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Cardiotrophin 1 Is Involved in Cardiac, Vascular, and
Renal Fibrosis and Dysfunction

Natalia López-Andrés, Amélie Rousseau, Riaz Akhtar, Laurent Calvier, Carmen Iñigo, Carlos Labat,
Xuegen Zhao, Kennedy Cruickshank, Javier Díez, Faiez Zannad, Patrick Lacolley, Patrick Rossignol

Abstract—Cardiotrophin 1 (CT-1), a cytokine belonging to the interleukin 6 family, is increased in hypertension and in
heart failure. We aimed to study the precise role of CT-1 on cardiac, vascular, and renal function; morphology; and
remodeling in early stages without hypertension. CT-1 (20 �g/kg per day) or vehicle was administrated to Wistar rats
for 6 weeks. Cardiac and vascular functions were analyzed in vivo using M-mode echocardiography, Doppler, and echo
tracking device and ex vivo using a scanning acoustic microscopy method. Cardiovascular and renal histomorphology
were measured by immunohistochemistry, RT-PCR, and Western blot. Kidney functional properties were assessed by
serum creatinine and neutrophile gelatinase-associated lipocalin and microalbuminuria/creatininuria ratio. Without
alterations in blood pressure levels, CT-1 treatment increased left ventricular volumes, reduced fractional shortening and
ejection fraction, and induced myocardial dilatation and myocardial fibrosis. In the carotid artery of CT-1–treated rats,
the circumferential wall stress-incremental elastic modulus curve was shifted leftward, and the acoustic speed of sound
in the aorta was augmented, indicating increased arterial stiffness. Vascular media thickness, collagen, and fibronectin
content were increased by CT-1 treatment. CT-1–treated rats presented unaltered serum creatinine concentrations but
increased urinary and serum neutrophile gelatinase-associated lipocalin and microalbuminuria/creatininuria ratio. This
paralleled a glomerular and tubulointerstitial fibrosis accompanied by renal epithelial-mesenchymal transition. CT-1 is
a new potent fibrotic agent in heart, vessels, and kidney able to induce cardiovascular-renal dysfunction independent
from blood pressure. Thus, CT-1 could be a new target simultaneously integrating alterations of heart, vessels, and
kidney in early stages of heart failure. (Hypertension. 2012;60:563-573.) ● Online Data Supplement

Key Words: cardiotrophin 1 � fibrosis � ventricular function � arterial stiffness � renal dysfunction

Heart failure (HF) is associated with cardiac hypertrophy,
fibrosis, arterial stiffness, and renal impairment, all of

which influence cardiovascular outcomes.1–3 Cardiac hyper-
trophy is attributable to cardiomyocyte hypertrophy, the
proliferation of interstitial fibroblasts, and increased deposi-
tions of extracellular matrix (ECM) components.4 Arterial
stiffening is associated with decreased distensibility and
modified wall structure mainly characterized by increased
ECM.5,6 Chronic kidney disease progression is generally
associated with tubulointerstitial fibrosis.7,8 Therefore, it is of
paramount importance to identify common pathways able to
trigger cardiovascular and renal fibrosis.

Cardiotrophin 1 (CT-1) is an interleukin 6 superfamily
member.9 Elevated CT-1 levels have been reported in HF and
in hypertensive patients.10–12 Moreover, CT-1 positively cor-
relates with left ventricular (LV) mass index and the serum

concentration of carboxy-terminal propeptide of procollagen
type I, a biomarker of collagen synthesis,10 suggesting that
CT-1 may contribute to the development of cardiomyocyte
hypertrophy and fibrosis. Accordingly, CT-1 administration
increases heart weight in mice.13 Our group has characterized
CT-1–induced cardiomyocyte survival and hypertrophy,10,14

as well as CT-1–induced proliferation, hypertrophy, and
secretion of ECM proteins in vascular smooth muscle cells
(VSMCs).15 Furthermore, CT-1 stimulates proliferation and
collagen synthesis in ventricular fibroblasts.16 In addition, the
expression of CT-1 mRNA has been described in the kid-
ney,17 and mice treated with CT-1 showed increased renal
weight.13 Although these observations suggest that CT-1 may
directly induce cardiac, vascular, and renal remodeling, no
studies have directly investigated an integrative role of CT-1
in mediating fibrosis or cardiac, vascular, and renal dysfunc-
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Figure 1. Cardiotrophin 1 (CT-1) levels in control
and CT-1–treated rats. A, CT-1 treatment
induced a time-dependent increase in CT-1
plasma levels. B through D, CT-1 expression, at
the protein and the mRNA level, was enhanced
in myocardium, the aorta, and the kidney from
CT-1–treated rats. 18s gene expression or
�-actin levels were used as loading controls in
RT-PCR and Western blot, respectively. Values
are mean�SEM; **P�0.01 vs control.
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tion in vivo. Therefore, we aimed to examine the precise
role of CT-1 on cardiac, vascular, and renal functions;
morphologies; and remodeling in rats chronically treated
with CT-1.

Methods
Please see the online-only Data Supplement.

Animals
The investigation was performed in accordance with the Guide for
Care and Use of Laboratory Animals published by the National
Institutes of Health (publication No. 82-23, revised in 1996). Male
Wistar rats (15 weeks old) were obtained from Harlan and treated
with rat recombinant CT-1 (20 �g/kg per day, IP; n�30) or vehicle
(PBS, IP; n�30) for 6 weeks and euthanized by decapitation under
anesthesia (3% isofluorane/O2).

Blood Pressure Monitoring
The surgical procedure for transmitter implantation was performed
as described previously.18

Assessment of Ventricular Size and
Heart Function
2D echocardiography, M-mode measurements, and Doppler ultra-
sound recordings were performed as described previously.19

In Vivo Carotid Mechanical Properties
We recorded intra-arterial diameter of the carotid artery and blood
pressure (BP) as, described previously.20

Ex Vivo Aorta Mechanical Properties
Scanning acoustic microscopy (SAM), conducted at 761 MHz, was
used to generate speed of sound maps for aorta sections using a novel
method21 but using the same sample preparation method, as de-
scribed previously.22 Any differential contribution to stiffness within
the aortic wall was investigated by determining the speed of sound
for both the elastic lamellae and interlamellar regions.23

Aortic Composition
Insoluble elastin, total collagen, and cell protein contents were
measured on descending thoracic aortas without homogenization, as
described previously.24

Histological Evaluation
Histological determinations in cardiac, vascular, and renal tissue
were performed as described previously.18

Reverse Transcription and Real-Time PCR
Total RNA extraction and real-time PCR were performed as de-
scribed previously.18

Western Blot
Western Blot analysis in left ventricles, aortas, and kidneys were
performed as described previously.18

Zymography
Gelatin zymography for matrix metalloproteinase (MMP) activity
assay was performed as described previously.15

ELISA
Quantikine ELISA kits were used to measure albumin and creatinine
(Abnova), neutrophile gelatinase-associated lipocalin (Interchim),
and CT-1 (Cusabio) according to the manufacturer’s protocols.

Table. Cardiac, Vascular, and Renal Functions in Controls
and CT-1–Treated Rats

Parameter Control CT-1

N 10 10

BW, g 265�6 278�5

HW, g 0.593�0.01 0.677�0.01*

HW/BW, mg · g�1 2.25�0.07 2.45�0.08

KW, g 1.95�0.05 2.15�0.08*

KW/BW, mg · g�1 7.39�0.23 7.76�0.32

SBP, mm Hg 135�7 133�6

DBP, mm Hg 90�6 84�6

MBP, mm Hg 105�6 100�6

PP, mm Hg 45�2 49�3

HR, bpm 426�11 404�10

Echocardiographic parameters

LVMI, mg · g�1 1.136�0.04 1.145�0.03

LVDd, mm 5.3�0.2 5.8�0.2*

LVSd, mm 3.0�0.3 3.8�0.2*

LVDv, mL 0.37�0.02 0.47�0.05*

LVSv, mL 0.09�0.02 0.15�0.03*

FS, % 44.0�3.3 34.0�3.0*

EF, % 79.5�3.1 69.3�3.9*

E/A 1.42�0.04 1.60�0.04*

Vascular parameters, at MBP

Carotid diameter, mm 1.20�0.05 1.03�0.03*

Carotid compliance 8.1�0.7 6.5�0.6

Distensibility, 10�3mm Hg�1 7.5�0.9 7.9�0.7

Incremental elastic modulus, kPa 749�166 362�36*

Wall stress, kPa 298�37 154�14*

Renal parameters

SCr, pg/mL 0.174�0.002 0.176�0.003

SAlb, pg/mL 241�10 405�109

SNGAL, ng/mL 43�7 83�16*

UCr, pg/mL 1.94�0.06 2.01�0.06

UAlb, pg/mL 2359�370 3349�355*

ACR, �g/�g creatinine 1.21�0.20 1.75�0.17*

UNGAL, ng/mL 176�2 362�51*

BW indicates body weight; HW, heart weight; KW, kidney weight; SBP,
systolic blood pressure; DBP, diastolic blood pressure; MBP, mean blood
pressure; PP, pulse pressure; HR, heart rate; LVDd, left ventricular end-diastolic
diameter; LVSd, left ventricular end-systolic diameter; LVDv, left ventricular
diastolic volume; LVSv, left ventricular systolic volume; FS, fractional shorten-
ing; EF, left ventricular ejection fraction; E/A, ratio E wave and A wave mitral
flow; SCr, serum creatinine; SAlb, serum albumin; SNGAL, serum neutrophile
gelatinase-associated lipocalin; UCr, urinary creatinine; UAlb, urinary albumin;
ACR, albumin-to-creatinine ratio; UNGAL, urinary neutrophile gelatinase-
associated lipocalin.

*P�0.01 vs control.
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Statistical Analysis
Results are presented as mean�SEM, and P values �0.05 were
considered significant. Comparisons between treatments or groups of
animals were made by the unpaired Student t test, the Mann-Whitney
U test, or the repeated-measures ANOVA, as appropriate.

Results
CT-1 Levels in CT-1–Treated Rats
CT-1 plasma levels were measured at baseline and at 1, 3, and
6 weeks of treatment. As shown in Figure 1A, CT-1 levels
were increased at 3 (2.8-fold; P�0.01) and 6 weeks of
injection (3.8-fold; P�0.01).

CT-1 was spontaneously expressed in cardiac tissue, both in
cardiomyocytes and fibroblasts. Moreover, CT-1–treated rats
presented higher (70%; P�0.01) CT-1 immunostaining as com-

pared with controls. This increase was confirmed at the mRNA
(4.1-fold; P�0.01) and the protein (2.8-fold; P�0.01) levels
(Figure 1B). CT-1 was also expressed in aortic VSMCs. The
expression was higher (80%; P�0.01) in CT-1-treated ani-
mals. The cytokine was also enhanced at the mRNA (3.7-
fold; P�0.01) and the protein (2.3-fold; P�0.01) levels in
aorta from CT-1–treated rats (Figure 1C). In kidney, CT-1 was
spontaneously localized in the distal tubular cells of the cortex but
not in glomeruli. CT-1 expression was higher (48%; P�0.01) in
renal cortex from CT-1–treated animals. Moreover, CT-1 expres-
sion was increased at the protein level (2.3-fold; P�0.01) but not
significantly at the mRNA level in kidney from CT-1–infused rats
relative to controls (Figure 1D). The expression of CT-1 recep-
tors gp130 and Leukemia inhibitory factor receptor was also
evaluated in heart, aorta, and kidney (please see Figure S1).
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Cardiac, Vascular, and Renal Functions in
CT-1–Treated Rats
Chronic CT-1 administration had no effect on BP parameters
throughout the experimental period. The heart weight/body
weight ratio was not significantly different in the 2 groups,
indicating a similar LV mass index (Table).

Echocardiographic analysis confirmed that LV mass index
was similar in the 2 groups. CT-1 administration increased
(P�0.01) systolic and diastolic LV diameters and volumes.
CT-1–treated rats exhibited LV chamber dilatation (represen-

tative images are shown in Figure 3A). CT-1–treated rats
presented decreased (P�0.01) fractional shortening and ejec-
tion fraction as compared with controls and increased E/A
ratio (P�0.01), suggesting a trend toward restrictive filling
(Table). The ratio between end-systolic volume and stroke
volume was increased by CT-1 treatment (36%; P�0.01),
suggesting that CT-1 impaired LV-arterial coupling.

Ultrasonic echo tracking assessment revealed that the
carotid diameter was smaller in CT-1–treated rats than in the
controls (Table). There were no significant differences in
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compliance and distensibility calculated at the mean BP.
Incremental elastic modulus and wall stress were lower in
CT-1–treated rats compared with controls. Within the com-
mon range of arterial pressure, the diameter-arterial pressure
curve in the CT-1–treated group was significantly shifted
downwards from that of the control group (Figure 2A). The
distensibility-arterial pressure curve was similar in the 2
groups (Figure 2B). By contrast, the incremental elastic
modulus-WS curve of CT-1–treated rats was shifted leftward
significantly (Figure 2C). Accordingly, in CT-1–treated rats
the mean WS within the 350- to 2000-kPa range of incre-
mental elastic modulus was decreased (P�0.01), indicating
an increase in stiffness (Figure 2D). Typical SAM speed of
sound maps for the aorta samples are shown in Figure 2E and
2F. Mean speed of sound in the CT-1–treated rats was found
to increase significantly (P�0.01), confirming increased
arterial stiffness.

The kidney weight/body weight ratio was not significantly
different in both groups (Table). At the end of the treatment,
CT-1–treated rats presented enhanced (44%; P�0.05)
albumin-creatinine ratio as compared with controls. Further-
more, neutrophile gelatinase-associated lipocalin, a tubular
injury biomarker, was increased in serum from CT-1–treated
rats (93%; P�0.05), as well as in urine (234%, P�0.05), as
compared with controls.

Myocardial, Vascular, and Renal Fibrosis in
CT-1–Treated Rats

Myocardial Fibrosis
CT-1 treatment increased cardiomyocyte length (14%;
P�0.01), without modifying cardiomyocyte width. More-
over, CT-1 treatment induced the expression of the contractile
proteins �-major histocompatibility complex, �-major histo-
compatibility complex, �-sarcomeric actin, and myosin light
chain 1 without modifying �-skeletal actin or myosin light
chain 2v levels (please see Figure S2).

CT-1–infused rats presented a 2-fold increase (P�0.01) in
cardiac interstitial collagen and a 2.5-fold increase (P�0.01)
in perivascular collagen (Figure 3A) as compared with
controls. CT-1–treated rats showed higher cardiac expression
of �-1-procollagen mRNA (80%; P�0.01), collagen type I
(80%; P�0.01), and type III (2-fold; P�0.01; Figure 3B).
Moreover, CT-1–treated rats exhibited higher levels of osteo-
pontin (75%; P�0.01) and periostin (65%; P�0.05; Figure
3C). CT-1–treated rats presented enhanced MMP-2 activity
(80%; P�0.05), as well as MMP-13/tissue inhibitor of
metalloproteinase 1 ratio (2.4-fold; P�0.01), without signif-
icant changes in MMP-9 activity (Figure 3D).

Vascular Fibrosis
Media thickness and media cross-sectional area of the carotid
artery were higher (41% and 43%, respectively; P�0.01),

whereas carotid diameter was reduced by 15% (P�0.01) in
CT-1–treated animals as compared with controls (Figure S3,
and representative images are shown in Figure 4A).

Thoracic aortic medial dry weight per centimeter of length
and cell protein content were increased significantly by the
CT-1 treatment compared with control rats (Figure S3),
indicating that hypertrophy of the media had occurred. There
were no changes in elastin with CT-1 treatment. However,
CT-1–treated rats presented enhanced aortic collagen content
(30% to 50%; P�0.01) as compared with controls.

To determine whether CT-1 could modify ECM attach-
ments, integrins expression was studied. CT-1 treatment
increased the expression of the integrins �-1, �-5, �-v, and
�-3. To analyze whether CT-1 also modified the cytoskeletal
proteins involved in linkage to integrin adhesion molecules to
the actin cytoskeleton, we quantified the phosphorylation of
focal adhesion kinase and the expression of 2 focal adhesions
proteins, vinculin and talin. Aortas from CT-1–treated rats
exhibited enhanced expression of vinculin and talin, as well
as greater focal adhesion kinase activity (Figure S3).

CT-1–treated rats had higher carotid collagen (80%;
P�0.01) and enhanced fibronectin (80%; P�0.01) but sim-
ilar elastin densities compared with controls (Figure 4A).
Moreover, in aorta from CT-1–treated rats, the expression of
�-1-procollagen mRNA was higher (2.1-fold; P�0.01), as
well as the expression of collagen type I (2.4-fold; P�0.01)
and type III (3.6-fold; P�0.01; Figure 4B). In addition,
CT-1–administrated rats presented enhanced aortic fibronec-
tin content at the mRNA (2.4-fold; P�0.01) and the protein
(80%; P�0.01) levels but similar content of elastin compared
with controls (Figure 4B).

The SAM images were also analyzed to determine whether
there was any localized stiffening by examining the speed of
sound in the lamellar and interlamellar regions of the aorta.
There was a significant increase in stiffness in both lamellar
and interlamellar regions; however, the interlamellar regions
exhibited the most significant change in the CT-1–treated rats
(Figure 4C). This is consistent with the increase in collagen
content (Figure 4A and 4B), which would be expected to
accumulate more in the interlamellar regions. Aortas from
CT-1–treated rats showed enhanced MMP-2 (40%; P�0.05),
MMP-9 (20%; P�0.05), and MMP-13 (30%; P�0.05) activ-
ities as compared with controls (Figure 4D).

Renal Fibrosis
CT-1–infused rats presented increased (49%; P�0.01) renal
interstitial collagen as compared with controls. Moreover,
glomerular collagen volume fraction in CT-1–treated rats was
markedly increased (72%; P�0.01). Tubulointerstitial colla-
gen type I and type IV were higher (240% and 260%;
P�0.01, respectively) in CT-1–treated animals (Figure 5A).
This was confirmed by molecular analysis (Figure 5B). In

Figure 4 (Continued). III, and fibronectin, whereas elastin levels were similar. C, left, 2D analysis of scanning acoustic microscopy
(SAM) images; the lamellar and interlamellar regions of the aorta are demarcated, after which the speed of sounds (stiffness) values are
extracted for each of these regions. Right, There is a significant increase in both the lamellar (L) and interlamellar (IL) regions of the
aorta, with the most prominent changes being in the interlamellar region (n�33, L and IL per group). D, In aorta from CT-1–treated rats
there was an activation of MMP-2, -9, and -13. Representative images are shown, and the histogram bars represent the mean�SEM
obtained in the 2 groups of animals. *P�0.05 vs control. **P�0.01 vs control.
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addition, CT-1–administrated rats presented enhanced ex-
pression of transforming growth factor-�1 (84% to 55%;
P�0.05) and connective tissue growth factor (87% to 21%;
P�0.05) at the mRNA and protein levels, respectively
(Figure 5C). MMP-9 and MMP-2 activities and MMP-3/
tissue inhibitor of metalloproteinase 3 ratio were similar in
the kidneys from the 2 groups of rats, whereas the MMP-13/
tissue inhibitor of metalloproteinase 1 ratio was decreased in
CT-1–treated animals (64%; P�0.01; Figure 5D).

Discussion
The purpose of this study was to investigate the influence of
an excess of circulating CT-1 in cardiac, vascular, and renal
remodeling and function in rats. Indeed, in the absence of BP
modifications, chronic CT-1 treatment induced cardiac, vas-
cular, and renal fibrosis, resulting in further structural and
functional damage in heart, aorta, and kidney. Moreover,
increased CT-1 mRNA expression observed in the cardiovas-
cular system from CT-1–treated rats suggests a positive
feedback inducing a vicious circle.

Hypertension, HF, and chronic kidney disease have been
shown to be associated with increased CT-1 plasma lev-
els,10,11,14,25,26 with these being increases similar to those
found in the present study. Furthermore, CT-1 treatment
weakens cardiomyocyte contractility in reconstituted heart
tissue,27 suggesting a role for CT-1 in the impairment of
cardiac function. However, the precise contribution of CT-1
to the pathogenesis of cardiac remodeling and dysfunction is
unclear, because, to our knowledge, the in vivo CT-1 effects
have not yet been investigated. CT-1 induced cardiomyocyte
hypertrophy in vitro, with a special morphometric pattern of
lengthening without modifying cell width and without chang-
ing �-skeletal actin or myosin light chain 2v expression.14

CT-1 also increased collagen synthesis in fibroblasts.16 Our
study showed that CT-1–treated rats developed LV dilatation
accompanied by cardiomyocyte elongation, produced by an
increase in contractile proteins except for �-skeletal actin and
myosin light chain 2v, as well as enhanced myocardial
fibrosis characterized by ECM protein deposition. In addi-
tion, CT-1 treatment decreased LV mechanical efficiency by
modulating the heart-vessel coupling, independent of BP.
Thus, direct structural changes produced by CT-1, cardiomy-
ocyte lengthening, and myocardial fibrosis could contribute
overall to cardiac dysfunction and LV-arterial uncoupling.

In addition to cardiac fibrosis and dysfunction, CT-1
induced significant vascular remodeling characterized by
ECM proteins accumulation and arterial stiffness. We have
shown recently that CT-1 increases proliferation, ECM syn-
thesis, and hypertrophy in VSMCs.15 The molecular mecha-
nisms underlying the development of vascular stiffness are

generally attributed to modifications in ECM molecules,
VSMC changes, and vascular tone.28,29 Interestingly, chronic
CT-1 treatment reduced arterial diameter and increased media
cross-sectional area of the carotid artery in vessels, with a
marked deposition of ECM proteins, integrins, and focal
adhesion molecules. These modifications may represent
quantitative or topographical changes in interactions between
VSMCs and matrix proteins, resulting in a restructured
vascular wall, as described previously in other models.28,29

With the novel SAM technique, we found an increase in
speed of sound of 29 ms�1 in the CT-1–treated rat aorta. This
is much higher than the age-related increase reported with a
SAM method for ovine aorta,23 thereby highlighting the
profound effect of CT-1 on vascular stiffening. The increased
stiffness determined with SAM ex vivo on thin sections of
tissue follows the trends observed with more conventional
techniques in vivo, providing high spatial resolution measure-
ments of stiffness, which are related to tissue structure.
Consequently, these findings provide additional evidence
suggesting that CT-1 may contribute to increase the arterial
stiffness, ultimately leading to vascular dysfunction.

In kidney, only the expression of CT-1 mRNA has been
described to date.17 Moreover, mice treated with CT-1
showed increased renal weight.13 Consistent with observa-
tions in myocardium and vessels, CT-1–treated rats presented
increased tubulointerstitial and glomerular fibrosis, accompa-
nied by enhanced transforming growth factor-� and connec-
tive tissue growth factor expressions, 2 molecules that act
synergistically to promote kidney fibrosis.30 Moreover, CT-1
has the ability to alter the differentiation state of tubular
epithelial cells toward an EMT phenotype, which ultimately
generates fibrosis and dysfunction. CT-1 also altered kidney
functional properties, inducing albuminuria and increasing
urinary and serum neutrophile gelatinase-associated lipocalin,
an immediate early gene, which is associated with chronic
kidney disease progression.31 Taken together, these data
indicate that chronic CT-1 exposure plays a role in renal
fibrosis and tubular damage in vivo.

Conclusion and Perspectives
This experimental model of chronic CT-1 exposure presents
integrated early changes of heart, artery, and kidney func-
tions, which may ultimately lead to HF development. Of
interest, our study identifies new important direct effects of
CT-1 in the absence of BP modifications. Previous studies
demonstrated that CT-1 may be stimulated by hypertension
and by aldosterone even in the absence of BP elevation.18 In
the present study, CT-1 levels were similar to those observed
in human HF,10–12 and, moreover, CT-1 infusion was asso-
ciated with increased CT-1 transcription in heart and vessels,

Figure 5 (Continued). Renal fibrosis in control and cardiotrophin 1 (CT-1)–treated rats. A, Total tubulointerstitial and glomerular colla-
gen content, tubulointerstitial collagen type I, and collagen type IV were increased in kidney from CT-1–treated rats, as compared with
controls. B, Collagen type I expression was augmented, whereas the expression of �-1 procollagen and collagen type IV mRNA was
unchanged in kidney from CT-1–treated rats as compared with controls. C, Transforming growth factor (TGF)-�1 and connective tissue
growth factor (CTGF) mRNA and protein expression were enhanced in whole kidney tissue from rats treated with CT-1 as compared
with controls. D, In kidney from CT-1–treated rats there was a decrease in matrix metalloproteinase (MMP) 13 activity. GAPDH expres-
sion or �-actin levels are used as loading controls in RT-PCR and Western blot, respectively. Bars represent the mean�SEM obtained
in the 2 groups of animals. *P�0.05 vs control; **P�0.01 vs control.
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thereby suggesting a positive feedback loop able to promote
further CT-1 effects. Therefore, CT-1, per se, could be an
additional therapeutic target downstream to many ischemia-
derived neurohumoral influences involved in HF pathophys-
iology. There is currently no way to inhibit CT-1 in vivo.
Finally, we suggest that CT-1 emerges as a target candidate to
interfere with the development of cardiac-vascular-renal fi-
brosis and dysfunction that characterizes cardiovascular-renal
diseases evolving with HF.
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Novelty and Significance

What Is New?
● We report the whole picture of CT-1 in vivo effects, with major insights

into the profibrotic properties and the key role of CT-1 throughout the
cardiovascular and renal continuum, ultimately leading to heart failure
and kidney insufficiency.

What Is Relevant?
● First, we have characterized cardiac function, hypertrophy, and fibrosis

induced by a chronic treatment with CT-1 in rats. Then, we provided data
showing an increased arterial stiffness using classic methods, as well as
a novel ultra-high frequency SAM phase contrast method that enables
the determination of tissue elastic data within the aortic wall. Moreover,

we present mechanistic insights regarding integrin expression and focal
adhesion proteins in the aorta. Finally, we have explored CT-1 effects
throughout the cardiovascular system, in renal tissue, presenting
exciting data that suggest a key role for this molecule in the
cardiovascular-renal syndrome. Our results are particularly original,
because therapies that target the heart, the large arteries, and the kidney
to directly reduce left ventricular dysfunction, arterial stiffness, and renal
insufficiency are an important unmet clinical need.

Summary

CT-1 could be a new biotarget to reduce fibrosis, arterial stiffness,
and cardiorenal dysfunction.
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SUPPLEMENTARY METHODS 
Animals 
The investigation was performed in accordance with the Guide for Care and Use of Laboratory 

Animals published by the US National Institutes of Health (NIH Publication NO.82-23, revised in 
1996). Male Wistar rats (15 weeks-old) were obtained from Harlan (Bicester, England) and treated 
with rat recombinant CT-1 (20 µg/kg/day, IP, n=30) or vehicle (PBS, IP, n=30) for 6 weeks. 15 
animals per group were used for functional studies and 15 animals per group were used to complete 
the histological and the molecular determinations. 

Blood pressure monitoring  
The surgical procedure for transmitter implantation was performed in a sterilized area. Anaesthesia 

was induced with 3% isofluorane/O2 and maintained during surgery with 1.5%. Telemetry transmitters 
(model TA11PA-C40; Data Sciences International) were implanted according to the manufacturer’s 
indications (Data Sciences International), with RCP-1 receivers used for telemetric acquisition and 
analysis of systolic, diastolic, mean arterial pressure and heart rate (SBP, DBP, MAP and HR). The 
system was scheduled to obtain and store a 10 sec measurement every 15 minutes. Data were averaged 
in 24h intervals for posthoc analysis. 

Assessment of ventricular size and heart function 
Two-dimensional echocardiography, M-mode measurements and Doppler ultrasound recordings 

were performed in rats using a Sonos 4500 ultrasound system (Philips) with a 12 MHz linear array 
transducer.  

Acipimox-enhanced FDG-PET was performed using a dedicated small animal PET system 
(MicroPET, Inveon, Siemens, Knoxville, TN, USA). LV end-diastolic volume (EDV), LV end-systolic 
volume (ESV) and LV ejection fraction (EF) were obtained from the set of contiguous ECG-triggered 
short-axis slices with the Quantitative Gated SPECT (QGS) software.  

In vivo carotid mechanical properties 
We recorded simultaneously intra-arterial diameter and BP in isofluorane-anesthetized rats and 

mice using an ultrasonic echo-tracking device (NIUS-01, Asulab SA). The pressure measurement was 
made using a catheter (0.5 cm of polyethylene-10 fused to 3 cm of polyethylene-50) connected to a 
Statham pressure transducer (P23 Db) and a Gould pressure processor. The relation between the 
pressure and the lumen cross sectional area was fitted using an arc tangent function. Carotid cross 
sectional distensibility, a derivative of this function, was used to assess the global elastic behaviour of 
the artery. Circumferential wall stress (WS) and incremental elastic modulus (Einc), which 
characterizes the intrinsic mechanical properties of the wall material, were calculated with the above-
mentioned parameters and media cross sectional area (MCSA). To compare Einc-WS curves, we 
calculated the mean WS (MWS) within the 350–2000 kPa range of Einc for rats (WS350 –2000). 

Ex vivo aorta mechanical properties 
Scanning acoustic microscopy (SAM) was conducted using a KSI 2000 microscope (PVA TePla 

Analytical Systems GmbH, Herborn, Germany) at 761 MHz on 5 µm thick cross-sections mounted on 
glass slides. The imaging was conducted using the newly developed multi-layer phase analysis 
(MLPA) method and the data was processed off-line to generate speed of sound maps for aorta 
sections from control and CT-1 animals (n=3 per group). Mean speed of sound values were 
determined with 1000 measurements per group. Furthermore, any differential contribution to stiffness 
within the aortic wall was investigated by determining the speed of sound for both the elastic lamellae 
and inter-lamellar regions (n=33 regions per group).  

Aortic composition 
Insoluble elastin, total collagen and cell protein contents were measured on descending thoracic 

aortae without homogenization, as described previously (Huang et al., 1998). Briefly, aortic segments 
were opened longitudinally, the media separated from the adventitia and the medial length measured 
under a microscope. Media were then defatted, dried and their dry weight recorded. Medial cell 
proteins were extracted by 0.3% sodium dodecyl sulfate (SDS) and subsequently assayed and 
insoluble elastin was purified by the hot alkali method and quantified by weighing. Proteins in the 
NaOH extract were then hydrolysed, and total medial collagen was quantified by assaying 
hydroxyproline in the hydrolysate, using a colorimetric assay. 



Histological evaluation  
Histological determinations in cardiac, vascular and renal tissue were performed in 5 µm-thick 

sections. Sections were stained with haematoxylin for morphometry (cardiac and vascular), with 
Masson trichrome for cardiomyocyte dimensions (cardiac), with orcein for elastin content (vascular) 
and with Sirius red for collagen content (cardiac, vascular and renal). Media cross sectional area 
(MCSA) and glomeruli area were measured. For cell width and length, at least 30 cardiomyocytes per 
section were measured in triplicate. All measurements were performed blind in an automated image 
analysis system (Quancoul). Images were calibrated with known standards. Red-Sirius stained sections 
were analyzed under a microscope (40x), and all the fields covering the myocardial, vascular and the 
renal tissue section were digitized. Quantitative measurement of the area of perivascular fibrosis was 
calculated as the ratio of the area of fibrosis surrounding the vessel wall to the total vessel area. At 
least 10 arterial cross sections were examined per heart. The area of interstitial fibrosis or collagen 
deposition was identified after excluding the vessel area from the region of interest, as the ratio of 
interstitial fibrosis or collagen deposition to the total tissue area. For analyses of the glomerular and 
renal tubulointerstitial collagen volume fractions, 30 glomerular capsules and 30 fields without vessels 
or glomeruli were randomly selected from each kidney section, respectively. The glomerular and 
tubulointerstitial collagen volume fractions were then calculated as percentage of stained area within 
traced glomerular capsules and as percentage of total area within a field, respectively. All 
measurements were performed in an automated image analysis system (Quancoul) by two blinded 
observers. Images were calibrated with known standards. 

Myocardial, vascular and renal sections (5 µm thick) were dewaxed and rehydrated, the slides were 
heated for 10 min in a solution containing 10 mM sodium citrate (pH 6.0) for CT-1, fibronectin, 
collagen type I, collagen type IV, β-catenin, E-cadherin and α-SMA immunodetection, incubated in 
1% H2O2 for 10 min, and blocked with 5% normal goat serum in PBS for 1 h. Slides were incubated 
overnight with primary antibodies, washed three times, and then incubated for 30 min with the 
horseradish peroxidase-labeled polymer conjugated to secondary antibodies (Dako Cytomation, 
Carpentaria, CA). The signal was revealed by using diaminobenzidine chromagen substrate (Dako 
Cytomation), and the slides were counterstained with hematoxylin (Sigma-Aldrich).  

Reverse transcription and real-time PCR 
Total RNA extraction was performed using a nucleic acid purification lysis solution (Applied 

Biosystems) and the semiautomated ABI Prism 6100 Nucleic Acid PrepStation system (Applied 
Biosystems). Real-time PCR was performed with an ABI PRISM 7000 Sequence Detection System by 
using specific TaqMan MGB fluorescent probes (Applied BioSystems). Constitutive 18S ribosomal 
RNA was used as endogenous control. 

Western Blot 
Aliquots of 30 µg of proteins were size fractionated on polyacrylamide gels by electrophoresis. The 

following specific antibodies were used: CT-1 at 1:500 (Santa Cruz Biotechnology), Collagen type I at 
1:1000 (Abcam), Collagen type III at 1:500 (Santa Cruz Biotechnology), Osteopontin at 1:500 
(Abcam), Periostin at 1:500 (Abcam), TGF-β at 1:1500 (Cell Signaling), CTGF at 1:1000 (Santa Cruz 
Biotechnology), MMP-13 at 1:1000 (Millipore), MMP-3 at 1:500 (Millipore), Fibronectin at 1:500 
(Millipore), elastin at 1:100 (Abcam), TIMP-1 at 1:500 (Santa Cruz Biotechnology), TIMP-3 at 1:500 
(Santa Cruz Biotechnology), β-catenin at 1:1000 (Abcam), E-cadherin at 1:1000 (Abcam), α-SMA at 
1:2000 (Sigma). Bound antibody was detected by peroxidase-conjugated secondary antibodies 
(Amersham Biosciences) and visualised using the ECL-Plus chemiluminescence detection system. 
After densitometric analyses, optical density values were expressed as arbitrary units (AU). 

Zymography 
Aliquots of 40µg of proteins were mixed with nonreducing sample buffer (Biorad) and fractionated 

by SDS-PAGE electrophoresis on a 10% gel containing 0.01% gelatine (Biorad).and fractionated by 
SDS-polyacrylamide gel electrophoresis on a 10% gel containing 0.1% gelatine (Bio-Rad) or casein 
(Bio-Rad). After electrophoresis, the gel was washed with renaturing buffer (2.5% Triton X-100) for 1 
hour, before incubation for 24 hours at 37°C in a reaction buffer (50 mM Tris-HCl [pH 7.5], 5 mM 
CaCl2, and 1% Triton X-100). The gel was then stained with Coomassie brilliant blue, and 
densitometric analyses were performed. 

ELISA 



Quantikine ELISA kits were used to measure albumin and creatinine (Abnova), NGAL (Interchim) 
and CT-1 (Cusabio) according to the manufacturer’s protocols. All the samples were run in duplicate 
with the average of the 2 replicates reported. 

Statistical Analysis 
Results are presented as mean ± standard error of the mean and p values lower than 0.05 were 

considered significant. Comparisons between treatments or groups of animals were made by the 
unpaired Student’s t test, the Mann Whitney U test or the repeated measures ANOVA, as appropriate. 



SUPPLEMENTARY RESULTS 
CT-1 receptors levels in CT-1-treated rats 
Both gp130 and LIFR were spontaneously expressed in cardiac, vascular and renal tissues. 

Gp130 nor LIFR expressions were modified by CT-1 treatment at the mRNA or the protein 
levels in heart, aorta and kidney (Figure S1). 

Renal fibrosis 
To investigate the potential involvement of CT-1 in epithelial mesenchymal transition 

(EMT), expressions of both markers of myofibroblasts and epithelial cells were further 
analyzed. CT-1-infused rats presented an increase (p<0.01) of fibronectin and α-SMA content 
in kidney cortex as compared to vehicle (S4). Moreover, the expression of β-catenin and E-
cadherin was lower (p<0.01) in the kidney of CT-1-infused rats as compared to controls 
(Figure S2). Taken together, these data indicate that the EMT phenotype was presented in 
kidneys from CT-1-treated rats and paralleled the fibrotic process as well as functional 
changes. 



SUPPLEMENTARY TABLES 
Table S1. Histological and molecular parameters of cardiac sections from CT-1-treated rats 
compared to control rats 
Parameter Control CT-1 
N 17 18 
Cardiomyocyte length (µm) 84.3 ± 1.5 96 ± 2.5 * 
Cardiomyocyte width (µm) 20.1 ± 0.3 19.3 ± 0.3 
   
α-MHC (A.U.) 1.0 ± 0.15 2.1 ± 0.5 * 
β-MHC (A.U.) 1.0 ± 0.12 2.0 ± 0.8 * 
α-sarcomeric actin (A.U.) 1.0 ± 0.11 1.9 ± 0.7 * 
MLC-1 (A.U.) 1.0 ± 0.18 1.7 ± 0.4 † 
α-skeletal actin (A.U.) 1.0 ± 0.10 1.1 ± 0.1 
MLC-2v (A.U.) 1.0 ± 0.11 0.8 ± 0.1 
 
α-MHC, myosin heavy chain alpha; β-MHC, myosin heavy chain beta; MLC-1, myosin light 
chain-1, MLC-2v, myosin light chain-2v. * p<0.01 vs Control, †, p<0.05 vs Control 



Table S2. Carotid artery and aortic parameters in CT-1-treated rats compared to control rats 
Parameter Control CT-1 
Carotid artery morphology 
N 

 
10 

 
9 

MCSA (µm² 10-³) 101 ± 4 145 ± 6 * 
Media thickness (µm) 41 ± 2 58 ± 3 * 

Carotid diameter (mm) 1.20 ± 0.04 1.03 ± 0.03 * 
 
Aortic composition 

 
 

 
 

Ν 10 10 
Dry weight (mg/cm) 2.03 ± 0.15 2.39 ± 0.13 * 
Cell proteins (% dry weight) 45 ± 5 58 ± 6 * 
Cell proteins (mg/cm) 0.91 ± 0.1 1.33 ± 0.1 ** 
Elastin (% dry weight) 58 ± 4 59 ± 6 
Elastin (mg/cm) 1.15 ± 0.06 1.39 ± 0.09 
Collagen (% dry weight) 10 ± 0.6 13 ± 1 ** 
Collagen (mg/cm) 0.21 ± 0.01 0.31 ± 0.01 ** 
 
Aortic molecular parameters 

 
 

 
 

α1 integrin (A.U.) 1.0 ± 0.15 1.7 ± 0.5 † 
α5 integrin (A.U.) 1.0 ± 0.13 1.9 ± 0.3 * 
αv integrin (A.U.) 1.0 ± 0.15 1.8 ± 0.2 * 
β1 integrin (A.U.) 1.0 ± 0.18 1.1 ± 0.2 
β3 integrin (A.U.) 1.0 ± 0.20 1.7 ± 0.3 † 
Vinculin (A.U.) 1.0 ± 0.13 2.2 ± 0.4 * 
Talin (A.U.) 1.0 ± 0.12 1.8 ± 0.3 * 
Fak-P/Fak (A.U.) 1.0 ± 0.14 1.6 ± 0.2 † 
 
MCSA: media cross sectional area of the carotid artery; Fak: focal adhesion kinase. * p<0.01 
vs Control, †, p<0.05 vs Control 
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Figure S1. A, CT-1 treatment did not modify gp130 expression in heart, aorta and kidney. B, CT-1 treatment did not 
modify LIFR expression in heart, aorta and kidney. 18s gene expression or β-actin levels were used as loading 
controls in RT-PCR and Western blot respectively. Values are mean ± SEM.
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Figure S2. Epithelial-mesenchymal transition in control and CT-1-treated rats. A, Kidney from CT-1-treated rats 
presented increased fibronectin and α-SMA content by immunohistochemistry. B, CT-1-treated rats exhibited 
increased fibronectin protein expression, similar α-SMA protein expression, similar fibronectin mRNA expression and 
enhanced α-SMA mRNA expression as compared to controls. C, The kidney of CT-1-treated rats presented similar β-
catenin content and a decrease of the E-cadherin content relative to controls. D, β-catenin and E-cadherin protein 
expressions were decreased as compared to controls, whereas mRNA expression was unchanged for the two genes. 
GAPDH expression or β-actin levels are used as loading controls in RT-PCR and Western blot respectively. Bars 
represent the mean ± SEM obtained from the two groups of animals (n=10 per group). *, p<0.05 vs Control; **, p<0.01
vs Control.


