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ABSTRACT 

The potential of phenol antioxidants to suffer decomposition reactions leading to 

the formation of products exerting pro-oxidant activity was studied. A 

hydroalcoholic solution containing caffeic acid was assessed for antioxidant and 

pro-oxidant activity during heating at 90°C to simulate the heat maintenance of 

the coffee brews in thermos. Decomposition products were also evaluated by 

HPLC analysis. In the early steps of caffeic acid decomposition, a decrease in 

antioxidant capacity was detected, associated to a significant increase in pro-

oxidant activity because the development of pro-oxidant compounds. On further 

heating, an increase in antioxidant activity associated to a decrease in pro-oxidant 

molecules previously formed and the formation of polymers with higher 

antioxidant activity was observed. A mechanistic route of caffeic acid 

decomposition under thermal conditions according to the HPLC analysis was 

proposed. This study clearly showed that caffeic acid, a well known antioxidant, 

may also act as pro-oxidant due to thermal decomposition.  
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INTRODUCTION 

Plant polyphenolic have been shown to act as strong antioxidants in various 

systems and their multiple biological actions have been extensively reviewed 

(Meskin, Bidlack, Davies, Lewis and Randolph, 2004; Shahidi and Naczk, 2004). 

It is widely believed that polyphenols help maintaining human health by 

decreasing oxidative damage to key biomolecules. This result is supported by a 

number of cell culture studies examining the mechanisms behind oxidative stress 

prevention by polyphenols. However, recent evidences on the effect of flavonoids 

and other phenols in culture indicate the potential for artefact involving 

interactions of polyphenols with components of the cell culture media (Halliwell, 

2003). In the light of these findings, it has been suggested that the major benefits 

of including dietary polyphenols in the meal can be related to their ability to 

reduce the generation of lipid hydroperoxides in the gastric fluid during digestion 

(Kanner & Lapidot, 2001; Halliwell, 2003). Dietary polyphenols would thus 

prevent lipid peroxidation not only in the meal, but also in the stomach. However, 

the enthusiasm based on the awareness that polyphenols exert powerful 

antioxidant activities is now followed by a growing concern about their possible 

pro-oxidant effects. In fact, it is noteworthy that polyphenols are easily 

autoxidisable and able to reduce transition metal ions (Stadler, 2001; Halliwell, 

2003). In addition, upon oxidation they easily beget decomposition products 

which might be pro-oxidants. For instance, it is known that phenoxy radicals or 

phenoxonium cations are involved in the oxidative polymerisation of phenols 

(Fulcrand, Benabdeljalil, Rigaud, Cheynier & Mountounet, 1998; Kobayashi & 

Higashimura, 2003). In addition, carbocation intermediates are expected to be 

produced from their cleavage at high temperature (Britt, Buchanan, Thomas & 

Lee, 1995). 
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For this reason, it is likely that molecules with pro-oxidant activity could be 

formed as a consequence of food processing operations promoting phenol 

polymerisation and/or degradation (e.g. food formulation, thermal treatment, 

dehydration, storage) (Nicoli, Calligaris & Manzocco, 2000; Pinelo, Manzocco, 

Nunez & Nicoli, 2004). In other words, reactions occurring during processing 

may invert dietary polyphenols from antioxidants to pro-oxidants and 

consequently favour lipid peroxidation and other oxidative reactions. 

Although it is possible to find in the literature abundant studies about the 

antioxidant behaviour of phenol compounds, only few works are focused on the 

occurrence of pro-oxidant activity as a consequence of their thermal 

decomposition (Stadler, Welti, Stämpfli, & Fay, 1996; Guillot, Malnoë & Stadler, 

1996; Stadler, 2001). Indeed, the development of pro-oxidant activity is hardly 

predictable on the basis of the antioxidant activity of the original phenolic 

compound. 

On the basis of these considerations, the aim of this work was to evaluate the 

potential of polyphenols with recognised antioxidant activity to suffer 

decomposition reactions leading to the formation of products exerting pro-oxidant 

activity. Caffeic acid was chosen as an example of hydroxycinamic acid, which 

mainly contributes to dietary polyphenols being commonly assumed through 

coffee beverages (Rice-Evans, Miller & Paganga 1996; Clifford, 1999). Since full 

characterisation of caffeic acid decomposition reactions has not been achieved yet, 

model solutions constituted a simplified medium for their preliminary exploration. 

The works of Stadler and coworkers were focused on the pyrolisis of caffeic acid 

to simulate the roasting process of coffee. However, the heat maintenance of 

coffee brews in thermos (i.e. in a catering, or in the office) during hours is 

becoming more common to have a hot coffee brew at once. For this reason, a 
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hydroalcoholic model system containing caffeic acid was allowed to react at 90°C 

for increasing time and assessed for antioxidant and pro-oxidant properties. The 

hydroalcoholic solution was selected to simulate the aqueous medium with the 

presence of organic compounds of the coffee brew. The antioxidant activity was 

analysed by means of chain breaking activity and redox potential whilst pro-

oxidant activity was evaluated by a spectrophotometric method. Possible 

attribution of pro-oxidant or antioxidant activity to specific caffeic acid 

decomposition products detected by HPLC analysis was also discussed.  

 

MATERIALS AND METHODS 

Chemicals and reagents. The methanol used was of spectrophotometric grade 

from Panreac (Barcelona, Spain). Pure reference standards of caffeic acid and 2,2-

diphenyl-1-picrylhydrazyl (DPPH) were obtained from Aldrich (Steinheim, 

Germany) and catechol was purchased from Acros Organics (Springfield, New 

Jersey, USA). 

Sample preparation. A solution containing 1% w/v of caffeic acid in ethanol-

water (1:4) was prepared. The pH of the solution was adjusted at 4.6 by addition 

of 10N sodium hydroxide to simulate coffee brew pH. Aliquots of 10 mL of the 

solution were placed in 20 mL capacity vials which were hermetically closed with 

butyl septa and metal caps. Samples were heated at 90ºC in an air circulating oven 

for increasing time up to 24 hours. After heat treatment samples were immediately 

cooled to room temperature in a water bath. Two independent experiments were 

evaluated. 

Colour. Colour analyses were carried out using a tristimulus colorimeter 

(Chromameter-2 Reflectance, Minolta, Osaka, Japan) equipped with a CR-200 

measuring head. The instrument was standardised against a white tile before 
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measurements. Colour was expressed in L* a* and b* Hunter scale parameters 

(Clydesdale, 1978). 

Optical Density measurement. Samples were diluted with deionised water in 

order to obtain absorbance in scale. The absorbance at 280 and 420 nm was 

measured by a UVIKON 860 (Kontron Instruments, Milan, Italy) 

spectrophotometer. 

Chain-Breaking Activity. The chain breaking activity was measured following 

the methodology described by Brand-Wiliams, Cuvelier and Berset (1995). In 

particular, the bleaching rate of a stable free radical, 2,2-diphenyl-1-

picrylhydrazyl (DPPH·), was monitored at a characteristic wavelength in the 

presence of the sample. In its radical form, DPPH· absorbs at 515 nm, but upon 

reduction by an antioxidant or a radical species its absorption decreases. 

A volume of 1.85 mL of 6.1x10-5 M DPPH· methanol solution was used. The 

reaction was started by adding 20 μL of each sample. After mixing, the 

absorbance was measured at 515 nm after exactly 1 min, and then every minute 

for 18 min (end reaction time). In all cases, the DPPH· bleaching rate was 

proportional to the sample concentration added to the medium. Reaction rates 

were calculated using the equation proposed by Manzocco, Anese and Nicoli. 

(1998): 

1/Abs3-1/Abso
3=-3kt 

where k is the DPPH·bleaching rate, Abso
 is the initial absorbance value and Abs 

is the absorbance at increasing time t. The chain-breaking activity was expressed 

as the slope obtained from the equation (-Abs –3 min-1) per gram of dry matter. All 

of the dry matter of the sample was assumed to possess antioxidant properties. 

Pro-oxidant Activity. The pro-oxidant activities were determined using crocin as 

a radical quencher, according to the methodology described by Manzocco, 
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Calligaris and Nicoli, (2002). Crocin was isolated from saffron (Sigma Chemical 

Co, St. Louis, MO) by methanol extraction after repeated washings with ethyl 

ether. The crocin solution was diluted with 0.1 M phosphate buffer, pH 7.0 

(Sigma Chemical Co, Louis MO) in order to obtain a 1.35 x 10-5 M crocin solution 

(The absorption coefficient of crocin at 443 nm is 1.33 x 105  mol -1 cm -1). The 

bleaching rate of crocin at 443 nm, in the presence of the sample, was monitored 

at 40 ºC by a Uvikon 860 (Kontron Instruments, Milan, Italy) spectrophotometer. 

The reaction was started by the addition of increasing amounts of sample (0-100 

μL) to 2 mL of crocin aqueous solution in a 3 mL capacity cuvette (1 cm length). 

The decrease in absorbance was determined every 30 s for 10 min. The pro-

oxidant activity was expressed as the decrease in crocin absorbance at 443 nm 

after 5 min of reaction (ΔOD 5min mg dm
-1).  

Redox potential. The redox potential measurements of the coffee samples were 

assessed by a platinum indicating electrode and a Ag/AgCl, Cl-
sat reference 

electrode connected with a voltmeter (Crison, mod. 2002, Alella, Spain). 

Calibration was performed against redox standard solutions having redox 

potential values of 220 and 465 mV (Reagecon, Shannon, Co. Clare, Ireland) at 

25ºC. Electrodes were placed in a 50 mL 3-neck flask containing a volume of 20 

mL of sample. Prior to analysis, oxygen was removed from the system by 

nitrogen flushing for 10 min. Data were recorded for at least 20 min at 25º C, until 

a stable potential was reached. A stable potential was arbitrarily defined as a 

change of less than 1 mV in a 3 min period. 

HPLC analysis. HPLC analysis was carried out with an analytical HPLC unit 

(Varian Pro Star 230), equipped with a Rheodyne injector of 10 μL loop and a 

diode-array detector (Varian Pro Star). A column Alltima C18 (5 μm particle size, 

250 x 4.6 mm) was used (Alltech Associates, Inc., Deerfield, IL, USA). The 
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mobile phase was 100 % solvent A (5% acetic acid in water) for 10 min and then 

90 % solvent A / 10% methanol for the following 40 min at a flow of 0.7 mL/min. 

Pertinent reaction products were identified by retention times with authentic 

compounds in identical conditions and on-line UV spectra. 

Statistical analysis. Each analysis was made in duplicate. Analysis of variance 

(ANOVA) and a posteriori t-Tukey test with a level of signification of 95% were 

applied. Pearson correlations were applied among all the parameters. All 

statistical analyses were performed using the SPSS v.15.0 software package. 

 

RESULTS AND DISCUSSION 

Absorption at 280 nm and 420 nm of 1% (w/v) caffeic acid hydroalcoholic 

solution heated at 90 ºC for increasing time is shown in Table 1. Unheated caffeic 

acid solution was taken as reference. It can be observed that the absorbance at 280 

nm decreased with the increase of heating time, mainly during the first 4-6 hours. 

Since caffeic acid is known to absorb at 280 nm and to decompose upon heating, 

the decrease of absorbance at this wavelength clearly indicated its linear 

progressive decomposition (r=-0.914, p<0.001). By contrast, the absorbance at 

420 nm increased with heating time (r=0.856, p<0.01), indicating a gradual 

browning of the reacting solution. Absorbance data are in agreement with the 

changes in L*, a* and b* Hunter parameters (Table 1). In fact, L* parameter 

(lightness) slightly changed within the first 14 hour-heating but significantly 

decreased when heat treatment was prolonged up to 24 hours. Parameter a* (red 

colour) decreased progressively up to 4 hour-heating and then increased reaching 

the highest value at 24 hours, but in all cases close to zero. On the contrary, the 

parameter b* (yellow colour) increased progressively showing a significant 

correlation with the browing increase (Abs 420nm) (r=0.908, p<0.01).  
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The antioxidant capacity upon heating of the hydroalcoholic solution containing 

caffeic acid was evaluated by analysing both the chain breaking activity and the 

redox potential value because different and complementary information can be 

obtained by their comparison. In fact, the redox potential gives indication on the 

effective oxidation/reduction efficiency of all the antioxidants present, including 

the “slow” ones, which can not be detected by kinetic methods (Anese & Nicoli, 

2003). 

The evolution of chain-breaking activity and redox potential during heat treatment 

is shown in Figure 1. It can be observed that after one hour of heating a decrease 

of chain-breaking activity was produced. A concomitant increase in the redox 

potential value was detected, indicating that the overall reducing properties of the 

sample were decreased. Upon further heating, the redox potential decreased (r=-

0.957, p<0.001) whilst a partial recovery was detected for chain-breaking activity. 

However, no significant changes in this property were observed in the case of 

samples heated for more than 6 hours. 

These results clearly show that the oxidative properties of caffeic acid are greatly 

affected by heat treatments. The complex evolution of both thermodynamic and 

kinetic properties of the reacting solution indicates that caffeic acid degradation 

products are characterised by different oxidative state. In particular, the early steps 

of caffeic acid degradation are likely to be associated to the formation of 

decomposition products presenting lower antioxidant capacity as compared to the 

original molecule and/or to the development of novel compounds exerting pro-

oxidant activity. By contrast, the increase in antioxidant activity observed on 

further heating can be accounted for by the formation of polymers with higher 

antioxidant activity. However, the possible consumption, in the advanced steps of 
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the reaction, of pro-oxidant molecules previously formed could also contribute to 

explain the recovery in antioxidant properties. 

In order to evaluate whether pro-oxidant species are formed during the early steps 

of caffeic acid decomposition, samples heated for up to 6 hours were assessed for 

their ability to exert pro-oxidant capacity by quenching a reference antioxidant 

(Figure 2). It is interesting to note that unheated caffeic acid showed a significant 

pro-oxidant activity. As known, most antioxidants present in foods (e.g. ascorbic 

acid, α-tocopherols, flavonoids and catechins) are capable of exerting pro-oxidant 

actions depending on the reaction conditions (Auroma, 1996). Thus, caffeic acid 

exerts antioxidant activity towards DPPH· and pro-oxidant activity towards 

crocin, according to their redox potential values (229, 199 and 120 mV 

respectively for DPPH·, caffeic acid and crocin) (Anese & Nicoli, 2003). Figure 2 

shows that the pro-oxidant activity of the caffeic acid solution increased after one 

hour of heat treatment. This result confirms that the increase in redox potential 

observed in the early steps of the reaction (Figure 1) could be attributed to the 

formation of novel pro-oxidants. When heating was prolonged, the pro-oxidant 

activity decreased probably due to the consumption of pro-oxidant molecules 

which further react to form compounds with stronger antioxidant properties as 

compared to original caffeic acid (Figures 1-2). 

The mechanistic route of caffeic acid decomposition under acid or thermal 

conditions is a reaction via decarboxilation and ciclysation of vinylcatechol 

intermediate as described for styrene (Taylor, Keen, & Eisenbraun, 1977; Rizzi & 

Boekley, 1992). In particular, caffeic acid has a proclivity to lose carbon dioxide 

readily forming nucleophilic p-vinylcatechol which easily beget pro-oxidant 

cations (Clarke & Macrae, 1983; Henrich & Baltes, 1987; Stadler, Welti, Stämpfli 

& Fay, 1996). Although p-vinylpyrocatechol cations are extremely susceptible to 
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oxidation, resulting in rapid polymerization, it can be inferred that their formation 

can not be underestimated deeply affecting both the antioxidant status and the 

reaction pathway. 

Caffeic acid polymerisation produces two steroisomers of 2,5-(3’,4’-

dihydroxyphenyl) tetrahydrofuran-3,4-dicarboxylic acid and a range of 

phenylindan-type stereoisomers (Fulcrand, Cheminat, Brouillard & Cheynier, 

1995; Stadler, Turesky, Muller, Markovic & Leong-Moergenthaler, 1994; Stadler, 

Welti, Stämpfli & Fay, 1996). Structurally these tricyclic dimmers contain two o-

dihydroxy-benzyl moieties, common features found in compounds with good 

reducing and antioxidant properties (Cuvelier, Richard & Berset, 1992, Guillot, 

Malnoë & Stadler, 1996). Besides, two small compounds with antioxidant activity 

(catechol, ethylcatechol) are also formed. The formation of phenylindans, catechol 

and ethylcatechol exerting strong antioxidant properties could give reason of the 

increase in antioxidant capacity (Figure 2) and the decrease in pro-oxidant activity 

(Figure 2) observed in the advanced phases of the reaction.  

Caffeic acid and its decomposition compounds were analysed by HPLC. Table 2 

shows the area results of the seven peaks observed during the experiment. Caffeic 

acid (peak 2) remains constant until 3-hour heating and then starts decreasing, 

reaching the lowest value at 24 hours of heat treatment. It can be observed that 

different compounds are formed whereas caffeic acid is consumed. In samples of 

unheated and 1-hour heated caffeic acid a peak at 38 min was observed (peak 6). 

The presence of this peak (38 minutes) could be related to the increase of redox 

potential and pro-oxidant capacity (Figures 1 and 2), being potentially associated 

to pro-oxidant molecules such as vinylcatechol formed by decarboxylation of 

caffeic acid (Clarke & Macrae, 1983; Henrich & Baltes, 1987). 
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Table 2 shows that three peaks (peaks 4, 5 and 7) with retention time of 36, 37 and 

42 min appeared after 2-hour heating of the caffeic acid solution. It must be noted 

that these peaks significantly increased during heat treatment. Prolonging heating 

time, a decrease in their area was detected so that a maximum value was observed 

at 14 hour-heating. According to literature data, these peaks could reasonably be 

associated to the phenylindan-type stereoisomers previously isolated and 

identified as the major products of caffeic acid pyrolysis (Stadler, Turesky, 

Muller, Markovic & Leong-Moergenthaler, 1994, Stadler, Welti, Stämpfli, & Fay, 

1996). The formation of these antioxidant compounds, also in less extreme 

thermal conditions, could give reason of the recovery in antioxidant capacity 

observed after 2-hour heating (Figure 2) (Cuvelier, Richard & Berset, 1992). 

Moreover, the found linear significant and positive correlations between each 

three peaks (4, 5 and 7) and Absorbance at 420nm (0.715, p<0.05; 0.865, p<0.01; 

and 0.739, p<0.05, respectively) and with b* (yellowish) colour parameter (0.800, 

p<0.05; 0.860, p<0.01; and 0.714, p<0.05, respectively), and the negative 

correlations between peak 6 and both polymers markers (-0.728, p<0.05 with 

Abs420nm; and -0.796, p<0.05 with b*) are in agreement with this route of 

polymerisation. The evolution of peaks 4, 5 and 7 indicates that, as the reaction 

proceeds, phenylindan-type stereoisomers are formed to a minor extent or are 

consumed in the reaction pathway. This hypothesis is supported by the occurrence 

of two additional peaks in the advanced steps of the reaction. In particular, peak 1 

and peak 3 were respectively observed starting from 3- and 14-hour heating. It 

must be noted that peak 1 was identified as related to catechol formation. Both 

peaks were very and significant negative correlated with redox potential (-0.926, 

p<0.001 for peak 1 and -0.907, p<0.01 for peak 3). Taking into account these 

results, it can be inferred that the increase in antioxidant activity due to the 
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formation of phenylindans and catechols could be counterbalanced by the 

consumption of caffeic acid, thus leading to slight changes in antioxidant 

properties in the advanced steps of the reaction (Figure 1).  

 

CONCLUSIONS 

Results obtained in this study clearly showed that caffeic acid, which is widely 

recognised to exert antioxidant properties, may also act as pro-oxidant. In 

addition, upon thermal treatment, it was shown to produce decomposition 

products with significant pro-oxidant activity. In fact, highly reactive cations are 

generated in the early phases of caffeic acid degradation, deeply affecting both the 

oxidative status and the reaction pathway of the system. However, a partial 

recovery in antioxidant activity was observed maybe due to cation coupling and 

polymerisation reactions. 

These results appear of considerable interest as regards the implications of food 

processing operations and, in this case, the heat maintenance of coffee brews in 

thermos, promoting phenol polymerisation and/or degradation. The latter may 

actually invert dietary polyphenols from antioxidants to pro-oxidants, 

consequently favouring lipid peroxidation not only in food but also in vivo during 

digestion.  

It can be concluded that both nature and extent of the reactions occurring in 

phenol-containing foods and also other factors such as reaction media, matrix and 

so on, can greatly influence the fate of polyphenols. The marked fluctuation in 

their oxidative properties upon heat maintenance indicates that further research is 

needed to determine those technological conditions able to minimise the 

development of pro-oxidant activity and promote a gain in the antioxidant 

capacity. Moreover, this raises the question if the increase in food nutritional 
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value is really achievable through the addition of polyphenols. Although there is 

no direct and compelling evidence that the common custom of fortification with 

polyphenols is related to positive effects on the human health, a negative 

synergism on antioxidant activity among phenols in food fortification has been 

reported (Pinelo, Manzocco, Nunez & Nicoli, 2004). However, there is 

considerable circumstantial evidence to suggest that caution should be used in 

interpreting enthusiastic data relevant to the antioxidant properties of polyphenols.  
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FIGURE CAPTIONS 

Figure 1. Chain-breaking activity and redox potential of a 1 % w/v caffeic acid 

hydroalcoholic solution during heating at 90 ºC. 

Figure 2. Pro-oxidant capacity of a 1 % w/v caffeic acid hydroalcoholic solution 

during heating at 90 ºC. 
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Table 1. Absorbance and colour of samples of a 1 % w/v caffeic acid 

hydroalcoholic solution heated at 90 ºC. 

Time 
(hours) 

Abs 280 nm 
(n=4) 

Abs 420 nm 
(n=4) 

L* 
(n=4) 

a* 
(n=4) 

b* 
(n=4) 

0 0.703±0.001 h 0.000± 0.000 a 53.89±0.84 d 1.79 ±0.05 g 2.37 ±0.26 a

1 0.659±0.001 g 0.039±0.019 b 52.23±0.26 b 1.48 ±0.07 e 3.27 ±0.32 b

2 0.597±0.001 e 0.750±0.014 c 55.04±0.20 e -0.29 ±0.14 d 10.23±0.57 c

3 0.622±0.001 f 1.380±0.010 d 54.33±0.38 d -2.19±0.05 b 19.95±0.28 e

4 0.540± 0.001 d 1.894± 0.006 f 54.31±0.27 d -3.04±0.02 a 24.25±0.52 g

6 0.438± 0.001 c 1.588± 0.005 e 54.27±0.28 d -2.21±0.02 b 20.51±0.12 e

14 0.434±0.001 b 2.160± 0.018 g 52.85±0.03 c -1.26±0.03 c 18.49±0.08 d

24 0.305± 0.001 a 2.893± 0.010 h 45.32±0.24 a 3.00±0.22 f 22.78±0.20 f

Results are shown as means ± standard deviations. In each column, different superscripts (letters a, 

b, c) indicate significant difference (p<0.05) among samples. The same letter indicates that there is 

no significant difference among samples in this parameter. 
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Table 2. Compounds determined by HPLC (Results shown as area). 

Time 
(hours) 

Peak 1 
Catechol 
Rt=8 min 

Peak 2      
Caffeic Acid 

Rt=20min 

Peak 3  
Rt=33 min 

Peak 4  
Rt=36 min 

Peak 5  
Rt=37 min 

Peak 6 
Rt=38 min 

Peak 7 
Rt=42 min

0 n.d. 371±10cd n.d. n.d. n.d. 11.0±0.4a n.d. 

1 n.d. 409±10d n.d. 4.6±0.1a n.d. 24.0±0.2b n.d. 

2 n.d. 370±40cd n.d. 15.0±1.5b 20.0±0.1b n.d. 5.0±0.1a

3 0.3±0.0a 407±66cd n.d. 33.0±1.3d 17.0±0.2a n.d. 5.0±0.2a

4 0.8 ±0.0b 292±10b n.d. 44.0±1.5e 21.0±0.2c n.d. 7.0±0.1c

6 1.0 ±0.1c 333±37ab n.d. 54.0±1.2f 24.0±0.1d n.d. 9.0±0.2d

14 4.6 ±0.1d 273±30ab 0.2±0.0a 62.0±2.0g 28.0±0.1e n.d. 14.0±0.3e

24 4.5±0.0d 236±10a 0.4±0.0b 26.0±2.0c 24.0±0.2d n.d. 6.0±0.1b

Results are shown as means ± standard deviations. In each row, different letters indicate significant 

difference (p<0.05) among different times of heat treatment. 

The peak 3 could be the ethylcatechol. 

The peaks 4, 5, 7 could be phenylindans. 

The peak 6 could be the vinylcatechol. 

n.d. Not detectable 
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Figure 1.  
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Figure 2. 
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	L*
	a*
	(n=4)
	b*
	(n=4)
	53.89±0.84 d
	1.79 ±0.05 g
	2.37 ±0.26 a
	52.23±0.26 b
	1.48 ±0.07 e
	3.27 ±0.32 b
	55.04±0.20 e
	-0.29 ±0.14 d
	10.23±0.57 c
	54.33±0.38 d
	-2.19±0.05 b
	19.95±0.28 e
	54.31±0.27 d
	-3.04±0.02 a
	24.25±0.52 g
	54.27±0.28 d
	-2.21±0.02 b
	20.51±0.12 e
	52.85±0.03 c
	-1.26±0.03 c
	18.49±0.08 d
	45.32±0.24 a
	3.00±0.22 f
	22.78±0.20 f

