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Abstract. A distinctive feature of discrete solids is their ability to form arches. These mechanically stable structures alter
the isotropy of granular packings and can arrest the motion of grains when, for example, they flow through a bottleneck.
Breaking arches can be achieved by means of an external vibration, which effectively eliminates clogging. Indeed, these
phenomena and procedures are quite common in industrial applications. Nevertheless, there are not rigorous, well founded
criteria to determine the most efficient way to break arches and restore the flow of grains. This happens in part because it is not
known which are the relevant characteristics that boost the arch strength. In the experiment presented here, we have carried
out a statistical analysis of the arches that block the exit orifice at the bottom of a two dimensional silo, and described their
geometrical properties. We then submit the silo to an external vibration. We find that the larger the outlet size, the weaker the
arches that clog it. This dependence is just the outcome of a more complicated process that involves geometrical defects in
the arch. The defects are quantitatively defined in terms of contact angles and we show that this is a key factor regarding the
endurance of arches.

Keywords: Clogging, jamming, arch formation, vibration, silos
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INTRODUCTION

Granular flows are prone to clogging. Whenever partic-
ulate matter must pass through a bottleneck, there is the
possibility that an arch forms and brings the grains to
a halt. The exit of a silo discharging by gravity, for in-
stance, is one situation where the formation of such arch-
es has received considerable attention [1, 2, 3, 4, 5]. As
these structures are mechanically stable, simply increas-
ing the load does not promote the flow resumption. In-
stead, the nuisance can be dealt with by imparting a vi-
bration, so that arches are broken. The method is wide-
ly implemented in many different industrial procedures,
ranging from crude to sophisticated [6]. Theoretical and
experimental analyses have been carried out to study the
effect of vibrations on the granular flow through a bot-
tleneck [7, 8, 9]. Nevertheless, the mechanism of arch
breaking has not been examined in detail. A better un-
derstanding of the phenomenon can undeniably help to
optimize the procedure.
Available reports on vibrated silos mostly focus on the

effects that external perturbations produce on the mass
flow rate. For instance, some measurements [10] reveal
that the flow at high accelerations is reduced a little, al-
though in this case the air flow is relevant. Later stud-
ies [11] also find very small influence of the vibration
on the mass flow rate. In another experiment, different
flow regimes have been observed in a two-dimensional
hopper. The regimes could be described as jammed, in-
termittent and uninterrupted flow [12].

We have studied this phenomenon in the laboratory,
with the aim of providing some hints that could lead to
a better operation. Specifically, we measure the vibration
intensity needed to break the arches that form at the exit
orifice of a two-dimensional silo. The level of vibration
is given by Γ, which is the amplitude of the sinusoidal
acceleration divided by the gravity g. The first noticeable
fact (shown in Fig.1) is that Γ decreases with the orifice
size R (where R is the length of the orifice measured
in bead diameters). This makes sense, because bigger
orifices need larger arches to block them, and intuitively
it seems reasonable that larger arches can be shattered
more easily. But an exploration of the issue shows that
there is more than meets the eye. We will show that there
is a complex link between the geometry of an arch and
its endurance, in which geometrical defects of the arch
play a prominent role.
Our experimental device consists of a two-

dimensional transparent silo with an exit orifice at
the bottom, placed on top of an electromagnetic shaker.
This allows us to analyze the shape of the arch that
eventually blocks the orifice, as well as to measure the
vibration intensity needed to break it. The experiment
is fully automated, thus allowing us to collect large
amounts of data. The protocol is the following. About
ten thousand metal beads of diameter d = 1 mm are
stored in a plane silo so that they are arranged in a mono-
layer. They begin to fall through the orifice at the bottom
and are collected in another chamber. The formation of
an arch that blocks the orifice and stops the outpouring
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FIGURE 1. Experimental results of the average acceleration
Γ at which arches break, as a function of the orifice size R
(circles and error bars). The meaning of the other symbols is
explained in the text.

is detected by means of a standard video camera. A
photograph of the arch is then taken and stored in the
computer, and a vibration ramp is applied to the shaker.
The frequency of the vibration is fixed at f = 1 kHz and
the amplitude is increased linearly at a rate of 0.09 g/s.
The breaking of the arch is again detected by image
analysis. At this moment, the acceleration Γ is recorded.
An electric motor then turns the assembly bottom up
so that the beads fallen in the bottom chamber refill the
silo. The experiment is restarted again with another half
turn, when the beads from the filled silo again begin to
fall through the exit orifice. A more detailed description
can be found in [13].
The aim of this research is to establish a relationship

between the shape of the arches and the vibration need-
ed to break them. To this end, we will first give some
results about the geometry of the arches that block the
orifice. Then we will present the acceleration measure-
ments, in which the vibration level needed to break the
arch is registered. The conclusions gathered from these
measurements will be used to shed new light on the data
presented in Fig.1.

ARCH GEOMETRY

The first noticeable fact concerning the geometry of the
arches is that there is a direct relationship between the
size of the orifice R and the size of the arch that blocks it.
Obviously, as R is increased a larger number of beads is
needed to build an arch spanning over the orifice. This is
illustrated in Fig. 2, where the size of the arch, measured
in number of beads η , is plotted versus R. Moreover, for
the range of R explored in this work, we had previously
reported that there is a direct relationship between differ-
ent geometrical properties of the arch (such as the span
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FIGURE 2. The average number of beads η in the arch that
blocks an orifice of a given size. The reason for the linear fit
(dashed line) is argued in [14].

and the height) and η . Then, the study of this quantity
can be taken as a figure representing the arch geometry
instead of considering all the possible variables [14].
As explained above, once the arch has been pho-

tographed, a vibration ramp is switched on. The shat-
tering of an arch is too fast to appreciate the fine de-
tails with the naked eye. An interesting surprise came
when inspecting the process with a high speed camer-
a. We recorded and analyzed two hundred arches in the
moments just before they break down [15]. Most of the
arches break at a defect. We call a defect a bead that is
hanging from their neighbors due, of course, to friction:
in a defect, the contact points of a bead with its neigh-
bors are above the horizontal sphere equator. In order to
quantify the importance of the defect, we defined an an-
gle φ for each bead in the arch that is determined by the
segments joining the bead center with the centers of its
neighbors (therefore passing through the contact points).
If this angle is larger than 180◦ then the bead is consid-
ered a defect; see Fig. 3 (a).
There are proportionately many defects: in an experi-

mental run we have tallied that from among thirty thou-
sand beads forming arches, about 17% are defects. And
they appear evenly distributed along the arch, as shown
in Fig. 3 (b). We have also obtained the angle distribu-
tion (the PDF) of all the beads in the arches for different
values of R [Fig. 3 (c)]. As can be seen, the angle dis-
tribution is quite similar irrespective of the orifice size,
except for small values of φ . This is easily understood
if one thinks that beads arranged in the smallest possible
disposition to block the orifice, will have comparatively
smaller angles for smaller orifices size. Apart from this,
the PDF seems to be robust and general.
If defects are uniformly distributed, that is, if the prob-

ability of a bead forming a defect is a fixed value, irre-
spective of time and space, as suggested by the results
presented above, then it is justified to think of each bead
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FIGURE 3. (a) A photograph showing an arch (circles and
gray line) with a defect (third bead from the left). (b) A chart
showing the locations of the beads in the arches (gray circles)
and the positions of the defects black crosses. The map covers
a region of 10x5 mm (the horizontal axis is centered on the ori-
fice; ticks spaced 1 mm). (c) PDF of the angles corresponding
to the beads in all the arches observed for four different values
of R. Note the logarithmic scale on the vertical axis.

in the arch as having an angle chosen randomly from the
observed distribution. Consequently, the larger the num-
ber of beads forming an arch, the higher the probability
that a defect appears in the arch. Each bead contributes
to this probability in a fixed amount. Although the un-
derlying assumptions are not strictly proved, at least the
statement is verifiable. In order to do this, we measure
the largest angle of the arch, called φmax. The average
of φmax for the arches of a given geometry, i.e. a given
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FIGURE 4. The average maximum angle in an arch of η
beads, as measured from the experiment (circles with error
bars). Squares represent the expected value if η beads are
taken with angles chosen randomly from the measured angle
distribution shown in Fig. 3 (c).

number of beads η , can be obtained experimentally. Be-
sides, the expected value of φmax can also be calculated
by taking η beads randomly from the angle distribution
given in Fig. 3 (c). The procedure is akin to a statistical
test of hypothesis, with the use of order statistics. The re-
sult is shown in Fig. 4. As can be seen, it all works as if
the statement (that each bead contributes with a constan-
t amount to the probability of a defect appearing in the
arch) is valid.

ARCH ENDURANCE AND DEFECTS

If one follows the line of reasoning sketched in the pre-
ceding paragraphs, it is natural to take an step further
and consider whether there is a relationship between the
magnitude of the defect, as quantified by φ , and the arch
endurance.
As R grows, obviously the number of beads in the

arch increases. An increase in the number of beads in
the arch entails a correspondingly probability that φmax
(the largest angle in the arch) grows bigger. If the arch-
es break at the defects –if defects are indeed the weak-
est spots in the structure– then the bigger the defect, the
easier should be to shatter the arch. A large φ , widely
exceeding 180◦, means that the bead is hold by its neigh-
bors, squeezed from the sides, and hanging dangerously.
An arch having a defect like that must be rather unstable
when submitted to a vibration. On the contrary, if an arch
has no defects (because all the angles are smaller than
180◦) no bead is hanging from above its equator. The
beads are leaning against their neighbors (one of which at
least must be below the bead) and the arch should endure
better the vibration. In other words, if this conjecture is
true, arches would be weaker not because they are larger,
but because they have a higher probability of possessing
bigger defects.
We have checked this by taking the largest angle of

688

Downloaded 08 Aug 2013 to 95.18.147.177. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://proceedings.aip.org/about/rights_permissions



160 170 180 190 200
0

1

2

3

4

φmax

Γ

R = 4.50
R = 4.00
R = 3.50
R = 3.20

(a)

180 185 190 195 200
0

0.5

1

1.5

2

2.5

3

(b)

φmax

Γ

FIGURE 5. (a) The acceleration Γ at which arches break,
as a function of the maximum angle in the arch φmax, for
the different orifice sizes R. (b) A zoom of (a) in the region
φmax > 180. Dashed lines are linear fits of each data set, the
solid line is a linear fit of all data sets.

the arch, φmax, and measuring the acceleration needed
to break it. There is a linear relationship between Γ and
φmax, as displayed in Fig. 5. The relationship is fulfilled
for all the orifice sizes explored. An explanation for
the linearity of the relationship between Γ and φmax for
φmax > 180◦ is given in [13].
Indeed, one can now travel all the way back to Fig. 1.

From the orifice size R, one can estimate the average
number of beads η needed to build an arch to block
it (Fig. 2). Knowing the angle distribution, (Fig. 3 (c)),
which is general, the expected value of φmax can be
calculated (this is done by working out the order statistics
and obtaining the expected value of the biggest angle
among a set of η beads). And from the value of φmax, the
acceleration Γ is found from the measurements provided
in Fig. 5. The acceleration obtained from the individual
data sets (dashed lines) are the asterisks shown in Fig. 1;
the values obtained from the combined data sets (solid
line) are represented with squares. Part of the dependence
of Γ on R can then be explained by our argument; a
residual dependence of Γ on R is nevertheless visible.
In summary, we have been able to show that the de-

fects are the weakest link in an arch. These are the beads
that hang from their neighbors at large angles. The angle

subtended between the bead center and the centers of the
two adjacent beads, therefore, can be used to quantify the
importance of the defects. There is a direct relationship
between the largest angle in an arch (φmax) and the ac-
celeration of the vibration needed to break the arch (Γ).
This relationship is the best predictor for arch endurance,
and can explain the observed behavior for the stability of
arches against vibrations.

ACKNOWLEDGMENTS

We thank D. Maza, R. C. Hidalgo and L. A. Pugnaloni
for discussions, and L. F. Urrea for technical help. This
work has been financially supported by Project FIS2011-
26675 (Spanish Government), and PIUNA (Universidad
de Navarra). G.L. thanks the F.R.S.-FNRS for the finan-
cial support and C.L. thanks Asociación de Amigos de la
Universidad de Navarra for a scholarship.

REFERENCES

1. R. M. Nedderman, Statitcs and Kinematics of Granular
Materials, Cambridge University Press, Cambridge, 1992,
pp. 322–328.

2. K. To, P.-Y. Lai, and H. K. Pak, Phys. Rev. Lett. 86, 71
(2001).

3. K. To, and P.-Y. Lai, Phys. Rev. E 66, 011308 (2002).
4. I. Zuriguel, L. A. Pugnaloni, A. Garcimartín, and D. Maza,
Phys. Rev. E 68, 030301 (2003).

5. I. Zuriguel, A. Garcimartín, D. Maza, L.A. Pugnaloni and
J.M. Pastor, Phys. Rev. E 71, 051303 (2005).

6. D. Schulze, Powders and Bulk Solids, Springer, Heidelberg,
2008, pp. 347–353.

7. C. R. Wassgren, M. L. Hunt, P. J. Freese, J. Palamara, and
C. E. Brennen, Phys. Fluids 14, 3439 (2002).

8. C. Mankoc, A. Garcimartín, I. Zuriguel, D. Maza and L. A.
Pugnaloni, Phys. Rev. E 80, 011309 (2009).

9. A. Janda, D. Maza, A. Garcimartín, E. Kolb, J. Lanuza and
E. Clément, Europhys. Lett. 87, 24002 (2009).

10. H. Takahashi, A. Suzuki, and T. Tanaka, Powder Technol.
2, 65 (1968); A. Suzuki, H. Takahashi, and T. Tanaka,
Powder Technol. 2, 72 (1968).

11. K. Chen, M. B. Stone, R. Barry, M. Lohr, W. McConville,
K. Klein, B. L. Sheu, A. J. Morss, T. Scheidemantel, and P.
Schiffer, Phys. Rev. E 74, 011306 (2006).

12. K. Lindemann, and P. Dimon, Phys. Rev. E 62, 5420
(2000).

13. C. Lozano, G. Lumay, I. Zuriguel, R. C. Hidalgo, and
A.Garcimartín, Phys. Rev. Lett. 109, 068001 (2012).

14. A. Garcimartín, I. Zuriguel, L. A. Pugnaloni, and A.
Janda, Phys. Rev. E 82, 031306 (2010).

15. One of these films can be seen at
http://www.unav.es/centro/
laboratorio-medios-granulares/arcos

689

Downloaded 08 Aug 2013 to 95.18.147.177. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://proceedings.aip.org/about/rights_permissions


