven *wbk* genes. More recently, the *wbk* region has been extended to include wbkE, manA_{O-Ag}, manB_{O-Ag'} manC_{O-Ag'} wbkF, and wkdD [12]. The present study includes an analysis of some of these genes and the results not only show the existence of specific markers but, more important, they also improve our understanding of the genetics-structure relationship in Brucella LPS. Concerning the O-polysaccharide, the results are relevant to interpret the variations in O-polysaccharide linkages of S Brucella and add further weight to our previous finding (12) that the putative mannose genes in *wbk* are not essential for perosamine synthesis. Furthermore, they help to explain the differences existing between S and R Brucella species.

Despite extensive transposon mutagenesis searches, only four putative glycosyltransferase genes have been implicated in N-formylperosamine polymerization in *Brucella*: *wbkA*, *wbkE*, *wboA* and *wboB*. As mentioned above, *wbkA* is conserved in classical *Brucella* species [14], and the results reported here show that *wboA*, *wboB* and *wbkE* are similarly present in S B. melitensis, B. abortus, B. suis, B. pinnipedialis and B. ceti. Moreover, these genes displayed low polymorphism, no matter the A or M serotype. It has to be noted that the consensus sequences of glycosyltransferases are conspicuous enough to make unlikely the existence of O-polysaccharide transferases other than wboA, *wboB*, *wbkA* and *wbkE*, and that, although the α (1–3) linkage relates to the M serotype, there is evidence showing that at least some A dominant strains generate a very small proportion (i.e. 2%) of α (1–3) linkages [20]. In keeping with this, it has been observed that strain RB51 (a wboA mutant of the A-dominant B. abortus 2308 S strain [21]) generates small amounts of atypical M-type polysaccharides [22]. All this evidence suggests that, rather than the presence of a α (1–3)-specific transferases in the M serotype, there are subtle variations in the expression of *wboB*, *wbkA* or *wbkE*, or in the activity of the corresponding glycosyltransferases that lead to the increase in α (1–3) linkages typical of the M and A = M serotypes.

A surprising feature of the wbk is the presence of genes that are not essential for O-polysaccharide synthesis. Godfroid et al. [13] analyzed the functions of the ORFs between BMEI1404 (wbkA, encoding a putative mannosyltransferase [perosaminyltransferase since mannose and perosamine are related]) and BMEI1418 (wbkC, encoding a putative formyltransferase) and found that disruption of ORF BMEI1417 (wbkB) generated no R phenotype. Later, it was found that the genome of B. melitensis contains three putative mannose synthesis genes (ORFs BMEI1394 to BMEI1396) adjacent to *wbkA*. Because mannose is the direct precursor of perosamine and O-polysaccharide genes usually cluster together, Monreal et al. [23] proposed the names of manA_{O-Ag'} manB_{O-Ag'} manC_{O-Ag} for BMEI1394 to BMEI1396, and their assignment to wbk is supported by the finding by González et al. [12] that disruption of ORF BME1393 (wbkE) blocks O-polysaccharide synthesis. The latter authors provided proof that at least manB_{O-Ag}, is dispensable for perosamine synthesis but also pointed out that the existence of manB_{core}-manC₂ core (ORFs BMEII0900 and BMEII0899) preclude to rule out any role for the *wbk* putative mannose synthesis genes since there could be internal complementation [12]. All these results are fully consistent with the observation that, although manB_{O-Ag} is disrupted by IS711 in B. pinnipedialis and B. ceti, these two species keep the S phenotype. The wbk region has features suggestive of horizontal acquisition [14] whereas manB_{core} (and manC_{core}) are Brucella older genes necessary for the synthesis of the LPS core oligosaccharide [23,24]. Accordingly, a drift to dysfunction of the *wbk man* genes may have been made possible by the redundancy created after horizontal acquisition of *wbk*, and the similarity in this regard between B. ceti and B. pinnipedialis suggests a common ancestor.

The results of this research also shed additional light on the genetic basis behind the R phenotype of *B*. ovis and *B*. canis. Previous work has shown a large deletion in B. ovis that encompasses wboA and wboB [16,17]. The present work confirms the absence of these two putative perosaminyltraneferase genes in B. ovis, an absence that can account by itself for the lack of O-polysaccharide in this species [12,25]. To this evidence, the present work adds the nucleotide deletion detected in *B. ovis wbkF.* Indeed, the frame-shift thus created predicts a very modified protein. Presumably, WbkF is involved in catalyzing the transfer of an acetylated aminosugar to undecaprenylphosphate, thus priming this carrier for O-chain polymerization. The N-terminal region of the E. coli WbkF homologue was found to be necessary for this function [26] and, therefore, it seems likely that the frame-shift in B. ovis wbkF produces a non-functional protein, thus explaining in part the R phenotype of this species. Other changes detected in several B. ovis LPS genes do not have this dramatic effect. As discussed above, the man wbk genes are dispensable and, therefore, the nucleotide substitution and frame shift detected in B. ovis manA_{O-Ag} do not contribute to the R phenotype. Since disruption of $manB_{core}$ generates a deep R-LPS [24,24], the presence of two more nucleotides in the sequence of B. ovis manB_{core} was interesting. However, this deletion modified only the C-terminal sequence (5 last amino-acids) of the protein making unlikely a change severe enough to contribute to the R phenotype. In support of this interpretation, B. ovis R-LPS is not deeply truncated like that of *manB_{core}* mutants. Moreover, the same two nucleotide addition was detected in *B. suis*, and it is known that a functional $manB_{core}$ is required for the synthesis of S-LPS in this species [27].

A DNA deletion of 351 bp. including 3' end of *wbkF* and 3' end of *wbkD* was detected in *B. canis*, which might have occurred by a slipped mispairing mechanism (a direct repeat sequence of 7 bp «GGATCAT» is present at both sides of the deleted sequence in the other *Brucella* species (Figure 5). It is clear that this deletion has profound consequences in the synthesis of LPS. We have discussed above the essential role of *wbkF* in O-polysaccharide synthesis, and *wbkD* seems involved in the synthesis of quinovosamine, a sugar that is possibly linking the *Brucella* O-polysaccharide to the R-LPS [12]. This double mutation clearly explains the R phenotype of *B. canis* and is consistent with the absence of quinovosamine in this species [28].

Conclusion

The analyses carried out suggest new hypothesis to study the genetics of *Brucella* O-polysaccharide serotypes and provide evidence on both the dispensability of some *wbk* genes which is consistent with their horizontal acquisition. They also confirm the essential role of *wbkD* and *wbkF* in O-polysaccharide synthesis and, at the same time, contribute to understand the R phenotype of *B. ovis* and *B. canis*. Finally, they provide several biovar and species specific markers that can be used to design the corresponding molecular typing tools.

Methods

Brucella strains

The strains (Table 1) were maintained freeze-dried in the INRA *Brucella* Culture Collection, Nouzilly (BCCN), France. For routine use, they were grown on tryptic soy agar (Difco)-0.1% (w/v) yeast extract (Difco). Fastidious strains (*B. abortus* biovar 2 and *B. ovis*) were grown on the same medium supplemented with 5% sterile horse serum (Gibco BRL). All strains were checked for purity, and species and biovar confirmed by standard procedures [2].

DNA preparation

Bacteria were cultured at 37 °C for 24 h, suspended in 3 ml sterile distilled water, harvested (2000 × *g*, 10 minutes) and resuspended in 567 μ l of 50 mM Tris, 50 mM EDTA, 100 mM NaCl (pH 8.0). Then, 30 μ l of 10% (w/v) SDS and 3 μ l of 2% (w/v) proteinase K were added, the mixture was held at 37 °C for 1 h and extracted twice with phenol-chloroform. Nucleic acids in the aqueous phase were precipitated with two volumes of cold ethanol, dissolved in 100 μ l of 10 mM Tris, 1 mM EDTA (pH 8.0) and the amount of DNA estimated by electrophoresis on 0.8% agarose gels using appropriate DNA solutions as the standards.

Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP)

The 20-mer primers were selected to amplify manB_{O-Ae}, manA_{O-Ag'} manC_{O-Ag'} wbkF, wkdD, wbkE, wboA and wboB, wa^* and $manB_{core}$ according to the B. melitensis 16 M genome sequence (Genbank accession numbers AE008917 and AE008918) (Table 2). Amplification mixtures were prepared in 100 µl volumes containing 10 mM Tris-HCl (pH 9.0), 50 mM KCl, 1.5 mM MgCl₂, 0.1% Triton X-100, 0.2 mg ml⁻¹ gelatin (1 × PCR buffer; Appligene), 200 µM each deoxynucleoside triphosphate, 1 µM each primer, 100 ng of genomic DNA, and 2.5 U of Taq DNA polymerase (Appligene). Amplification was performed in a GeneAmp PCR System 9600 thermocycler (Perkin Elmer) as follows: cycle 1, 94°C for 5 minutes (denaturation); the next 30 cycles, 58°C for 30 s (annealing), 70°C for 30 s (extension) and 94°C for 30 s (denaturation); the last cycle, 58°C for 30 s (annealing) and 70°C for 10 minutes (extension). For PCR-RFLP, Alul, AvaI, AvaII, BamHI, BglI, BglII, ClaI, EcoRI, EcoRV, HindIII, Haell, Hinfl, Pstl, Pvull, Sau3A, Sall, Styl were used. The restriction enzymes were chosen according to the B. melitensis 16 M genomic sequences of the above-listed genes.

2.4. Nuceotide sequence and data analysis

PCR products of the expected sizes were purified from 1% agarose gels (Invitrogen) with a QIAquick gel extraction kit (Qiagen GmbH, Hilden, Germany), cloned into pGEM-T Easy vector (Promega, Madison, Wis.), and transformed into competent JM109 Escherichia coli cells (Promega). The transformants were selected with ampicillin, and recombinants were selected by blue-white differentiation. Plasmids were isolated from several clones with a Qiagen Plasmid Mini kit. To check for the presence of the correct insert, plasmids were digested with EcoRI and the restriction products were separated on 1% agarose gels. Nucleotide sequencing of clone was performed by automated cycle sequencing with Big Dye terminators (ABI 377XL; PE Applied Biosystems, Foster City, Calif.) and primers RP (reverse primer) and UP (universal primer M13-20). Multiple DNA and amino acid sequence alignments were performed with CLUSTAL W http:// www2.ebi.ac.uk/clustalw/.

Nucleotide sequence accession numbers

The *Brucella* nucleotide sequences determined in this work have been deposited in the GenBank/EMBL/DDBJ databases under the following accession numbers: FJ376556, FJ 376557 for the *manB*_{O-Ag} gene of *B. pinnipe-dialis* B2/94 and *B. ceti* B1/94.

Authors' contributions

MSZ, IM and AC conceived the study. MSZ designed and performed the experimental work. All authors analyzed the data. MSZ wrote the manuscript. IM, and AC helped to draft the manuscript. All authors read, corrected and approved the final manuscript.

Acknowledgements

Research at the laboratories of the authors is supported by the European Commission (Research Contract QLK2-CT-2002-00918), Ministerio de Ciencia y Tecnología of Spain (Proyecto Proyecto AGL2004-01162/GAN). We thank Maggy Grayon for her contribution on DNA extraction from *Brucella* strains.

References

- Euzéby JP: List of prokaryotic names with standing in nomenclature. 2008 [http://www.bacterio.cict.fr/index.html].
- Alton GG, Jones LM, Angus RD, Verger JM: Techniques for the brucellosis laboratory Paris, France: INRA; 1988.
- Foster G, Osterman BS, Godfroid J, Jacques I, Cloeckaert A: Brucella ceti sp. nov. and Brucella pinnipedialis sp. nov. for Brucella strains with cetaceans and seals as their preferred hosts. Int J Syst Evol Microbiol 2007, 57:2688-2693.
- J Syst Evol Microbiol 2007, 57:2688-2693.
 Scholz HC, Hubalek Z, Sedlacek I, Vergnaud G, Tomaso H, Al DS, Melzer F, Kampfer P, Neubauer H, Cloeckaert A, Maquart M, Zygmunt MS, Whatmore AM, Falsen E, Bahn P, Gollner C, Pfeffer M, Huber B, Busse HJ, Nockler K: Brucella microti sp. nov., isolated from the common vole Microtus arvalis. Int J Syst Evol Microbiol 2008, 58:375-382.
- Le Fléche P, Jacques I, Grayon M, Al Dahouk S, Bouchon P, Denoeud F, Nockler K, Neubauer H, Guilloteau LA, Vergnaud G: Evaluation and selection of tandem repeat loci for a Brucella MLVA typing assay. BMC Microbiol 2006, 6:9.

- 6. Marianelli C, Ciuchini F, Tarantino M, Pasquali P, Adone R: Molecular characterization of the rpoB gene in *Brucella* species: new potential molecular markers for genotyping. *Microbes Infect* 2006, **8:**860-5.
- Garcia-Yoldi D, Marín CM, de Miguel MJ, Muñoz PM, Vizmanos JL, López-Goñi I: Multiplex PCR assay for the identification and differentiation of all Brucella species and the vaccine strains Brucella abortus S19 and RB51 and Brucella melitensis Rev1. Clin Chem 2006, 52:779-781.
- Foster JT, Okinaka RT, Svensson R, Shaw K, De BK, Robison RA, Probert WS, Kenefic LJ, Brown WD, Keim P: Real-time PCR assays of Single-Nucleotide Polymorphisms defining the major Brucella clades. J Clin Microbiol 2008, 46:296-301.
- Whatmore AM, Perrett LL, MacMillan AP: Characterisation of the genetic diversity of Brucella by multilocus sequencing. BMC Microbiol 2007, 7:34.
- Lapaque N, Moriyón I, Moreno E, Gorvel JP: Brucella lipopolysaccharide acts as a virulence factor. Curr Opin Microbiol 2005, 8:60-66.
- Perry MB, Bundle DR: Advances in brucellosis research Edited by: Adams LG. Texas A&M University Press, College Station; 1990:76-88.
- González D, Grilló MJ, De Miguel M, Ali T, Arce-Gorvel V, Delrue R-M, Conde-Álvarez R, López-Goñi I, Iriarte M, Marín CM, Weintraub A, Widmalm G, Zygmunt MS, Letesson JJ, Gorvel JP, Blasco JM, Moriyón I: Brucellosis vaccines: assessment of Brucella melitensis lipopolysaccharide rough mutants defective in core and Opolysaccharide synthesis and export. PLoS ONE 2008, 3:e2760.
- Godfroid F, Cloeckaert A, Taminiau B, Danese I, Tibor A, de Bolle X, Mertens P, Letesson JJ: Genetic organisation of the lipopolysaccharide O-antigen biosynthesis region of Brucella melitensis 16 M (wbk). Res Microbiol 2000, 151:655-668.
- Cloeckaert A, Verger JM, Grayon M, Paquet JY, Garin-Bastuji B, Foster G, Godfroid J: Conservation of seven genes involved in the biosynthesis of the lipopolysaccharide O-side chain in Brucella spp. Res Microbiol 2000, 151:209-216.
- Iriarte M, González D, Delrue R-M, Monreal D, Conde R, López-Goñi I, Letesson JJ, Moriyón I: Brucella: Molecular and Cellular Biology Edited by: López-Goñi I, Moriyón I. Horizon Bioscience, Wymondham, UK; 2004:159-192.
- 16. Vizcaíno N, Caro-Hernández P, Cloeckaert A, Fernández-Lago L: DNA polymorphism in the omp25/omp31 family of Brucella spp.: identification of a 1.7-kb inversion in Brucella cetaceae and of a 15.1-kb genomic island, absent from Brucella ovis, related to the synthesis of smooth lipopolysaccharide. Microbes Infect 2004, 6:821-834.
- Garcia-Yoldi D, Marín CM, López-Goñi I: Restriction site polymorphisms in the genes encoding new members of group 3 outer membrane protein family of Brucella spp. FEMS Microbiol Lett 2005, 245:79-84.
- Cloeckaert A, Verger JM, Grayon M, Paquet JY, Garin-Bastuji B, Foster G, Godfroid J: Classification of Brucella spp. isolated from marine mammals by DNA polymorphism at the omp2 locus. Microbes Infect 2001, 3:729-738.
- Ficht TA, Husseinen HS, Derr J, Bearden SW: Species-specific sequences at the omp2 locus of Brucella type strains. Int J Syst Bacteriol 1996, 46:329-331.
- Meikle PJ, Perry MB, Cherwonogrodzky JW, Bundle DR: Fine structure of A and M antigens from Brucella biovars. Infect Immun 1989, 57:2820-2828.
- 21. Vemulapalli R, McQuiston JR, Schurig GG, Sriranganathan NM, Halling SM, Boyle SM: Identification of and IS711 element interrupting the wboA gene of Brucella abortus vaccine strain RB51 and a PCR assay to distinguish strain RB51 from other Brucella species and strains. *Clin Diagn Lab Immunol* 1999, **6:**760-764.
- Cloeckaert A, Zygmunt MS, Guilloteau LA: Brucella abortus vaccine strain RB51 produces low levels of M-like O-antigen. Vaccine 2002, 20:1820-1822.
- Monreal D, Grilló MJ, González D, Marín CM, de Miguel MJ, López-Goñi I, Blasco JM, Cloeckaert A, Moriyón I: Characterization of Brucella abortus O-polysaccharide and core lipopolysaccharide mutants and demonstration that a complete core is required for rough vaccines to be efficient against Brucella abortus and Brucella ovis in the mouse model. Infect Immun 2003, 71:3261-3271.

- 24. Allen CA, Adams LG, Ficht TA: Transposon-derived Brucella abortus rough mutants are attenuated and exhibit reduced intracellular survival. Infect Immun 1998, 66:1008-1016.
- McQuiston JR, Vemulapalli R, Inzana TJ, Schurig GG, Sriranganathan NM, Fritzinger D, Hadfield TL, Warren RA, Snellings N, Hoover DL, Halling SM, Boyle SM: Genetic characterization of a Tn5-disrupted glycosyltransferase gene homologue in Brucella abortus and its effect on lipopolysaccharide composition and virulence. Infect Immun 1999, 67:3830-3835.
 Amer AO, Valvano MA: The N-terminal region of the
- Amer AO, Valvano MA: The N-terminal region of the Escherichia coli WecA (Rfe) protein, containing three predicted transmembrane helices, is required for function but not for membrane insertion. J Bacteriol 2000, 182:498-503.
- 27. Foulongne V, Bourg G, Cazevieille C, Michaux-Charachon S, O'Callaghan D: Identification of Brucella suis genes affecting intracellular survival in an in vitro human macrophage infection model by signature-tagged transposon mutagenesis. Infect Immun 2000, 68:1297-1303.
- Bowser DV, Wheat RW, Foster JW, Leong D: Occurrence of quinovosamine in lipopolysaccharides of Brucella species. Infect Immun 1974, 9:772-774.

