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Abstract 

Spent coffee has been shown as a good source of hydrophilic antioxidant compounds. 

The ability of two spent coffee extracts rich in caffeoylquinic acids, mainly 

dicaffeoylquinic acids, and caffeine (Arabica filter and Robusta espresso) to protect 

against oxidation and DNA damage in human cells (HeLa) was evaluated at short (2 h) 

and long (24 h) exposure times. Cell viability (MTT) was not affected by spent coffee 

extracts (>80%) up to 1000 µg/mL after 2h. Both spent coffee extracts significantly 

reduced the increase of ROS level and DNA strand breaks (29-73% protection by comet 

assay) induced by H2O2. Pretreatment of cells with robusta spent coffee extract also 

decreased Ro photosensitizer-induced oxidative DNA damage after 24 h exposure. The 

higher effectiveness of Robusta spent coffee extract, with less caffeoylquinic acids and 

melanoidins, might be due to other antioxidant compounds, such as caffeine and other 

Maillard Reaction Products. This work evidences the potential antioxidant and 

genoprotective properties of spent coffee in human cells. 
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1. Introduction 

Global health policies promote increase consumption of plant foods, such as fruits and 

vegetables to contribute to the prevention of several chronic diseases related with 

oxidative stress, such as cancer, diabetes, cardiovascular and neurodegenerative diseases 

(World Health Organization, 2004). Plant foods, including beverages and extracts, are 

rich sources of bioactive compounds like antioxidants. A possible mechanism of 

antioxidants action in the prevention of chronic diseases is the decrease of oxidative 

stress, a condition that appears when an imbalance between the production of free 

radicals and antioxidant defences occurs. Free radicals, such as reactive oxygen species 

(ROS), damage macromolecules as proteins, lipids and DNA. DNA damage by ROS 

can contribute to the formation of single and double strand breaks (SBs), as well as to 

the oxidation of purine and pyrimidine bases, leading to genome instability and 

subsequent potential cancer development (Chobotova, 2009). The formation of 8-

oxoguanine (8-oxoGua) by ROS oxidation of guanine is one of the most common DNA 

lesions. This is a potential biomarker of carcinogenesis because it is relatively easily 

formed and is mutagenic (Valko et al., 2007). The comet assay is one of the most useful 

approaches for the quantification of this oxidative DNA damage (SBs and 8-oxoGua). 

For example, several authors have reported, employing the comet assay, that 

supplementation of the diet with food antioxidants decreases endogenous oxidative 

DNA damage in human lymphocytes (Duthie et al., 1996; Porrini and Riso, 2000). 

Coffee is well-known as a rich source of antioxidants in human diet that may contribute 

to the prevention of oxidative stress related diseases (Dorea and da Costa, 2005; Pulido 

et al., 2003; Svilaas et al., 2004). The preparation of instant coffee in industries and 

coffee beverages in restaurants, cafeterias and also at domestic levels generates tons of 

coffee residues. It has been proposed that spent coffee grounds could be valuable by-
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products because of their antioxidant properties due to the presence of phenolic and 

nonphenolic bioactive compounds (Bravo et al., 2013; Bravo et al., 2012; Murthy and 

Madhava Naidu, 2012; Mussatto et al., 2011; Ramalakshmi et al., 2009; Yen et al., 

2005). However, the chemical-based assays used for the antioxidant activity evaluation 

of spent coffee are suitable for the initial antioxidant screening but do not reflect the 

cellular physiological conditions. Therefore, there is a need for applying cell cultures 

models to support antioxidant research (Liu and Finley, 2005). To our best knowledge, 

only the cell viability in rodent cell culture systems has been evaluated to report the 

anti-tumor, anti-allergic and anti-inflammatory activities of spent coffee extracts 

obtained from instant coffee (Ramalakshmi et al., 2009). However, this is the first time 

that direct effect and prevention against ROS formation and DNA damage of spent 

coffee extracts in human cells has been reported. In a previous study, we have reported 

that spent coffee grounds obtained from the most common coffeemakers used at 

domestic and cafeterias levels (filter and espresso), and in less proportion from plunger 

(French press) ones, have antioxidant capacity because of the presence of relevant 

amounts of hydrophilic bioactive compounds, such as caffeoylquinic acids, mainly 

dicaffeoylquinic acids, and caffeine (Bravo et al., 2012). Because some of these coffee 

compounds have shown protective effects against oxidation (ROS formation) and DNA 

damage in human cell models when they were evaluated individually (Bakuradze et al., 

2010; Cho et al., 2009; Faustmann et al., 2009; Pavlica and Gebhardt, 2005) or in coffee 

matrices (instant or coffee brew) in human cell models both directly or in interventional 

studies (Bakuradze et al., 2010; Bichler et al., 2007; Del Pino-García et al., 2012; 

Hoelzl et al., 2010); we hypothesize that aqueous spent coffee extracts might have 

antioxidant and genoprotective effects in human cells. However, up to now, the effect of 

these coffee by-products on oxidation and DNA damage in cells is still unknown. 
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Therefore, the aim of the present work was to evaluate the ability of two of the most 

antioxidant spent coffee extracts (from Arabica filter and Robusta espresso) (Bravo et 

al., 2012) to protect against oxidation and DNA damage in a cancer human cell model 

system. For this purpose, firstly, cytotoxicity was measured in order to choose the 

adequate extract concentration to be evaluated. Afterwards, the direct effects of the 

extracts on intracellular ROS level using the diclorofluorescein assay, and on DNA 

oxidation damage using the comet assay were determined. And last, the protection 

ability of the spent coffee extracts against H2O2-induced intracellular ROS level and 

DNA strand breaks and Ro-induced oxidative DNA damage (as FPG-sensitive sites) 

increase was assessed.  

 

2. Materials and methods 

2.1. Chemicals 

Dulbecco´s Modified Eagle´s Medium (DMEM), fetal bovine serum (FBS), antibiotic 

solution, and trypsin solution were purchased from Gibco (Prat de Llobregat, Barcelona, 

Spain). Hydrogen peroxide (H2O2), 3-(4,5-methyl-2-thiazolyl)-2,5-diphenyltetrazolium 

bromide (MTT) and 4,6-diamidino-2-phenylindole (DAPI) were obtained from Sigma-

Aldrich (Steinheim, Germany). Dichlorodihydrofluorescein diacetate (H2DCF-DA) was 

from Invitrogen Molecular Probes (Eugene, Oregon, USA). DMSO was purchased from 

Panreac Quimica SAU (Barcelona, Spain). Ro (photosensitizer 19-8022) and 

formamidopyrimidine DNA glycosylase (FPG) were kindly supplied by Dr A. Collins 

(Institute for Nutrition Research, University of Oslo, Norway). 

2.2. Preparation of Spent Coffee Extracts 

Roasted coffee (without defective beans) from Guatemala (Coffea arabica, named 

Arabica, 3.03% water content, L* = 25.40±0.69, roasted at 219 °C for 905 s) and 
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Vietnam (Coffea canephora var. robusta, named Robusta, 1.59 % water content, L* = 

24.92±0.01, roasted at 228 °C for 859 s) was provided by a local factory. Coffee beans 

were ground for 20 s using a grinder (model Moulinex super junior “s”, París, France). 

The L* value was analyzed by means of a tristimulus colorimeter (Chromameter-2 CR-

200, Minolta, Osaka, Japan) using the D65 illuminant and CIE 1931 standard observer. 

The instrument was standardized against a white tile before sample measurements. 

Ground roasted coffee was spread out in a 1 cm Petri plate, and the L* value was 

measured in triplicate on the CIELab scale. Water content was measured by weight loss 

after drying for 2 h at 102±3 °C in an oven JP SELECTA (Barcelona, Spain). 

Arabica and Robusta spent coffee grounds were obtained as coffee by-products after the 

preparation of coffee brews with filter (24 g/400 mL water, model Avantis 70 Inox, 

Ufesa, Spain) and espresso coffeemakers (7 g/40 mL water, model Saeco Aroma, Italy), 

respectively. Then, spent coffee extracts were prepared according to the method 

described by Bravo et al. (2013). Briefly, first, spent coffee grounds were dried to a 

constant weight at 102 ±3 ºC in an oven JP SELECTA (Barcelona, Spain) and defatted 

with petroleum ether (1:11, w/v) for 3 h at 60 °C in a Soxhlet extraction system 

(Extraction Unit B-811 Standard Büchi, Flawil, Switzerland). Then, 24 g of spent coffee 

was extracted with a volume of 400 mL of water using a filter coffeemaker (model 

AVANTIS 70 Inox, Ufesa, Spain). Extraction took approximately 6 min at 90 ºC. 

Aqueous spent coffee extracts were lyophilized using a CRYODOS Telstar (Terrassa, 

Spain) and stored at -20 ºC until sample analysis. 

2.3. Cell Culture 

HeLa cells (derived from human cervical cancer) were obtained from the American 

Type Culture Collection (ATCC, Manassas, VA, USA). Cells were maintained as 

monolayer cultures in DMEM supplemented with 10% FBS and 1% antibiotic 
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(10000 U/mL penicillin and 10000 µg/mL streptomycin, Gibco), under an atmosphere 

of 5% CO2 at 37 ºC. Cells were trypsinized when nearly confluent. 

2.4. Cytotoxicity 

Cell viability was determined by assessing the reduction of MTT to formazan by the 

mitochondrial enzyme, succinate dehydrogenase, as described by Mosmann (1983). 

Cells were seeded in 96-well plates at 2×104 cells/well and maintained for 24 h until 

confluence. Arabica and Robusta spent coffee extracts were then added to medium at 

37, 111, 333, 1000 and 3000 µg/mL. After 2 and 24 h treatments, cells were washed 

with phosphate-buffered saline (PBS), and 25 µL MTT (5 mg/mL) in PBS was added to 

225 µL of fresh medium to each well. After an incubation of 2 h and 30 min at 37 ºC, 

the supernatant was removed, and the insoluble formazan crystals were dissolved with 

100 µL of DMSO. The absorbance was measured at 540 nm using a spectrophotometer 

reader (Spectra MR, Dinex Technologies). Results were expressed as the percentage of 

viability (%) with respect to the control (medium treated cells) according to the 

following formula: [(absorbance treated cells-absorbance blank)/ (absorbance control 

cells-absorbance blank)] × 100. 

2.5. Intracellular ROS level 

Intracellular ROS level was determined by using fluorescent probe 

dichlorodihydrofluorescein diacetate (H2DCF-DA), according to Wang and Joseph 

(1999). H2DCF-DA is enzimatically hydrolyzed by intracellular esterases to originate 

non-fluorescent H2-DCF, which is then rapidly oxidized to originate highly fluorescent 

DCF in the presence of ROS. The DCF fluorescence intensity parallels the amount of 

intracellular ROS. Two different types of experiments were carried out: (1) treatment of 

cells with spent coffee extracts to test their direct effect on intracellular ROS level and 

(2) pretreatment of cells with spent coffee extracts before submitting the cells to an 
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oxidative stress to test their protective effect against ROS level increase induced by 

hydrogen peroxide. HeLa cells were seeded in 96-well plates at 2×104 cells/well. In 

experiment (1), 24 h after seeding, 200 µL of H2DCF-DA (100 µM) in serum- and 

phenol red-free DMEM was added to each well for 30 min at 37 ºC. Afterwards, cells 

were washed once with PBS and exposed for 2 and 24 h to Arabica and Robusta spent 

coffee extracts in phenol red-free DMEM at 37, 111, 333 and 1000 µg/mL. For 

experiment (2), cells were pretreated during 2 and 24 h with Arabica and Robusta spent 

coffee extracts at 37, 111, 333 and 1000 µg/mL, the H2DCF-DA (100 µM) probe was 

added to each well for 30 min at 37 ºC, and the cells were washed once with PBS and 

fresh phenol red-free DMEM containing 500 µM H2O2 was added to all cultures except 

controls for 10 min at 37 ºC. In both experiments, intracellular ROS were measured 

using a microplate fluorometer Fluoroskan Ascent (Thermo Labsystems) at an emission 

wavelength of 538 nm and an excitation wavelength of 485 nm. ROS level was 

expressed as the fluorescence of the treated samples (spent coffee treated cells) 

compared to the fluorescence of the control samples (medium treated cells) = 

[(fluorescence treated cells/fluorescence control cells) × 100]. 

2.6. DNA damage 

DNA damage was determined by comet assay able to detect SBs and oxidative DNA 

damage in culture cells. The inclusion of FPG digestion allowed the detection of the 

main purine oxidation product 8-oxoguanine as well as other altered purines. Two 

different types of experiments were carried out: (1) treatment of cells with spent coffee 

extracts to rule out their ability to cause SBs and oxidative DNA damage and (2) 

pretreatment of cells with spent coffee extracts before submitting the cells to an 

oxidative damage to evaluate their genoprotective effect against induced DNA damage. 

HeLa cells were seeded in 24-well plates at 8×104 cells/well. A negative control with 
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cells treated with medium and two positive controls were also included: cells treated 

with a solution of 500 µM H2O2 for 10 min (on ice) to induce SBs and cells treated with 

1 µM Ro plus visible light from a 500 W tungsten-halogen source at 33 cm (10 min on 

ice) to induce 8-oxoGua. In experiment (1), 24 h after seeding, cells were exposed for 2 

and 24 h to spent coffee extracts in medium at 111 and 333 µg/mL. For experiment (2), 

cells were preincubated for 2 and 24 h at 37 ºC with spent coffee extracts in medium 

and then were washed with PBS and treated on ice with H2O2 (500 µM) for 10 min or 

with 1 µM Ro plus visible light (10 min) depending on the DNA damage to evaluate, as 

described previously. DNA damage (SBs and 8-oxoGua) was evaluated by the comet 

assay without and with FPG, respectively. 

The comet assay technique was applied according to Collins and Dusinska (2002), 

Singh et al. (1988), and Tice et al. (2000) with some modifications. Thirty microliters of 

each cell suspension (1×106 cells/mL in PBS) were mixed with 140 µL of 1% low 

melting point agarose, and two drops of 70 µL of this mixture were placed on a 

microscope slide precoated with 1% of normal melting point agarose. Three slides were 

prepared for each condition. Slide 1 for observing DNA SBs, and slides 2 and 3 for 

obtaining information regarding the presence of oxidized DNA bases using FPG 

enzyme. A cover slip was put on top of each drop and the gels were allowed to set for 

5 min at 4 ºC. Then the cover slip was removed and the slides were immersed in lysis 

solution (2.5 M NaCl, 0.1 M Na2-EDTA, 0.01 M Trizma-BASE, pH 10, with 1% Triton 

X-100 added prior to use) at 4 ºC for 1 h. After that, slides 2 and 3 were washing three 

times (5 min each time) with enzyme buffer (0.1 M KCl, 0.04 M HEPES-KOH, 

0.0005 M Na2-EDTA, 0.2 mg/mL BSA, pH 8.0) prior to incubation for 30 min at 37 ºC 

with 50 µL of buffer (slide 2) or FPG in the enzyme buffer (slide 3) in a humid 

chamber. The slides then were placed on a horizontal gel electrophoresis tank filled with 
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freshly prepared alkaline buffer (0.3 M NaOH and 0.001 M Na2-EDTA, pH > 13), at 4 

ºC for 20 min, to allow DNA unwinding. Electrophoresis was carried out for 30 min at 

25 V (~0.8 V/cm across the gels and ~300 mA). Finally, slides were neutralized in PBS 

during 10 min, washed two times (5 min each) with deionized water and fixed with 

ethanol 96% (5 min). 

Gels were stained with 35 µL of 1 µg/mL DAPI and comets were analyzed in a 

fluorescence microscopy (Eclipse 50 i NIKON). A total of 100 comets on each slide 

were scored through a computer-assisted image analysis (Comet assay IV, Perceptive 

Instruments), by measuring the percentage of DNA in the tail. 

2.7. Statistical analysis 

Data are presented by descriptive analysis [mean ± standard deviation (SD) for three 

independent experiments]. Comparisons were performed by the non-parametric Mann-

Whitney U-test. The p ≤ 0.05 probability was accepted as the level of significance. All 

statistical analyses were performed using the SPSS v.15.0 software package. 

3. Results 

3.1. Cytotoxicity 

The cytotoxicity of Arabica and Robusta spent coffee extracts was measured in HeLa 

cells at short (2 h) and long (24 h) exposure times using the MTT reduction assay (Fig. 

1). After 2 h incubation, the viability of HeLa cells was not affected (>80%) by both 

spent coffee extracts up to 1000 µg/mL, but a remarkable decrease (~60%) was 

observed for Arabica filter spent coffee extract at 3000 µg/mL (Fig. 1A). After 24 h of 

treatment, HeLa cells viability decreased in a concentration-dependent manner, and a 

clear toxic effect at 3000 µg/mL was observed for both spent coffee extracts (Fig. 1B). 

Therefore, in order to evaluate the possible protective effect of Arabica filter and 
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Robusta espresso spent coffee extracts on intracellular ROS level and DNA damage, 

concentrations between 37-1000 µg/mL were chosen, under the same exposure times. 

3.2. Effect of spent coffee extracts on intracellular ROS level 

After 2 and 24 h of treatment with spent coffee extracts, the level of intracellular ROS 

was evaluated in HeLa cells (Fig. 2). Robusta espresso spent coffee extract did not 

induce any relevant ROS level increase at none of the concentrations studied after 2 and 

24 h exposure. However, at the highest concentrations (1000 µg/mL after 2 h and also at 

333 µg/mL after 24 h) a slight but not relevant ROS level increase was observed for 

Arabica filter spent coffee extract. A significant basal ROS level decrease was observed 

after treatment with 37 and 111 µg/mL of both spent coffee extracts at short and long 

exposure times in comparison to control cells. 

3.3. Protection of spent coffee extracts against intracellular ROS level increase 

The protective effect of spent coffee extracts against ROS level increase induced by 

500 µM H2O2 (10 min, 37 ºC) was evaluated (Fig. 3). After 2 h of exposure, spent 

coffee extracts pretreatment showed a significant decrease in ROS level at 1000 µg/mL 

(Fig. 3A). At the long pretreatment of 24 h, the ROS level significantly decreases at the 

highest concentration (1000 µg/mL) for both spent coffee extracts, but also at 

333 µg/mL for Robusta espresso spent coffee extract (Fig. 3B).  

3.4. Genotoxicity of spent coffee extracts 

Firstly, the effect of Arabica and Robusta spent coffee extracts on induction of SBs and 

oxidized bases was assessed by the comet assay without and with FPG treatment 

respectively. HeLa cells were treated with 111 and 333 µg/mL of Arabica and Robusta 

spent coffee extracts for 2 and 24 h. The percentage of DNA in the tail was less than 

3%, similar to control cells (data not shown). Therefore, none of the studied 
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concentrations induce relevant SBs or oxidized purines (FPG-sensitive sites) in the 

cells. 

3.5. Protective effect of spent coffee extracts against DNA SBs and oxidative DNA 

damage 

Then, to evaluate the ability of Arabica filter and Robusta espresso spent coffee extracts 

to protect against DNA damage, HeLa cells were incubated for 2 and 24 h with 111 and 

333 µg/mL spent coffee extracts before treatment with H2O2 or Ro plus visible light. In 

previous experiments, two concentrations of H2O2 were initially evaluated: 25 and 

500 µM. However, the highest one (500 µM) was chosen to exacerbate DNA damage 

(36.7% of damage for 500 µM vs 8.8% for 25 µM) and highlight cells able to protect 

themselves from the oxidative stress. At tested concentrations, DNA strand breaks were 

significantly reduced by the pretreatment with both spent coffee extracts (except for 

Arabica 111 µg/mL at 2 h exposure) showing a strong protective effect against H2O2-

induced DNA damage with a significant dose-dependent decrease (p ≤ 0.05) after a long 

period of incubation (24 h) (Fig. 4).  

To evaluate oxidative DNA damage in pilot studies, we exposed HeLa cells for 5 and 

10 min to Ro plus visible light to induce 8-oxoGua. However, we chose 10 min because 

the percentage of DNA damage obtained in our experimental conditions was more 

suitable (59.1% of damage for 10 min vs 33.8% of damage for 5 min) to determine the 

ability of spent coffee extracts to protect against this oxidative damage. In this study, 

after 2 h of incubation, there was not any significant decrease of oxidized DNA bases at 

none of the concentrations of Arabica and Robusta spent coffee extracts assessed (Fig. 

5A). However, after 24 h of incubation, Robusta espresso spent coffee extract at 

333 µg/mL significantly reduced the DNA damage detected by the FPG enzyme (Fig. 

5B). 
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4. Discussion 

Spent coffee that is produced in tons by restaurants and cafeterias, and by consumers at 

domestic levels, could be a good opportunity to have an important source of natural 

antioxidants. Spent coffee grounds obtained from the preparation of coffee brews 

(Arabica from Guatemala and Robusta from Vietnam) with the most common 

coffeemakers (filter, espresso, plunger and mocha) have antioxidant capacity (Folin-

Ciocalteau, ABTS and DPPH) because the presence of relevant amounts of 

caffeoylquinic acids (CQAs), mainly dicaffeoylquinic acids (diCQAs), caffeine and 

melanoidins, with the exception of those obtained from mocha coffeemaker (Bravo et 

al., 2012). Moreover, in this previous work, it is shown that aqueous extracts from spent 

coffee grounds obtained by filter coffeemaker for Arabica coffee and by espresso 

coffeemaker for Robusta coffee were those with the highest antioxidant capacity. For 

these reasons and because these antioxidant assays in test tubes do not necessarily 

reflect the cellular conditions, in the present study we have evaluated the possible 

antioxidant and antigenotoxic effects of these two spent coffee extracts in a biological 

system, and the HeLa cell line was selected for that. Two treatment times were assessed, 

one short of 2 h in order to avoid cell reparation of the possible DNA damage, and the 

other, a longer treatment time of 24 h in order to take advantage of the spent coffee 

extracts uptake into the HeLa cells. 

Firstly, cytotoxicity was tested in order to select non cytotoxic concentrations for further 

protection assays. For both spent coffee extracts, 3000 µg/mL was the highest 

concentration that we could evaluate, because evident signs of precipitation were 

observed under the microscope at higher concentrations. No cytotoxic effects were 

observed after 2 and 24 h treatment with both spent coffee extracts in the dose range of 

37-1000 µg/mL, with the latter being slightly cytotoxic (cell viability < 60%) after 24 h. 
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It was also checked that cell viability was not less than 70% after the treatment with 

both spent coffee extracts at the tested concentrations, prior to H2O2 or Ro treatments in 

the protection assays. On the other hand, non cytotoxic selected concentrations might be 

considered within physiological ranges when is taken into account that a cup of coffee 

(125 mL for filter and 45 mL for espresso) provides 12-70 mg of CQAs, 13-50 mg of 

diCQAs and 84-113 mg of caffeine whereas the tested spent coffee extracts have up to 

52.35 µg of CQAs, 45.80 µg of diCQAs and 94.06 µg of caffeine. 

It is well-known that some of the compounds with antioxidant properties present in 

coffee, such as phenolic compounds, caffeine and molecules of the early phases of 

Maillard reaction may have prooxidant activity under certain conditions such as high 

doses or in the presence of metal ions (Azam, et al. 2003; Caemmerer et al., 2012; 

Zheng et al., 2008). Therefore, due to the fact that oxidative stress can be induced by 

prooxidant agents, either through the formation of ROS or the inhibition of antioxidant 

systems (Yordi et al., 2012), the possible induction of ROS by the spent coffee extracts 

was evaluated. A significant ROS increase was detected only for Arabica spent coffee 

extract at high concentrations. At both exposure times (2 and 24 h) and in the absence of 

an induced oxidative stress, both spent coffee extracts at the concentrations of 37 and 

111 µg/mL significantly reduced the basal ROS production. This suggests that spent 

coffee extracts could alter the oxidative environment of cells. 

When the H2O2-induced oxidative stress was applied, both spent coffee extracts were 

able to significantly reduce ROS production at the highest concentrations (333-

1000 µg/mL). Bakuradze et al. (2010) reported that ROS production was reduced by 

pre-incubating HT-29 cells with Arabica and Robusta filter coffee brews, and explained 

this capacity by the presence of 5-caffeoylquinic acid (5-CQA) and thermal degradation 

products. In line with this, many studies have shown the potential of 5-CQA for 
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decreasing ROS induced by hydrogen peroxide (Cho et al., 2009; Pavlica and Gebhardt, 

2005). In a previous study, we have reported that 5-CQA is the major phenolic 

compound quantified in the tested spent coffee extracts (Bravo et al., 2012), but this 

chlorogenic acid was in lesser amounts in Robusta espresso spent coffee extract 

(18.20 µg/mg) which showed slightly higher protective effects against ROS than in 

Arabica filter one (24.28 µg/mg). However, the amount of dicaffeoylquinic acids that 

exhibit more potential antioxidative effect than CQAs due to the esterification of an 

additional caffeoyl group to the quinic core (Iwai et al., 2004; Ohnishi et al., 1994) was 

1.2-fold higher in Robusta espresso spent coffee. Moreover, caffeine was 2.7-fold 

higher in Robusta espresso spent coffee whereas Maillard reaction products (MRPs) 

measured as browning index were higher in Arabica filter spent coffee extract than in 

Robusta (0.165 vs 0.133, Abs 420 nm). Taking into account the results of the present 

study and in accordance with previous literatures, the similar efficiency of both spent 

coffee extracts might be due to a balance between CQAs and MRPs, more abundant in 

Arabica filter spent coffee, and diCQAs and caffeine, higher in Robusta espresso spent 

coffee extract. 

No genotoxic effects (SBs and FPG-sensitive sites) were detected using the comet assay 

in HeLa cells after 2 and 24 h treatment with spent coffee extracts at the highest non 

cytotoxic concentration (cell viability > 80%). Therefore, the concentrations selected for 

studying spent coffee extracts protection against DNA damage by the comet assay were 

111 and 333 μg/mL. DNA damage is a useful biomarker of the oxidative status. Thus, in 

order to evaluate the effectiveness of Arabica filter and Robusta espresso spent coffee 

extracts to protect against induced DNA strand breaks, an oxidative insult with H2O2 

was applied. H2O2 produces DNA strand breaks mimicking the effect of radiation on 

DNA (Dahm-Daphi et al., 2000). After a short treatment (2 h) with 333 µg/mL extracts, 
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Arabica and Robusta spent coffee showed a strong protective effect against H2O2– 

induced DNA damage in HeLa cells (73 and 64% protection, respectively). However, at 

111 µg/mL, only Robusta espresso spent coffee extract protected DNA against this 

damage (47% protection). After a long treatment (24 h), all the tested concentrations of 

spent coffee extracts showed a protective effect against H2O2–induced DNA damage, 

ranging from 29% to 65% protection. These results are in concordance with the 

protective effect observed in mouse lymphoma cells after N-methyl-N-nitro-N-

nitrosoguanidine exposure by caffeinated instant coffee (Abraham and Stopper, 2004). 

In a recent study, the intermediate and final MRPs have been found to contribute to the 

capacity of instant coffee to diminish DNA damage in HT-29 cells (Del Pino-García et 

al., 2012).  

Strand breaks are not the only kind of DNA damage in cells, also oxidized bases are 

present and 8-oxoguanine is one of the most common DNA lesions. In this study, we 

exposed HeLa cells to Ro plus visible light to induce 8-oxoGua. Only Robusta espresso 

spent coffee extract, at the highest concentration tested (333 µg/mL) and after a long 

period of incubation (24 h), showed a significant protection against Ro plus visible 

light-induced purines oxidation (11.5% protection). To our knowledge, this is the first 

time that the ability of spent coffee to protect against DNA SBs and oxidative DNA 

damage has been shown. However, the capacity of coffee to protect human lymphocytes 

against oxidative DNA-damage (Bichler et al., 2007; Hoelzl et al., 2010) and the effect 

of standards of coffee compounds on DNA damage have been studied. Thus, 5-CQA 

that is one compound quantified in Arabica and Robusta spent coffee extracts (Bravo et 

al., 2012) has been found to decrease radical induced DNA damage in bacterial and 

mammalian cells (Faustmann et al., 2009). However in the present study, Robusta 

espresso spent coffee extract which has less amount of 5-CQA (18.20 µg/mg) than 
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Arabica filter (24.28 µg/mg) (Bravo et al., 2012) was more effective in protection 

against induced oxidative DNA damage. Indeed, similar results were obtained by 

Schaefer et al. (2006), who reported that the most active polyphenolic apple juice 

extracts protecting against menadione-induced DNA damage in Caco-2 and HT-29 cells 

were those which contained low concentrations of this chlorogenic acid. Moreover, 

Robusta espresso spent coffee extract contains higher concentrations of caffeine 

(94.06 µg/mg vs 35.19 µg/mg) than Arabica filter. This xanthine has been found to 

protect against oxidative damage of calf thymus DNA and radical induced migration in 

human lymphocytes (Faustmann et al., 2009). These results suggest that other phenolic 

compounds, such as diCQAs with higher antioxidative effect as discussed above, but 

also other non-phenolic bioactive compounds such as caffeine might contribute to the 

antigenotoxic activity of spent coffee extracts. The higher effectiveness of Robusta 

espresso spent coffee extract on protection against DNA purines oxidation might be 

explained by the enhance intracellular antioxidant capacity, due to the fact that under 

the same conditions where this genoprotective effect was detected, a significant 

decrease level of ROS was also observed. Also other mechanisms such as endogenous 

defence systems could contribute because this genoprotective effect was only observed 

after the long incubation (24 h). 

In conclusion, in the experimental conditions of this work, spent coffee extracts show 

antioxidant and antigenotoxic properties, revealing that the use of these coffee by-

products which contain bioactive compounds may provide new strategies to protect 

against oxidative stress related diseases, such as cancer. Besides, the results of the 

present work highlight the relevance of studying the bioactivity of these compounds in 

the spent coffee matrices, or in general real food matrices, instead of the pure 

compounds because it allows to explore the balance of compounds with different 
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efficiency, but also to prevent the loss of synergistic and/or antagonistic effects among 

spent coffee compounds. Additionally, further experimental and clinical studies about 

the compounds responsible, the underlying mechanisms, and to clarify dose and time 

dependence would be necessary to enlarge the significance of these results. 
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FIGURE CAPTIONS 

Fig. 1. Viability curves of HeLa cells after 2 and 24 h of incubation with spent coffee 

extracts, obtained with the MTT assay. Results are expressed as mean ± SD of three 

independent experiments. 

Fig. 2. Intracellular ROS level of HeLa cells treated during 2 and 24 h with different 

concentrations of spent coffee extracts. Results are expressed as mean ± SD of three 

independent experiments.* Significantly different from medium-treated cells (C-) 

(p ≤ 0.05). 

Fig. 3. Protective effect of spent coffee extracts against H2O2–induced ROS production, 

evaluated by the dichlorofluorescein assay. HeLa cells were incubated for 10 min 

(37 ºC) in the presence of 500 µM H2O2. Spent coffee extracts were added to the cells 2 

and 24 h prior to the addition of the oxidative stimulus. Results are expressed as 

mean ± SD of three independent experiments.* Significantly different from H2O2 

treated cells (p ≤ 0.05). 

Fig. 4. Protective effect of spent coffee extracts against H2O2–induced formation of 

DNA strand breaks, evaluated by the comet assay. HeLa cells were incubated for 

10 min (on ice) in the presence of 500 µM H2O2. Spent coffee extracts were added to 

the cells 2 and 24 h prior to the addition of the oxidative stimulus. Results are expressed 

as mean ± SD of three independent experiments.* Significantly different from H2O2 

treated cells (p ≤ 0.05). 

Fig. 5. Protective effect of spent coffee extracts against Ro-induced purines oxidation 

(FPG-sensitive sites). HeLa cells were incubated for 2 and 24 h with spent coffee 

extracts, prior to the treatment with 1 µM Ro (10 min, on ice) plus light. Results are 

expressed as mean ± SD of three independent experiments.* Significantly different from 

Ro treated cells (p ≤ 0.05). 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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