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Abstract 

The application of metabolomics in nutritional research may be a useful tool to analyse and predict the response 

to a dietary intervention. The aim of this study was to examine metabolic changes in serum samples following 

exposure to an energy-restricted diet (-15% of daily energy requirements) over a period of 8 weeks in 

overweight and obese older adults (n=22) using a GC/MS metabolomic approach. After the 8 weeks, there were 

significant reductions in weight (7%) and metabolic improvement (glucose and lipid profile). Metabolomic 

analysis found that total saturated fatty acids (SFAs), including palmitic acid (C16:0) and stearic acid (C18:0) 

and monounsaturated fatty acids (MUFAs) were significantly decreased after the 8 week intervention. 

Furthermore, palmitoleic acid (C16:1) was found to be a negative predictor of change in body fat loss. Both the 

total ω-6 and ω-3 polyunsaturated fatty acids (PUFAs) significantly decreased although the overall total 

amounts of PUFAs did not. The branched chain amino acid (BCAA) isoleucine significantly decreased in the 

serum samples after the intervention.  In conclusion, this study demonstrated that the weight loss intervention 

based on a hypocaloric diet identified changes in the metabolic profiles of serum in overweight and obese older 

adults, with a reduction in anthropometric and biochemical parameters also found.  
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1. INTRODUCTION 

The prevalence of overweight and obesity, established as excessive fat accumulation, has increased rapidly 

worldwide [10]. Fat excess is considered a major predisposing factor for a number of chronic diseases such as 

Type 2 diabetes mellitus, hypertension, dyslipidemias, cardiovascular disease (CVD) and cancer [53]. In turn, 

overweight and obesity prevalence is growing even among older adults (≥60 years) in developed countries [58].  

Aging is associated with significant changes in body composition causing a decrease of muscle mass and an 

increase of total fat mass especially in the abdominal region. [33]. 

Essentially, many treatments for overweight and obesity include lifestyle modification through weight loss 

challenges and exercise with the purpose of balancing energy intake with energy expenditure. Nevertheless, 

most of the dietary interventions result not only in the desired body fat mass loss but also in a decrease in lean 

mass which is discouraged especially in older adults [40,48].  

Metabolomics is a technique that aims to identify and quantify the metabolome [57]. It is the study of 

metabolites present in biological samples such as biofluids/cellular extracts and culture media. Its use in 

nutrition research is increasing and applications range from assessing novel biomarkers of dietary intake to 

utilization of metabolomics in intervention studies [4]. Application of this technique to analyse the response to a 

dietary intervention generates valuable information on the effect and predisposition of the prescribed diet on 

metabolic regulation. It also allows a connection between dietary intake and a particular metabolic phenotype 
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[15,46,50]. The two main approaches employed in metabolomics are nuclear magnetic resonance (NMR) 

spectroscopy and mass spectrometry (MS). These approaches both have their advantages and disadvantages and 

at present there is no unique analytical technique capable of measuring and identifying all metabolites in a 

single sample simultaneously. Therefore comprehensive metabolomic data needs to be assessed by bringing 

together data from different platforms [12,51,54]. A number of nutritional studies have used a gas 

chromatography/mass spectrometry (GC/MS) based metabolomic approach to analyse fatty acids (FAs) and 

amino acids (AAs) [34,41]  

FAs play an important role in metabolic health taking part in many cellular processes, serving as energy reserves 

or regulating gene expression. Obese subjects report elevated concentrations of serum total FAs, which may 

have an impact on the development of metabolic syndrome and related disorders [22,50,52]. However, aside 

from the amount of total lipids, the type of fat has been suggested to be crucial in the development of obesity 

[36]. The FA composition in the human body mirrors not only the dietary fat composition but also the 

endogenous synthesis and metabolism of FAs, mainly by FA synthesis from carbohydrates (CHO), desaturation 

and elongation [2,55]. In this way desaturases have been suggested to play a role in the growth of metabolic 

disorders [1,23].  

Due to the rising prevalence of overweight and obesity among older adults, the design of effective weight loss 

interventions in this age group is needed. Therefore, the aim of this study was to examine metabolic changes 

after the exposure to an energy-restricted diet over a 8-week period in overweight and obese older adults using a 

GC/MS metabolomic approach and also using anthropometric and biochemical data. 

 

2. MATERIAL AND METHODS 

Study population 

Twenty-two of the twenty-six enrolled Caucasian healthy older adults with overweight or obesity (BMI between 

27-34.9 kg/m2) finished the study. All participants were non-smokers, followed a diet free of antioxidants or 

vitamin supplements and presented a stable weight (±3 kg) for the previous 3 months. Diabetes mellitus, history 

of previous psychiatric disorders or chronic diseases related with the metabolism of nutrients was considered as 

exclusion criteria. The volunteers were recruited through a local newspaper and the Department database. Prior 

to beginning the study, subjects attended the Metabolic Unit of the University of Navarra, where the physician 

informed them in detail about the study conditions and they signed the written informed consent. 

Study protocol 

The present study was designed as a prospective intervention study in which subjects followed a personalised 

and hypocaloric diet (-15% of daily energy requirements) over 8 weeks. The macronutrient distribution was as 

follows: 45% of calories from CHO, less than 30% from lipids and 25% from proteins. The diet was designed 

by trained dieticians using a food exchange system and a menu indicating what the volunteers should choose 

each day of the week in order to follow a healthy diet. In addition, the volunteers were instructed to weigh all 

the food they consumed and were advised to eat 5 meals per day. Similarly, they were asked to continue with 

their usual physical activity which was controlled with pedometers (Omron, HJ-152K-E, Japan).  
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This study was approved by the Ethics Committee of the University of Navarra (033/2011) and conforms to the 

principles outlined in the Declaration of Helsinki.  

Anthropometric and biochemical measurements 

Anthropometric and body composition measurements were taken at the beginning and at the end of the study. 

Body weight was assessed to the nearest 0.1 kg using a Tanita bioelectrical impedance (SC-330, Tanita, Tokyo, 

Japan) and height was measured using a wall-mounted stadiometer (Seca 220, Vogel & Halke, Germany) to the 

nearest 1 mm. Body Mass Index (BMI) was determined as the body weight divided by the squared height 

(kg/m2). All measurements were carried out after an overnight fast and with the subjects in their underwear. 

Waist circumference was measured at the narrowest point between the rib cage and the iliac crest and the hip 

circumference at the widest point over the buttocks. Body composition was measured by a dual-energy X-ray 

absorptiometry (DEXA Lunar Prodigy, GE Medical Systems, Madison, WI, USA). 

Serum samples were collected at baseline and at the end of the study, after a 12-h overnight fast from each 

volunteer. Serum glucose, total cholesterol, HDL-c, triglycerides and non-esterified fatty acids (NEFA) were 

measured in an autoanalyser Pentra C-200 (HORIBA ABX, Madrid, Spain) with commercially available kits. 

LDL-c levels were calculated following the Friedewald formula: LDL-c = Total cholesterol − HDL-c − TG/5 

[14]. 

Metabolite extraction & GC/MS analysis 

For analysis of FAs, 300 μl of serum was combined with 50 μl of nonadecanoic acid (C19:0) (2 mg/ml 

methanol) as an internal standard and extracted using a 1:2 mixture of chloroform:methanol based on the 

method of Bligh & Dyer [3]. Briefly, extracts were derivatised by methylation using methanolic BF3. 

Derivatives were re-suspended in 200 µl of hexane and 1 µl was injected into the GC/MS. The GC/MS system 

comprised of an Agilent 7890A GC coupled with a 5975C MS. The GC temperature was initially 70 °C for 2 

min, increased at 15 °C/min to 190 °C and held for 9 min, then increased at 5 °C/min to 230 °C and held for 13 

min and finally raised to 320 °C at 20 °C/min and held for 10 min.  

Aqueous compounds were isolated using a methanolic extraction [21] following deproteinisation with 

acetonitrile. An aliquot of 100 µl of serum were combined with 20 µl of 13C myristic acid (2 mg/ml methanol) 

as an internal standard prior to extraction with 800 µl methanol. Following drying, samples were methoximised 

using 60 µl of methoxyamine hydrochloride (20 mg/ml pyridine) for 17 hours at room temperature prior to 

silylation with 60 µl of N-methyl-N-(trimethylsilyl)fluoroacetamide for 1 hour. Samples were diluted with 210 

µl of hexane and analysed by GC/MS. The GC temperature was initially 70 °C for 2 min, increased at 5 °C/min 

to 260 °C, held for 41 min and finally raised to 320 °C at 30 °C/min and held for 3 min. After a solvent delay of 

1 min full scan, mass spectra were recorded within a scan range of 45-650 amu (atomic mass units).  

Metabolite identification & quantification 

Calibration was achieved by comparison of peak areas for amino and FAs with reference to known standards 

(Amino acid standard A9906 and Supelco 37 component FAME mix, Sigma Aldrich, Ireland) using Agilent 

Chemstation (MSD E.02.00.493) and by comparison of their mass spectra with those in the National Institute of 

Standards and Technology (NIST) library 2.0. Automatic peak detection was carried out with Agilent 

Chemstation. Mass spectra deconvolution was performed with the Automated Mass Spectral Deconvolution and 
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Identification System (AMDIS, version 2.65). Peaks with a signal to noise (S/N) ratio lower than 30 were 

rejected, which is an acceptable level to avoid false positives as reported by Norli and colleagues [42]. To obtain 

accurate peak areas for internal standard and specific peaks/compounds, one quant mass for each peak was 

specified as the target ion and three masses were selected as qualifier ions. Each data file was then manually 

analysed for false positives/negatives in Agilent Chemstation. 

Enzyme activity determination 

The desaturase activity was calculated using the ratio of individual FAs according to the following criteria:  C16 

Δ9-desaturase = (C16:1/C16:0), C18 Δ9-desaturase = (C18:1n-9 /C18:0), Δ6-desaturase = (C18:3n-6/C18:2n-6) 

and Δ5-desaturase = (C20:4n-6/C20:3n-6) [2]. The elongase activity index of FAs was assessed from the ratio 

C18:0/C16:0 [45]. 

Statistical analysis 

Data are expressed as mean ± standard deviation (SD), unless otherwise specified. The Shapiro Wilk test was 

used to analyse the normality of the measured variables. The differences between baseline measurements and 

those taken after the 8 week intervention were assessed using a paired t-test or by using the nonparametric 

Wilcoxon test when variables followed a non-normal distribution. Correlation analyses were applied to assess 

the potential relationships between specific metabolites with biochemical and anthropometrical parameters. 

Linear regression analysis was performed to predict changes in anthropometric variables according to FA levels 

at baseline. Average weight loss between groups (more weight loss vs less weight loss) was assessed using an 

independent measure t-test. All statistical procedures were conducted using SPSS version 15 for Windows 

(SPSS Ibérica, Madrid, Spain). P<0.05 was considered statistically significant. 

 

3. RESULT 

After the 8-week weight loss intervention, there were significant reductions in body weight, BMI, waist 

circumference, total fat mass, lean mass and diastolic blood pressure (Table 1). Physical activity did not change 

during the weight loss intervention (Table 1). In addition, the dietary program was effective in reducing total 

cholesterol, LDL-c and transaminases, however it also decreased HDL-c concentrations (Table 2).  

The FA concentrations of serum samples at baseline and after the 8-week intervention are reported in Table 3. 

Analysis of the FAs revealed a significant decrease in total SFAs (p<0.05), including myristic acid (C14:0), 

palmitic acid (C16:0), stearic acid (C18:0) and lignoceric acid (C24:0) after the 8-week intervention. Final 

serum levels of total MUFAs including oleic acid (C18:1) and cis-11–eicosenoic acid (C20:1) were significantly 

decreased after the 8-week intervention. Although total PUFA levels did not significantly decrease, linoleic acid 

(C18:2n-6), arachidonic acid (C20:4n-6), cis-8, 11, 14, 17–eicosatrienoic acid (C20:3n-6), cis-11, 14–

eicosadienoic acid (C20:2) and cis-4, 7, 10, 13, 16, 19-docosahexaenoic acid (C22:6n-3) were significantly 

reduced following the 8 week diet. Total ω-6 and ω-3 PUFAs also significantly decreased, although the ratio of 

ω-6/ ω-3 did not change following the intervention.  

The activity of Δ5-desaturase significantly increased after weight loss, whereas the activity of the remaining 

investigated enzymes did not significantly change from the beginning of the study to the end of the study (Table 
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3). Analysis of correlation showed significant positive association between the change in elongase activity and 

the variation of total cholesterol (r=0.648, p=0.003), HDL-c (r=0.457, p=0.049) and LDL-c (r=0.562, p=0.012). 

Furthermore, the resulting change in percentage of body fat was positively predicted by the baseline circulating 

concentrations of palmitoleic acid (C16:1) (Figure 1). 

In this study weight loss was categorised into two groups (greater weight loss (7 .4 kg) vs less weight loss (3.4 

kg)) in order to identify whether there were differences in the metabolomic profiles between the groups. In this 

context, we found that individuals who achieved greater weight loss also reduced their total MUFA levels 

(p=0.021), particularly oleic acid (C18:1) (p=0.042) and stearic acid (C18:0) (p=0.024).  

A positive association between triglycerides and total SFAs (r=0.517, p=0.023), including myristic acid (C14:0) 

(r=0.486, p=0.035), pentadecanoic acid (C15:0) (r=0.702, p=0.001), palmitic acid (C16:0) (r=0.456, p=0.050), 

heptadecanoic acid (C17:0) (r=0.474, p=0.040), behenic acid (C22:0) (r=0.546, p=0.016) and tricosanoic acid 

(C23:0) (r=0.507, p=0.027) were found at baseline. Likewise, the change in triglyceride levels were positively 

associated with the variation in pentadecanoic acid (C15:0) (r=0.748, p=<0.001), heptadecanoic acid (C17:0) 

(r=0.489, p=0.033), behenic acid (C22:0) (r=0.481, p=0.037) and lignoceric acid (C24:0) (r=0.732, p=<0.001). 

A total of 4 AAs were identified and semi-quantified in the serum (Table 4), of these 3 were BCAAs. Of the 

BCAAs it was found that isoleucine significantly decreased in the serum following the intervention (p=0.02). 

 

4. DISCUSION 

The effectiveness of the dietary intervention was reflected in the decrease in body weight, BMI, waist 

circumference, total fat mass and the diastolic blood pressure. However, subjects also showed a decline in lean 

mass. In general, lean mass reduces after following a hypocaloric diet, with this being more notable with aging 

[27,33]. In order to avoid losing lean mass the prescribed hypocaloric diet presented a higher percentage of 

protein (25%). Despite our attempt to prevent lean mass loss, it was significantly decreased in subjects after the 

dietary intervention. 

Subjects were asked to continue with their usual physical activity, which was controlled throughout the weight 

loss treatment with pedometers so as to control the effect of physical activity on weight loss. Consequently, the 

variations in anthropometric, biochemical parameters and metabolite concentrations cannot be associated to 

changes in physical activity, but to the dietary weight loss intervention.  

Levels of NEFA in serum decreased, although not significantly after the weight loss intervention. In this sense, 

high levels of total FAs in blood have been positively related with CVD, particularly with obesity and diabetes 

[59]. However, evidence suggests that the dietary fat quality rather than quantity might have a greater influence 

on disease risk [20,22,36]. In this context the analysis of the contribution of each FA has emerged indicating 

that SFAs are positively associated with the development of obesity and diabetes, increasing comorbidities 

related to metabolic disease [20,22].  

In this study, total SFAs in serum significantly decreased with the hypocaloric diet, among them palmitic acid 

(C16:0) and stearic acid (C18:0), which have been previously related with the incidence of Type 2 diabetes 

[19,24]. Also, total SFAs may increase CVD risk by raising levels of LDL-c and total cholesterol [13]. Total 
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MUFAs and in particular oleic acid serum levels decreased in this study. The health benefits of (C18:1), which 

represents the most abundant MUFA provided in the diet have been described previously [22,47]. Both total ω-

6 and ω-3 PUFAs decreased significantly in this study. The ω-6 PUFAs are thought to promote adipogenesis 

and increase expression of lipogenic genes, while the ω-3 PUFAs have been suggested to do the opposite 

[30,37]. Nevertheless, the association between weight loss and the ω-3 PUFAs remains controversial [38]. 

Linoleic acid (C18:2n-6) as well as cis-4, 7, 10, 13, 16, 19-docosahexaenoic acid (C22:6n-3), which have been 

suggested to decrease obesity features [7,8], decreased significantly in this study. Mice under calorie restriction 

have shown increased expression of genes responsible of FA β-oxidation compared with ad libitum-fed controls 

[5], what may be implicated in the reduction of body fat after weight loss. Therefore, it can be proposed that in 

this study the energy restriction has increased FA β-oxidation [25], decreasing body fat and for that reason these 

metabolites are presented in lower amounts in the bloodstream.  

This research also found that for individuals who lost more body weight they also had reduced levels of stearic 

acid (C18:0), total MUFAs and oleic acid (C18:1) levels. This might be explained by a lower FA production or 

a higher oxidation of these compounds, thus decreasing serum levels leading to a greater body weight reduction. 

Furthermore, it was observed that subjects with higher circulating values of palmitoleic acid (C16:1) 

experienced lower reduction in percentage body fat. The role of palmitoleic acid in human metabolism has not 

been fully clarified. Animal models have shown that adipose-derived palmitoleic acid may contribute to 

resistance to diet-induced obesity by inhibiting stearoylcoenzyme A desaturase 1 activity in the liver [6]. 

However, studies carried out in humans have not observed this effect [16], and others have observed a 

detrimental influence of this MUFA on health [44,56]. High levels of this particular FA have been associated 

with increased risk of suffering cardiovascular diseases, since it has been positively associated with metabolic 

syndrome (MetS) [56], including hypertriglyceridemia [44] and abdominal adiposity [16]. Mice supplemented 

with palmitoleate presented higher fat deposition, hepatic steatosis and also increased hepatic expression of 

sterol regulatory element-binding protein 1c and FA synthase, demonstrating the pro-lipogenic effect of this 

MUFA [17]. Moreover, in a Chinese population, high erythrocyte palmitoleic acid concentrations were related 

with lower plasma adiponectin and higher inflammatory markers [60]. Palmitoleic acid (C16:1) serum 

concentrations mostly show de novo hepatic FA synthesis from palmitic acid (16:0) by the C16 Δ9-desaturase 

enzyme [43,60]. Therefore, it can be speculated that subjects with higher palmitoleic acid (C16:1) at baseline 

could be predisposed to present a lower response to the dietary treatment by decreasing less amount of body fat. 

The present finding of a positive association between SFAs and triglycerides is consistent with previous data in 

which serum SFAs have been suggested to increase triglyceride levels [29], whereas PUFAs are thought to 

reduce triglycerides levels but we did not find this association.  

It is known that exist an inverse balance between CHO and FA β-oxidation [25]. The role of CHO in controlling 

the balance between fat intake and fat oxidation is well-established, since CHO consumption reduces the use of 

fat for fuel [32]. De novo lipogenesis (DNL) reflects the conversion of excess CHO to new FA and 

triacylglycerol, which are key substrates for the formation of TG and cholesterol [18]. FA desaturases are 

enzymes that create MUFAs from SFAs [9]. The use of desaturase indices is particularly useful when liver 

tissue samples are not available [23]. The activity of the enzymes elongase, Δ6-desaturase, C16 Δ9-desaturase 

and C18 Δ9-desaturase did not change during the weight loss intervention. Increased levels of the previous 
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enzymes have been detected in subjects with obesity and MetS [2,23]. Nevertheless, Δ5-desaturase significantly 

increased after the 8 week intervention, indicating that activity appears to be decreased in obese individuals 

[55]. Therefore, the increase of this desaturase during the study suggests a potential benefit to the participants.  

Higher levels of circulating BCAAs have been reported in obese individuals compared to lean individuals 

[35,39], with a number of studies reporting a reduction in BCAAs levels after weight loss [26,28]. BCAAs 

predicted improvements in insulin resistance in patients participating in a weight loss intervention [31,49], and a 

positive association between BCAAs and insulin resistance has been also reported [34,49]. In the current study, 

insulin levels were not determined. Regarding BCAAs values, only isoleucine serum levels significantly 

decreased. Existing evidence suggests that the reduction in isoleucine levels promote lipolysis via induction of 

lipolytic genes and by the suppression of lipogenesis in liver [11].  

Although these results are interesting, the study has a number of limitations such as the small number of 

participants. Future studies in larger cohorts would be required in order to validate these findings.  Additionally, 

dietary intake data was not available: such data might be helpful in further understanding the alterations in the 

diet following the 8-week intervention.  

In conclusion, this study demonstrates that the weight loss intervention based on a hypocaloric diet not only 

improved anthropometric and biochemical parameters but also metabolite serum levels in overweight and obese 

older adults. Metabolomic analysis identified a significant decrease in FAs and isoleucine levels and an increase 

in Δ5-desaturase activity. Moreover, the MUFA palmitoleic acid (C16:1) predicted the change in the percentage 

of body fat and an association between SFAs and triglycerides levels was observed.  
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Figure 1. Association between baseline FA C16:1 serum values and % of body fat change in response to the 8-

week energy restriction intervention (n=19). 

FA: fatty acid. 
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Table 1. General characteristics of the study population (n=22) at baseline and at the end of the dietary 
intervention (8 weeks). 
 
 Baseline 8 weeks P-value 
Age (years) 60 ± 5  
Female sex. % (n) 68.2% (15)  
Anthropometric variables     
   Weight (kg) 76.8 ± 10.3 71.4 ± 8.6 <0.001 
   BMI (kg/m2) 29.7 ± 2.0 27.6 ± 1.9 <0.001 
   Waist circumference  (cm) 92.7 ± 7.5 87.7 ± 6.9 <0.001 
   Total fat mass (kg) 30.6 ± 5.1 26.4 ± 5.3 <0.001 
   Lean mass (kg) 43.4 ± 9.7 42.4 ± 9.4 <0.001 
Other variables    
   Systolic Pressure (mmHg) 126.9 ± 22.3 118.1 ± 13.8 ns 
   Diastolic Pressure (mmHg) 79.3 ± 8.8 72.6 ± 9.2 0.004 
   Pedometer (steps/day) 12447 ± 6835 11562 ± 5558 ns 
 
Data are expressed as means ± SD. P-values were based on paired t-test. 
BMI: body mass index; SD: standard deviation. 
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Table 2. Biochemical parameters of the study population (n=22) at baseline and at the end of the dietary 
intervention (8 weeks). 
 
 
 Baseline 8 weeks P-value 
Glucose (mg/dL) 95.2 ± 7.2 91.9 ± 8.2 0.046 
Total Cholesterol (mg/dL) 240 ± 37 212 ± 23 <0.001 
HDL-col (mg/dL)a 55.3 ± 10.6 47.3 ± 8.0 <0.001 
LDL-col (mg/dL) 165.6 ± 32.7 147.8 ± 21.7 0.006 
Triglycerides (mg/dL) 95.2 ± 33.8 86.5 ± 39.5 ns 
NEFA (μg/ml) 138.7 ± 52.6 115.5 ± 38.5 ns 
Total proteins (g/L) 68.8 ± 3.3 66.9 ± 4.2 0.034 
Alanine aminotransferase (U/L) 22.8 ± 7.0 19.8 ± 5.3 0.017 
Aspartate aminotransferase (U/L) 22.7 ± 6.5 19.1 ± 4.7 0.002 
 
Data are expressed as means ± SD. P-values were based on paired t-test or Wilcoxon test. HDL-c: high-density 
lipoprotein cholesterol; LDL-c: low-density lipoprotein cholesterol; NEFA: non-esterified fatty acids; SD: 
standard deviation. 
a P-value based on non-parametric Wilcoxon test compared the two time points of the study. 
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Table 3. Fatty acid composition of serum samples (n=19) taken at baseline and at the end of the dietary 
intervention (8 weeks). 
 

Fatty acid (μg/ml) Baseline 8 weeks P-value 
SFAs 1783.8 ± 588.7 1449.8 ± 520.8 0.002 
   Myristic acid (C14:0)a 68.16 ± 40.72 49.51 ± 26.46 <0.001 
   Pentadecanoic acid (C15:0)  7.07 ± 2.41 6.95 ± 2.73 ns 
   Palmitic acid (C16:0)a 1097.44 ± 479.92 901.69 ± 381.39 <0.001 
   Heptadecanoic acid (C17:0) 8.80 ± 2.77 7.69 ± 3.55 ns 
   Stearic acid (C18:0) 566.26 ± 220.57 452.94 ± 166.59 0.003 
   Arachidic acid (C20:0) 8.45 ± 4.39 8.31 ± 3.26 ns 
   Behenic acid (C22:0) 12.65 ± 4.36 11.30 ± 4.37 ns 
   Tricosanoic acid (C23:0) 5.67 ± 2.03 4.96 ± 2.06 ns 
   Lignoceric acid (C24:0) 9.30 ± 3.88 6.45 ± 2.24 0.003 
MUFAs 2011.6 ± 497.1 1765.6 ± 528.5 0.001 
   Palmitoleic acid (C16:1) 78.17 ± 32.88 63.47 ± 25.53 ns 
   Oleic acid (C18:1n9c)a 1902.75 ± 488.09 1676.62 ± 532.75 <0.001 
   Cis-11 Eicosenoic acid (C20:1) 8.69 ± 6.22 6.43 ± 2.77 0.046 
   Nervonic acid (C24:1) 21.98 ± 11.16 19.08 ± 8.10 ns 
PUFAs 2367.5 ± 383.0 1901.2 ± 391.9 ns 
Polyunsaturated ω-6 2204.6 ± 383.9 1775.6 ± 393.3 <0.001 
   γ-Linolenic acid (C18:3n6) 8.67 ± 4.12 8.16 ± 5.19 ns 
   Linoleic acid (C18:2n6c)a 1548.39  ± 

449.04 
1264.42 ± 361.06 <0.001 

   Arachidonic acid (C20:4n6)a 551.88 ± 172.93 446.62 ± 128.99 0.004 
   Cis-8,11,14-Eicosatrienoic acid (C20:3n6) 90.27 ± 39.12 52.23 ± 25.69 <0.001 
   Cis-11,14-Eicosadienoic acid (C20:2n6) 5.36 ± 2.90 4.15 ± 2.67 0.017 
Polyunsaturated ω-3 162.9 ± 61.0 125.6 ± 27.0 0.007 
   Cis-5,8,11,14,17-Eicosapentaenoic acid (C20:5n3) 78.93 ± 51.24 58.83 ± 26.27 ns 
   Cis-4,7,10,13,16,19-Docosahexaenoic acid (C22:6n3)1 84.01 ± 49.22 66.81 ± 34.26 0.004 
Ratio ω-6/ ω-3 15.3 ± 6.2 14.9 ± 5.1 ns 
C16 Δ9- desaturaseb 0.088 ± 0.060 0.079 ± 0.036 ns 
C18 Δ9- desaturasec 3.97 ± 2.45 4.22 ± 2.20 ns 
Δ6- desaturased 0.006 ± 0.002 0.007 ± 0.005 ns 
Δ5- desaturasee 7.48 ± 4.08 10.00 ± 4.35 0.023 
Elongasef 0.60 ± 0.29 0.54 ± 0.19 ns 

 
Data expressed as mean ± SD. P-values were based on paired t-test or Wilcoxon test.  
MUFAs: monounsaturated fatty acids; PUFAs: polyunsaturated fatty acids; SFAs: saturated fatty acids; SD: 
standard deviation.  
a P-value based on non-parametric Wilcoxon test compared the two time points of the study. b C16 Δ9-
desaturase = (C16:1/C16:0); cC18 Δ9-desaturase (C18:1n-9/C18:0); d Δ6-desaturase = (C18:3n-6/C18:2n-6); e 

Δ5-desaturase = (C20:4n-6/C20:3n-6); f elongase activity C18:0/C16:0; PUFAs ω-6 = C18:3n6 + C18:2n6c + 
C20:4n6 + C20:3n6 + C20:2n6; PUFAs ω-3 = C20:5n3 + C22:6n3. 
 


