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Experimental results on interfacial waves forced periodically and perpendicular to gravity which

appear in a Natterer tube are presented.

If the control parameter is moved, the patterns

stamped by these waves will evolve with defects and more complex structures appearing, which
lead to chaos. Also, squeezes (a few drops produced by squeezing) appear that move along the

tube and interact with each other.

1. Introduction

There have lately been many contributions, both
theoretical and experimental, studying hydro-
dynamical instabilities and their role in pattern for-
mation (thermal convection, Marangoni phenom-
ena, etc). Special interest has been devoted to the
appearance of such spatiotemporal structures and
their parametric evolution, and to the appearance
of defects when you move away from the thresh-
old. Into this kind of phenomena, fluid-fluid inter-
faces periodically excited [Fauve et al., 1992; Nobili
et al., 1988; Funakoshi & Inoue, 1988] give dynam-
ics of particular interest.

Without making an exhaustive review, among
the theoretical approaches to this kind of problem
surely the most complete analysis is that of J. W.
Miles (Miles & Henderson [1990] and references
therein). For interfaces periodically excited perpen-
dicular to gravity, Miles [1984] developed a method
based on an averaged Lagrangian which yields a
system of ordinary differential equations for the
relevant degrees of freedom. The only free pa-
rameter of Miles’ theory is a damping factor heuris-
tically added. Depending on the frequencies, am-
plitudes and aspect ratios (considering circular

geometries) there may appear a superposition of
resonant perpendicular modes, yielding chaotic
regimes for applied frequencies near the natural
resonance frequency.

From an experimental point of view, although
there have been many works in the last 10 years
about the appearance and evolution of patterns and
the transition to chaos for the Faraday instability
[Ciliberto & Gollub, 1984; Tufillaro et al., 1989;
Douady et al., 1989; Ezersky & Rabinovich, 1990,
there are not many experimental data for systems
excited perpendicular to gravity [Nobili et al., 1988;
Funakoshi & Inoue 1988]. The main purpose of
these is to describe experiments in which all the
phase diagrams of the system have been measured
and compared with the predictions of Miles [1984].

We report some experimental results about the
interfacial waves, periodically and horizontally
forced, that appear in a tube with COs at vapor
pressure (see Sec. 2 below and Fig. 1). The con-
sidered geometry, with the aspect ratio very small,
diminishes the class of solutions given by Miles at
linear or weakly nonlinear regimes, depending on
the applied frequencies. In fact, in this paper a wide
range of frequencies was explored far away from
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Fig. 1. Schematic sketch of the experimental set-up. LS, A, V, PD, G, L denote respectively loudspeaker, amplifier, voltmeter,

photodetector, gas phase and liquid phase.

the natural resonance, reporting results in regimes
where either gravity and capillary effects are negli-
gible or both are important. Relevant points for the
system considered, such as viscosity, surface tension
and density, make it, besides the fact of considering
a closed basin, difficult to consider the models cited
above [Fauve et al., 1992], and only a few well es-
tablished results of the general theories of interfacial
waves [Segel, 1987| are obtained. Finally, we report
results obtained when, for different applied frequen-
cies, the applied amplitudes are increased until tur-
bulent regimes are reached, obtaining several spa-
tiotemporal patterns. So, we show the apparition of
patterns and defects, similar to those of other kinds
of hydrodynamic instability [Joets & Ribotta, 1991;
Pocheau 1983; Wesfreid & Zaleski, 1984]. Also, we
report the apparition of drops produced by squeez-
ing the interface (squeeze) at the extremities which
move along the tube. Those squeezes play the role
of particles and the patterns play the role of the
fields. Similar kind of experiment on Faraday in-
stability using CO2 very near to the critical point
has been developed by Fauve et al. [1992].

2. Experimental Set-Up

Experiments were performed using a Natterer tube
mounted horizontally in a plateholder, minimizing
lateral vibrations and mechanic frictions (Fig. 1).
The Natterer tube is a CO; filled tube at vapor

pressure for room temperature (near the critical
point). In our case, the geometry was a cylindri-
cal tube of 1 em diameter and 28 cm length. The
CO, liquid phase filled just one half of the whole
volume of the tube; therefore, in its horizontal po-
sition the maximum depth of the liquid phase was
0.5 cm.

The physical properties are very sensitive to
temperature fluctuation near the critical point
(32°C). Thus we used a thermostated chamber at
constant temperature and controlled externally. For
the present work, the experiments were done at
20°C with a stability better than 0.2°C per hour.
At that room temperature the main physical char-
acteristics are [Weast, 1983]:

Kg Kg
o= 7735, pg = 18955,
m* m?
m=92-10"—, vy =78-10"0—, (1)
K
o0 =1.16-107=2.
S

A sinusoidal mechanical force was applied by
a loudspeaker in the direction of the long axis of
the tube. The driving force and amplitude were
produced by a function generator connected to an
amplifier with very low noise. Measurements of
the driving amplitudes of the applied force were
done by a microvoltmeter connected directly to the



loudspeaker, because we had verified that the me-
chanical displacements (about 1 mm) of the tube
were proportional to the applied voltages. The ex-
periments were performed for frequencies between
10 and 100 Hz, having a resolution of 10 mHz.

The deformation of the liquid-gas interface was
detected by two different methods. The first was a
Schlieren method which allows us to visualize spa-
tial structures. The second consisted in detecting
variations of light intensities of a laser beam re-
flected from the interface. Both methods allow us to
distinguish variations of the interface (with respect
to the rest position) of 10 microns. Also, a sys-
tem of direct visualization by a video camera CCD
was used to study the patterns and their evolution
when the control parameters (frequencies and am-
plitudes) were changed. In all the cases we syn-
chronized the signal with the applied force to avoid
stroboscopic effect.

For the working frequencies, any mechanical ex-
citation produces waves on the borders (the viscos-
ity is so small that the effects of the lateral walls
can be neglected) which propagates to the centre of
the tube.

Only when the amplitudes of these waves reach
a certain value could they be visualized or detected
by the methods cited above. This allows us to de-
fine a “threshold”: for each applied frequency the
amplitude of the driving force which gives us the
first detected surface deformation is considered the
“threshold” amplitude. A typical pattern of interfa-
cial waves, observed from above, contains dark and
bright stripes that correspond to crests and troughs
of the waves.
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The reflected laser beam mentioned above was
registered by a photodetector. Deformations of the
interface produced strong variations of the laser
spot’s surface, and then variations of the output
intensities in the photodetector were related to the
changes of the interface’s curvature. The signal of
the photodetector was digitized and processed for
temporal F.F.T. analysis. This system provided an
accurate method for measuring the “thresholds”,
and also for studying the different characteristic fre-
quencies mixed up in the problem.

On the other hand, direct images of the pat-
terns were acquired by a CCD camera and digitized
for processing in a personal computer.

3. Results

Waves are produced periodically in the direction of
the tube’s long axis. There exists a predominant
wave number for each driving frequency which gives
the pattern: stripes perpendicular to the long axis.

We measured the “threshold” amplitudes for
different driving frequencies, which had a minimum
at 28 Hz, distinguishing two regions [Gonzélez-
Vinas & Salan, 1994a). For frequencies lower than
the minimum there was a region where the surface
tension effects were not important (gravity waves).
For higher frequencies there was a region where
surface tension effects completely screened the ef-
fect of gravity (capillary waves). A couple of rep-
resentative images is shown in Fig. 2. Measuring
the “threshold,” we observed hysteresis around the
minimum when the driving amplitude was increased
and decreased consecutively. Wave numbers for the
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Fig. 2. Pattern for (a) gravity waves (15 Hz, dominance = 0.4) (b) capillary waves (50 Hz, dominance = 5). Dominance is
the square of the wave number relative to the capillary wave number.
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Fig. 3. From top to bottom, images with increasing driving frequencies (15, 30, 50, 80 Hz).

various applied frequencies at the “threshold” are
monotonously increasing [Gonzalez-Vinas & Salan,
1994a,b] (Fig. 3). If the exciting amplitude is ab-
ruptly increased from 0 to the “threshold” there will
be a delay time before any pattern can be observed.
Note that it is not possible to measure any delay
time by slowly varying the driving amplitude. As
it will be seen later, the variation of the delay time
of the gravity wave region is relevant to understand
the “threshold” behavior.

Propagating linear patterns appeared for fre-
quencies higher than a cut-off frequency (22 Hz),
corresponding to the capillary wave number theo-
retically calculated from the physical properties of
the system reported above. It is easy to show that

1
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and that it corresponds to an adimensionalized wave
number of 167 and an exciting frequency of 22 Hz.
(by experimentally observing which frequency cor-
responds to A.) which differs little from the mini-

mum amplitude’s frequency (28 Hz). In Fig. 9 are
shown the regions where stationary or traveling
pattern exist. Their velocities were given by the
slope of the stripes in a spatiotemporal acquisition
(Fig. 4). For frequencies higher than 22 Hz, the
velocities vary strongly up to 0.8 mm/s and after-
wards smoothly up to 1.4 mm/s within the exper-
imental frequency range. Further, we also deter-
mined whether or not there existed a modulation
amplitude near the “threshold”. We found that
they did. Unfortunately, we are only in a position
to say that the modulation amplitude frequencies
were smaller than 100 mHz. In fact, the measured
frequencies had fluctuations into the range of the
measurements.

When the driving amplitude was increased,
nonlinear effects started to become important. Per-
pendicular modes are unstable over some exciting
amplitude. Such modes were displayed in the form
of the structure’s undulations (Fig. 5) with a wave-
length double that of the tube’s width (its existence
should be placed at region d of Fig. 9). These undu-
lations make themselves stronger and there appear
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Fig. 4. One-dimensional spatiotemporal digital image ac-
quisition showing pattern propagation at 60 Hz with a veloc-
ity of propagation near to 0.8 mm/s. Increasing time from
top to bottom.
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Fig. 5. Undulated structure for amplitudes higher than
“threshold.”

WA

imm

Fig. 6. A couple of defects at a driving frequency of 50 Hz.

defects that propagate along the tube. The more
stable defects were a couple of defects in phase op-
position (Fig. 6) that led (increasing amplitude) to
more complex structures such as polygonal struc-
tures, varicose-like structures and other patterns
that yields to chaos and, finally, to developed turbu-
lence (region ct in Fig. 9). If the driving amplitude
was increased, there would also appear lines of de-
fects (Fig. 7) as a consequence of the undulation
mentioned before.
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Fig. 7. Formation of a defects’ line (right) from an undu-
lated structure (left).

For a given exciting frequency there exists
a squeeze's threshold (dashed line in Fig. 9) for
the driving amplitudes. The boundary conditions
at the extremities squeeze the interface creating
squeezes which move quickly and at nearly con-
stant velocity. Squeezes usually have elastic col-
lisions, sometimes annihilate, and rarely have in-
elastic collisions. When squeezes knock against the
boundaries they reflect and moved in the opposite
direction. If the driving amplitude is decreased the
squeezes are reabsorbed, defining a drip’s threshold
(we called them drips for the reason that they fall)
Fig. 8). There existed hysteresis for creation and
annihilation of squeezes, that is: a drip’s threshold
is lower than a squeeze’s threshold for frequencies
higher than 70 Hz (dotted line in Fig. 9).
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Fig. 8. Reabsorption of squeeze.
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Fig. 9. Schematic parameters’ plane for driving amplitudes
versus driving frequencies, where the solid line represents
“threshold” with increasing A for each 2 and the line formed
by crosses represents the region of hysteresis at “threshold”
with decreasing A for each §2. The dashed line represents the
squeezes’ threshold and the dotted line the drip’s threshold at
hysteresis zone. Sp means stationary patterns, tp travelling
patterns, d defects, and ct chaotic and turbulent motion.

4. Discussion

In this work it is revealed that, with increasing
supercritically applied amplitudes for each applied
frequency, transition to turbulence is made by
reaching the different regions (Fig. 9). In many
aspects, the observed patterns at various regimes
appear different from those observed or predicted
in other previous works [Tufillaro et al. 1989; Fauve
et al. 1992], but, in fact, the geometry considered
here is for aspect ratios where the modes parallel to
the tube’s axis are strongly restricted (only undula-
tions of modes perpendicular to the axis appear for
amplitudes very far from the “threshold” values).
A first interesting feature to discuss is the curve
of variations of the “threshold.” As it was said be-
fore, we can distinguish two regions depending on
the applied frequency. The first one, for frequencies
greater than 22 Hz, where surface tension effects
are important, shows that the “threshold” ampli-
tudes also grow when frequency is increased. As
the wavelengths decrease with applied frequency,
this kind of variation can be understood by consid-
ering simple arguments concerning interface defor-
mation which depends mainly on the wavelengths

and surface tension. On the other hand, when the
driving frequency is less than 22 Hz, gravity effects
predominate upon the capillary and the observed
variations of the “threshold” amplitudes cannot be
explained by arguments similar to the above. Here
it would be necessary to consider the effects of in-
teractions between nearest modes at the resonant
curves, for each applied frequency. As the discus-
sion would carry us out of the scope of this paper,
we refer to a more detailed analysis of the problem
[Gonzalez-Vifias & Salan, 1994a,b]. The hysteresis
around the minimum is just a nonlinear effect of the
resonance generated by the equality of the veloci-
ties of neighboring modes [Segel, 1987; Hammack &
Henderson, 1993]. In fact, it lies between the res-
onances with the first subharmonic mode and the
second harmonic being a maximum hysteresis at the
resonance with modes very nearly at the capillary
wave number (line formed by crosses in Fig. 9).

Patterns near the “threshold” are stationary
or propagative, there existing a cut-off frequency
which agrees with the capillary-gravity frequency.
This agreement is explained by the existence of
a nonlinear parametric resonance for the surface
tension, which appears as a dynamic contribu-
tion to the Laplace equation parallel to the interface
[Gonzalez-Vinas & Salan, 1994b]. A schematic pic-
ture (Fig. 9) shows the main features explained in
the text.

As it was described in the previous section, for
amplitudes far from the “threshold” value, defects
appear in several ways. Two typical features are
shown in Fig. 6 and Fig. 7. First, there appear
undulations of the waves, and the defects that are
shown in Fig. 6 are produced by spatial variation of
the phase, as it was observed. Also, strong undu-
lations produce, finally, line defects or more com-
plicated patterns. At the present state of experi-
ments it is difficult to discuss these results, because
more systematic experiments will be necessary on
this subject. In particular, it was revealed as an
important problem to study the dynamics of the
defects, as they travel or annihilate very quickly.
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