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Abstract (max. 200 words) 

Aflatoxin B1 (AFB1) and Ochratoxin A (OTA) are genotoxic mycotoxins that can 

contaminate a variety of foodstuffs, the liver and the kidney being their target organ, 

respectively. The micronucleus (MN) assay (bone marrow) and the comet assay (liver 

and kidney) were performed simultaneously in F344 rats, treated with AFB1 (0.25 

mg/kg b.w.), OTA (0.5 mg/kg b.w.) or both mycotoxins. After AFB1 treatment, 

histopathology and biochemistry analysis showed liver necrosis, focal inflammation and 

an increase in Alanine Aminotransferase and Aspartate Aminotransferase. OTA alone 

did not cause any alteration. The acute hepatotoxic effects caused by AFB1 were less 

pronounced in animals treated with both mycotoxins. With regard to the MN assay, 

after 24h, positive results were obtained for AFB1 and negative results were obtained 

for OTA, although both toxins caused bone marrow toxicity. In the combined treatment, 

OTA reduced the toxicity and the number of MN produced by AFB1. In the comet 

assay, after 3h, positive results were obtained for AFB1 in the liver and for OTA in the 
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kidney. The combined treatment reduced DNA damage in the liver and had no influence 

in the kidney. Altogether, these results may be indicative of an antagonistic relationship 

regarding the genotoxicity of both mycotoxins. 

Keywords: Aflatoxin B1, Ochratoxin A, mycotoxins, micronucleus, comet assay, 

combined exposure. 

 

Introduction 

Mycotoxins are fungal toxins that can be found in many agricultural commodities and 

processed food (Bennett and Klich, 2003). Aflatoxin B1 (AFB1) and ochratoxin A 

(OTA) are some of the most relevant due to their toxic effects and demonstrated human 

exposure (EFSA, 2006; EFSA, 2007).  

AFB1 is a genotoxic hepatocarcinogenic compound classified as class 1 (human 

carcinogen) by the IARC (IARC, 1987). (IARC, 1987). It may also cause tumors in 

other organs, such as colon and kidney (EFSA, 2007). It is bioactivated in liver by 

cytochrome P450 and its epoxide metabolite attacks DNA forming adducts (McLean 

and Dutton, 1995). AFB1 is a clastogen that has been tested extensively for genotoxicity 

in vivo and in vitro, giving consistently positive results (IARC, 1987). It induces 

chromosomal aberrations, micronuclei, sister chromatid exchanges, unscheduled DNA 

synthesis and DNA strand breaks in more than 30 published works since the 80’s. OTA 

is a nephrocarcinogenic compound in rodents and has been classified by the IARC in 

class 2B (possible human carcinogen). OTA mechanisms of action are not clearly 

determined but the ability to generate reactive oxygen species (ROS) may explain the 

lipid, protein and DNA damage (Ringot et al., 2006). The test battery for evaluating 

OTA genotoxicity gave negative results (IARC, 1993), but some positive results are 

found in some in vitro and in vivo studies such as DNA breaks in mammalian cell lines 

(Ehrlich et al., 2002; Lebrun and Follmann, 2002; Arbillaga et al., 2007), DNA damage 

and micronuclei in primary cultures of human and rat kidney cells (Robbiano et al., 

2004) and cytogenetic damage and DNA adducts in rats treated with OTA (Mally et al., 

2005; Pfohl-Leszkowicz and Manderville, 2007). 

Some in vivo studies with AFB1 and OTA mixtures gave contradictory results with 

respect to general toxicity. In poultry, these mycotoxins increased mortality in a 
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synergetic way but on the contrary, OTA inhibited lipid accumulation normally induced 

by AFB1 (Huff and Doerr, 1981; Huff et al., 1988; Huff et al., 1992). Other authors 

could not find any interaction between these mycotoxins with regard to mortality 

(Micco et al., 1988), relative weight of most organs, blood parameters or immunological 

status (Ringot et al., 2006). In swine, AFB1 and OTA had additive interactions 

according to liver weight and blood chemistry but they were antagonists with regard to 

the degree of renal cortical interstitial fibrosis and relative kidney weight (Harvey et al., 

1989). In rats, AFB1 and OTA showed no interaction regarding the measurement of 

mortality, weight gain, or most serum biological parameters but the anaplastic and 

hyperchromatic nuclei, necrosis and bile duct proliferation observed were more 

pronounced in the combined toxin group after 4 months (Rati et al., 1981). In rats and 

rabbits, the combination resulted in less teratogenicity than OTA alone, although some 

new manifestations appeared (Wangikar et al., 2004; Wangikar et al., 2005). There was 

no data available regarding the combined genotoxicity in vivo, but in vitro, the 

combination showed genotoxic additive effects in Vero cells (green monkey kidney 

cells) (El Golli-Bennour et al., 2010). In Hep G2 cells (human hepatocarcinoma cells), a 

decrease in DNA damage, not only in direct breaks and apurinic sites but also in 

oxidative damage has been described (Corcuera et al., 2011a). 

According to the promotion of the 3R’s agenda to Replace, Reduce and Refine animal 

testing in non-clinical safety, animal reduction can be achieved by integrating in vivo 

genotoxicity testing into toxicity assays, but there is also an opportunity to reduce 

animal usage by combination of endpoints into a single acute assay design (Bowen et 

al., 2011). The ICH (International Conference on Harmonisation) S2 (R1) guideline on 

genotoxicity testing and data interpretation for pharmaceuticals intended for human use, 

recomends an in vivo assessment of genotoxicity with two different tissues, usually an 

assay for micronuclei using rodent hematopoietic cells and a second in vivo assay, 

generally a DNA strand breakage assay, in another tissue (ICH, 2012). In the bone 

marrow micronucleus assay (MN), the target cells are erythroblasts undergoing their last 

chromosome replication. The micronuclei are cytoplasmatic chromatin masses with the 

appearance of small nuclei that arise from chromosomal loss (aneuploidy) or broken 

chromosomal fragments under the action of clastogenic chemicals. The polychromatic 

erythrocytes (PCE) extrude their main nucleus (while the micronucleus remains inside), 

and mature towards normochromatic erythrocytes (NCE) prior to release into the 

3 
 



peripheral blood circulation (MacGregor et al., 1987). OECD guideline 474 describes a 

validated design for performing the in vivo MN assay and indicates that an increase in 

the frequency of micronucleated PCEs in treated animals is an indication of induced 

chromosome damage (OECD, 1997). The comet assay (single-cell gel electrophoresis) 

is a simple method for measuring DNA damage that can be applied both in vitro and in 

vivo. Apart from detecting DNA strand breaks (single and double strand) at the level of 

single cells, the inclusion of different digestion enzymes allows the detection of 

oxidative DNA damage. In this way, endonuclease III (endo III) is used to detect 

oxidized pyrimidines, and formamidopyrimidine DNA glycosylase (FPG) is used to 

detect the major purine oxidation product 8-oxoguanine (8-oxoGua), ring-opened 

purines and formamidopyrimidines (FAPY) (Collins et al., 1997; Collins et al., 2001; 

Collins et al., 2008). The comet assay showed high sensitivity (ability to detect 

carcinogens as positive) and specificity (ability to give negative results with non-

carcinogens) in the evaluation of carcinogens when the micronucleus test gave negative 

or equivocal results (Kirkland and Speit, 2008). After a formal validation of the in vivo 

rodent comet assay that was coordinated by the Japanese Center for the Validation of 

Alternative Methods (JaCVAM), in conjunction with the European Centre for the 

Validation of Alternative Methods (ECVAM) and the Interagency Coordinating 

Committee on the Validation of Alternative Methods (ICCVAM), a draft version of an 

OECD testing guideline has been prepared and is under revision. These two in vivo 

assays are compatible in one short acute design with the same dosage range. 

The human population is probably exposed to multiple mycotoxins because human diet 

is generally varied and because the same food might be contaminated by several 

mycotoxins (Ibáñez-Vea et al., 2011; Ibáñez-Vea et al., 2012). Multi-exposure may lead 

to additive, synergistic or antagonistic effects. However, there are few studies regarding 

possible interactions of mycotoxins. The objective of this work was to study the 

genotoxicity of AFB1 and OTA alone and combined in a new study design that adapts 

two endpoints in only one short study. The selection of AFB1 and OTA is based on the 

fact that both of them are genotoxic, but their mechanism of action is different. 

Materials and methods 

Safety precautions 
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Aflatoxin B1 and ochratoxin A are toxic substances. They were always manipulated in 

solution, avoiding the formation of dust and aerosols. Nitrile gloves were used for all 

procedures carried out and during the manipulation of treated animals or contaminated 

samples FPP3 masks were used.  

Chemicals 

For the analytical standards, AFB1 was purchased as a solution of 2 mg/L in acetonitrile 

(ACN) and OTA was purchased as a solution of 10 mg/L in ACN, both from 

OEKANAL® Fluka (Schnelldorf, Germany) as certified reference materials. 

Cyclophasphamide (CP) and Ethyl methanesulfonate (EMS) were purchased from 

SIGMA. For oral administration, mycotoxins were purchased in powder from Sigma 

(Steinheim, Germany) and they were dissolved in 0.1 M NaHCO3 (Riedel-de Haën, 

Seelze, Germany), adjusted to pH 7.4 with HCl and maintained at -20ºC until their use. 

For the tissue homogenates, sodium phosphate buffer (0.05 M, pH 6.50) was prepared 

by adding 6.90 g of NaH2PO4.H2O (Merck, Darmstadt, Germany) to 900 mL of type II 

water. The pH of the dissolution was adjusted to 6.5 with NaOH (Agilent technologies, 

Waldbronn, Germany) and the volume was adjusted to 1 L. All reagents used for the 

HPLC analysis were of analytical grade. ACN and methanol HPLC grade and formic 

acid were obtained from Sigma Aldrich (St. Quentin Fallavier, France). Millipore type I 

water was obtained daily from a Milli-Q water-purifying system (Millipore, Bedford, 

MA, USA).  

Animals 

The in vivo experiments were approved by the Ethics Committee on Animal 

Experimentation of the University of Navarra. 

Nine-week-old male Fisher 344 (F344) rats, purchased from Harlan (Horst, The 

Netherlands), were used. On the day of arrival, the animals were weighed (weight 

variation did not exceed ± 20% (OECD, 2009), and then distributed into polycarbonate 

cages with stainless steel covers. During one week, the animals were allowed to 

acclimatize to the environmental conditions: 12 h day/night cycle, temperature 22 ± 

2ºC, relative humidity 55 ± 10%, standard diet (Harlan Iberica, Spain) and water ad 

libitum. 

Study design and treatment 
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The suggested time endpoints for performing the comet assay are 3 h and 24 h and four 

or five animals per group for regulatory submissions (Smith et al., 2002). OECD 

guideline 474 suggests at least 24 h for performing the MN test and using groups of at 

least 5 animals per sex (OECD, 1997). A combination of both protocols was carried out, 

applied with two time points (3 h and 24 h) and 5 animals per group. 

50 animals were randomly distributed into two big groups of 20 animals each according 

to the ending timepoints of 3 h and 24 h. In each group the animals were divided into 

four subgroups of 5 animals each according to the treatments: solvent (Negative control, 

C-), AFB1, OTA and AFB1+OTA. Additionally, a group with 5 animals was treated 

with EMS and CP (Positive control, C+). A reserve group of 5 non-treated animals was 

also included.  

Negative control animals (C-) received oral administration of 0.1 M HNaCO3 (pH 7.4) 

with 0.05% DMSO. The groups treated with AFB1 received orally administration of 

0.25 mg/kg bw of AFB1, the OTA groups received oral administration of 0.5 mg/kg of 

OTA; and the AFB1+OTA groups received oral administration of a mixture of 0.25 

mg/kg bw of AFB1 and 0.5 mg/kg of bw OTA. Positive control animals (C+) (n = 5) 

received intraperitoneal administration of 25 mg/kg bw of CP 24 h before being 

sacrificed and 300 mg/kg bw of EMS, administered orally, 3 h before being sacrificed 

(OECD, 1997; Hamada et al., 2001; Vasquez, 2010). The volumes of administration 

were 10 mL/kg bw via oral route, and 5 mL/kg bw via intraperitoneal route.  

Sample collection 

After 3 h or 24 h, the animals were sacrificed and samples were obtained: bone marrow 

cells for the micronucleus assay; liver and kidney samples for the comet assay, gene 

expression analysis, histopathology examination and mycotoxins quantification; blood 

for biochemical analyses and mycotoxins quantification. 

The animals were euthanized by decapitation and blood was collected into heparinized 

tubes (BD Vacutainer system) for clinical biochemistry analysis and AFB1 as well as 

OTA determination. Blood samples were centrifuged (1,085 × g for 15 min at 4°C) in 

order to obtain plasma that was stored at −80°C. The kidneys and the liver were 

removed. After extensive washing with water and blotting on filter paper, one half of a 

kidney and a slice of liver were fixed in 4% formaldehyde solution for histopathological 
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analysis. Another half of kidney and a piece of liver were flash-frozen in liquid N2 and 

stored at -80°C for mycotoxin determination. The remaining tissues were dipped in cold 

Merchant’s buffer for performing the comet assay. Both femur bones were released 

from muscles and separated from the hip and the knee. The head of the femur was cut 

with a bold cutter and the bone marrow was extracted with a Pasteur pipette (0.5 mL). 

Bone marrow was placed on a microscope slide with a drop of fetal calf serum (Lonza. 

Verviers, Belgium). Eight extensions per animal were carried out using both femurs. 

 

Clinical biochemistry and histopathology 

Biochemical analyses of plasma samples were performed with a Hitachi 911™ (Roche 

Diagnostics) analyzer using the protocols obtained from Roche for the determination of 

the standard parameters: total protein (g/dL), albumin (g/dL), glucose (mg/dL), 

aspartate transaminase (AST) (U/L), alanine transaminase (ALT) (U/L), alkaline 

phosphatase (U/L) and urea (mg/dL).  

In order to analyze possible weight changes in the target organs due to the 

administration of the mycotoxins, the relative weight (RW) of liver and kidneys were 

calculated dividing the weight of each organ by the total weight of the animal.  

For the histopathological analysis, the organ sections of groups treated during 24 h were 

mixed in 4% formaldehyde solution, dehydrated and embedded in paraffin. Paraffin 

sections (3 µm) were cut, mounted onto glass slides, and dewaxed and stained with 

hematoxylin and eosin (H&E) for the subsequent histopathological examination. In the 

observation and evaluation of each sample, the systemic anatomopathological protocol 

was applied, with special attention to: a) normalcy or alteration of the architecture and 

proportions of the structures, b) presence of circulatory phenomena; c) evaluation and 

quantification of degenerative or necrotic phenomena; d) existence or absence of 

inflammatory phenomena, types and intensity; e) abnormal growths: atrophy, 

hyperplasia, hypertrophy, neoplasia; f) particular or special findings. 

Determination of mycotoxins in plasma, liver and kidney 

The concentration of mycotoxins in plasma and tissues was determined by UHPLC with 

fluorescence detection. The extraction procedure and the UHPLC-FLD quantification 

7 
 



method was previously set up and validated for these biological samples, and has been 

performed as described (Corcuera et al., 2011b).  

Micronucleus assay 

The slides were maintained in absolute methanol overnight prior to use. They were air 

dried and used to perform the bone marrow extensions. The extensions were fixed in 

absolute methanol for 5 min, air dried and stained with 10% Giemsa (Giemsa´s azur 

eosin methylated blue solution, MERCK. Darmstadt, Germany) for 10 min.  

After staining, 1,000 erythrocytes per sample were scored and the ratio of 

polychromatic erythrocytes (PCEs) / normochromatic erythrocytes (NCEs) was 

calculated. The PCE/NCE index should be 1 or close to 1, ratios which are lower than 1 

are indicative of bone marrow cytotoxicity. The incidence of MN was studied in 2,000 

PCEs per sample, and the % of MN/PCE was calculated.  

Comet assay 

Nuclei were isolated based on the method of Brunborg et al. (1988) for isolating nuclei 

from tissues such as lung, testis, liver, kidney and brain, with several modifications. The 

Merchant’s buffer (MB) (0.14 M NaCl, 1.47 nM KH2PO4, 2.7 mM KCl, 8.1 mM 

Na2HPO4, 10 mM Na2EDTA, pH 7.4) maintained at 4ºC on ice, was used during the 

whole process of nuclei isolation. This has to be done as quickly as possible in order to 

preserve the  integrity of the nuclei. First, a small piece of tissue (0.5 cm diameter) was 

minced with scissors a few times. Afterwards, the pieces were transferred to a stainless 

steel cylindrical tube (15 mm diameter) with a stainless steel screen of 0.4 mm fitted 

inside, that was used to squeeze the tissue and obtain the nuclei. A plastic plunger that 

fits into the cylindrical tube was used to force the tissue through the screen, similar to 

using a syringe. This was repeated as many times as necessary to ensure that all tissue 

had been transferred, and the cylinder was rinsed with cold MB to reduce the loss of 

nuclei. Then, the suspension of released nuclei, cells and tissue fragments was filtered 

through a nylon filter (100 µm) and centrifuged at 214 x g for 5 min at 4ºC. Finally, the 

pellet was resuspended in MB (5 mL), filtered and centrifuged once more.  

The pellet contained the crude nuclei and was resuspended in 5 mL of MB. Thirty 

microliters of this suspension were mixed with 140 µL of 1% low melting point 

agarose; two drops of 70 µL of this mixture were placed on a microscope slide. A cover 
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slip was put on top of each drop and the gels were allowed to set for 5 min at 4ºC. Once 

the gels solidified, the cover slip was removed and the slides were dipped in lysis 

solution at 4ºC (2.5 M NaCl, 0.1 M Na4- EDTA x 2H2O, 0.01 M Trizma-BASE, pH 

10.5, TRITON X-100 1%). Four different slides, numbered from 1 to 4, were prepared 

for each condition. Number 1, for observing DNA breaks and AP sites, and numbers 2, 

3 and 4 for obtaining information regarding the presence of oxidized DNA bases using 

endo III and FPG post-treatments.  

Samples were maintained in the lysis solution at 4ºC, during at least 1 h. The positive 

control slide was dipped into H2O2 (100 µM in PBS) solution for 5 min at 4ºC, then 

washed with cold PBS and introduced into a lysis solution in a separate jar for at least 1 

h. 

After lysis, slides 2, 3 and 4 were washed 3 times (5 min each time) with the enzyme 

reaction buffer (0.04 M HEPES, 0.1 M KCl, 0.0005 M Na4-EDTA x 2 H2O, 0.2 

mg/mL BSA, pH 8). Then gels were digested with enzyme reaction buffer (slide 2), 

endo III (slide 3) or FPG (slide 4), by adding 50 µL of the corresponding solution to 

each gel and placing a cover slip on top, for 30 min at 37ºC in a humid chamber. After 

that, all nucleoids were denatured in a high-pH buffer (0.3 M NaOH, 0.001 M Na4-

EDTA x 2 H2O) for 40 min at 4ºC. Finally, electrophoresis was carried out at 

approximately 1 V/cm (Brunborg, 2008) for 30 min and the DNA was then gently re-

neutralized in PBS during 10 min, washed in H2O for another 10 min and de-hydrated 

in ethanol 95% for 5 min.  

Nucleoids were stained by adding a drop of 20 µL of DAPI (1 µg/mL) (Sigma-Aldrich) 

on each gel and comets were analyzed in a fluorescence microscopy (Eclipse 50 i 

NIKON). A total of 100 comets (50 per gel) were scored using the Comet Assay IV 

software (Perceptives, UK). The percentage of DNA in tail from slide 1 represents the 

DNA strand breaks and apurinic (AP) sites. Net endo III and FPG-sensitive sites were 

calculated by subtracting the % of DNA in tail of slide 2 from the DNA % in tail of the 

enzymes-treated slides (3 or 4 respectively). 

Statistical analysis  

Data is presented by descriptive analysis as the mean ± standard deviation (SD) of five 

animals. The distribution of the data was checked for normality using the Shapiro-Wilk 
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test. The homogeneity of the variance was verified by the Levene test. The comparisons 

were performed using the Kruskal-Wallis test followed by DMS test. P-values equal to 

or below 0.05 were accepted as the level of significance, and p-values equal to or lower 

than 0.01 were considered very significant.  

Results 

Clinical biochemistry and histopathology 

No clinical signs of toxicity were observed during the study in any of the treatment 

groups. All liver and kidney samples studied presented normal morphology. The 

relative weight (RW) of liver and kidney were normal except in AFB1 treated animals 

after 24 h, which showed a small, but significant, increase in RW. The most evident 

alterations were observed exclusively in liver (figure 1). The livers from group AFB1 

have shown intense diffuse necrosis of hepatocytes, characterized by pyknosis and 

destruction of the nuclei with shrunken cytoplasms that are strongly acidophilics (Fig. 1 

C and D). This necrosis is accompanied by inflammatory infiltrates associated with 

lysated hepatocytes and the general inflammation of the parenchyma and portal spaces 

is increased. The kidneys from the OTA group were normal (Fig. 1 B). The livers from 

the AFB1+OTA group presented necrosis and associated inflammatory infiltration (Fig. 

1 E and F). However, the degree of the lesion has been estimated as inferior to that 

observed in group AFB1 (see  table 2). 

With regard to plasma biochemical parameters, after 3 h treatment with AFB1, OTA or 

AFB1 + OTA, the only variation detected was a significant ALT increase in animals 

treated with OTA, but this was considered not relevant because it is within the normal 

historical range (Table 1). On the contrary, after 24 h, in AFB1 treated animals, the AST 

was approximately two times higher than the control and the ALT three times higher 

(table 1). In OTA treated animals, the enzyme activities were similar to the control 

animals. In the group treated with both AFB1 and OTA, the ALT level was significantly 

higher than the control but significantly lower than in group treated with AFB1; 

moreover, AST was also significantly lower than in the group treated with AFB1, 

reaching levels similar to those of the control.  

Plasma and tissue AFB1 and OTA concentrations 
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Mycotoxin concentrations have been determined in plasma, liver and kidney of rats 

after 3 h and 24 h of administration (table 3). Regarding AFB1, it was not detected after 

24h in plasma or tissues and very low concentrations have been found after 3h; the 

highest concentration was found in liver, in plasma the value was below  the limit of 

quantification (LOQ), and in kidney it was almost undetectable. On the contrary, OTA 

concentrations were very high in plasma and also in tissues (table 3). The co-

administration apparently decreased AFB1 concentration and increased OTA 

concentration in plasma and tissues. Low levels of OTA were detected in the plasma of 

control and AFB1 animals. This minimal exposure is justified by natural trace 

contamination evidence in good quality commercial rat diet (Mantle, 2008; Vettorazzi et 

al., 2008; Arbillaga et al., 2008). 

Micronuclei induction 

With regard to bone marrow cytotoxicity, as can be seen in Fig. 2A, a pronounced 

cytotoxic effect was detected after 3h treatment with AFB1, which was diminished in 

the combined treatment. OTA treatment also produced a cytotoxic effect after 3 h. After 

24 h, no signs of cytotoxicity were observed in any of the treated groups.  

As expected, no significant induction of micronuclei was observed after 3 h in any of 

the treatments. After 24 h, AFB1 increased the amount of MN very significantly, up to 

90 times the control levels, while OTA had no effect. The combined treatment was also 

positive in the MN induction (69 times the control levels) but the amount of MN was 

lower than in the AFB1 single administration. The difference in the percentage of MN 

between both groups was not statistically significant  (figure 2B). 

Comet assay 

The comet assay was performed in order to study the genotoxicity potential of the 

treatments in liver and kidney. No significant induction of DNA strand breaks was 

observed in any of the groups with the exception of the positive control (figure 3). In 

liver, a significant increase of net FPG- sensitive sites (3 times the control levels) was 

observed in isolated AFB1 treatments (3 h and 24 h); the greatest effect was observed 

after 3 h. In the combined treatmenta significant increase of net FPG-sensitive sites was 

observed after 24h (figure 3 A, B). In kidney, a significant increase of net FPG- 

sensitive sites was observed in the OTA and AFB1+OTA groups (3 h and 24 h). 
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Discussion 

The combined genotoxic effect of two mycotoxins has been studied by the application 

of a strategy that combines in one single in vivo study, two assays measuring different 

endpoints: the micronucleus assay in bone marrow cells and the comet assay in liver 

and kidney cells. In this study liver has been selected because of its central role in the 

xenobiotics metabolism and also because it is the AFB1 target organ for its general 

toxicity and carcinogenicity; the second organ has been the kidney for its role in 

xenobiotic detoxification and because it is the OTA target organ for general toxicity and 

carcinogenicity. The OECD guideline for the testing of chemicals No. 474 recommends 

to use 5 animals per group and both sexes (OECD, 1997), but this study was performed 

only with male rats. Madle et al. observed that AFB1 induced more MN in male rats 

and mice than in females (Madle et al., 2005) and it is very well known that OTA is 

more carcinogenic in male rodents than in females (Castegnaro et al., 1998; EFSA, 

2006). Therefore, in order to simplify the design of the study which was technically 

complicated, it was decided to perform the study only in male rats. 

A wide range of doses have been used to study AFB1 in rats depending on repeated or 

single oral doses or long and short experiments. The range of dosage includes from 0.2 

up to 12.5 mg/kg bw (Rati et al., 1981; Wong and Hsieh, 1980; Bannasch et al., 1985; 

Coulombe and Sharma, 1985; Raj et al., 1998; Ellinger-Ziegelbauer et al., 2006; 

Theumer et al., 2010). Previous studies performed in our laboratory showed that a 

single oral dose of AFB1+OTA (0.25 mg/kg bw and 0.5 mg/kg bw, respectively) caused 

general liver deterioration and a marked increase of transaminases and liver paleness 

after 72 h. All these signs suggested acute toxicity due to AFB1. Although Bowen et al. 

(2011) suggested a design to perform both comet and MN assays giving three repeated 

administrations (0, 24, 45h), in this study, we tried to avoid excessive acute toxicity due 

to the fact that cytotoxicity can confound the ability to determine genotoxicity in the 

comet assay (Vasquez, 2010). As the aim of the study was to study the combined effect 

of both toxins and not to obtain a dose-response information, only one dose of each 

mycotoxin has been tested. The single dose of AFB1 (0.25 mg/kg bw) was similar to the 

one used to characterize expression profiles of genotoxic carcinogens (0.24 mg/kg 

bw/day) (Ellinger-Ziegelbauer et al., 2006). The single OTA dose selected (0.5 mg/kg 
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bw) was approximately the carcinogenic dose described by the NTP studies during 24 

months (0.7 mg/kg bw) (NTP, 1989) and has been previously used in other studies 

(Vettorazzi et al., 2009; Vettorazzi et al., 2011).  

No clinical signs of toxicity were observed during the experiment in any of the treated 

groups, but the biochemical and histopathological findings revealed mild acute liver 

damage after 24 h in the groups treated with AFB1. These alterations were more 

pronounced when AFB1 was administered alone than when it was co-administered with 

OTA. In this study it could be demonstrated that both toxins were absorbed and 

distributed throughout the organism, but the levels of OTA and AFB1 reflect the 

different kinetic behavior and metabolism rate of both toxins. After 3h, AFB1 could be 

detected in plasma and kidney but only quantified in liver, due to its high 

metabolization rate. On the contrary, the OTA levels remained very high in plasma and 

also in tissues after 24h, being very similar to those found by Vettorazzi et al. (2009, 

2010 and 2011). Apparently, the co-administration decreased the  levels of AFB1 and 

increased the levels of OTA found in plasma and tissues. An influence in the kinetic 

behavior and metabolism of AFB1 by OTA might be the cause, thus having an impact 

in toxicity. Nevertheless, a study focused on toxicokinetics and measuring the 

metabolites would be needed to draw conclusions.  

In this study, bone marrow samples were taken after 3 h and 24 h. No positive results in 

the MN test were expected in the short treatment, because there is not enough time for 

cells to divide, but sampling time at 3h was included in the experimental design to get 

tissue samples for comet assay. After 3 h, significant bone marrow cytotoxicity 

appeared after AFB1, OTA and AFB1+OTA administration, and this is a clear 

indication of tissue exposure to the mycotoxins. Moreover, these results meet the 

requirement of the OECD guideline 474 that recommends to reach a dose producing 

some indication of bone marrow toxicity (e.g. a reduction in the proportion of immature 

erythrocytes among total erythrocytes in the bone marrow or peripheral blood) (OECD, 

1997).  

AFB1 treatment produced a significant increase in the percentage of micronuclei of 

bone marrow PCE  and a significant increase in FPG sensitive sites of liver cells, 

confirming the genotoxic potential of this mycotoxin. The oxidative DNA damage 

detected in liver was lower after 24 h than after 3 h. OTA did not induce micronuclei in 
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bone marrow PCE but it induced a significant increase in FPG sensitive sites in kidney 

cells. The oxidative DNA damage detected in kidney was very similar at 3h and 24 h, 

Therefore, each mycotoxin induced oxidative DNA damage in their respective target 

organ. Regarding OTA genotoxicity, the results of this study are in agreement with 

previous in vivo studies in adult Wistar rats after repeated doses (Domijan et al., 2006), 

and support the idea that the oxidative stress is likely to be responsible for the DNA 

damage induced by OTA. Moreover, Mally et al. (2004, 2005) after repeated OTA 

dosing in F344 rats also observed an increase in FPG sensitive sites and the absence of 

DNA adducts pointing to a non-direct reactive DNA mechanism of toxicity. OTA 

kinetic parameters described in similar conditions by Vettorazzi et al. (2009) showed 

that OTA has a long half live in plasma and high apparent volume of distribution. These 

characteristics would explain the high concentration of OTA in plasma and tissues after 

24 h or more, and a continuous exposure of cells to the oxidative stress produced by 

OTA. AFB1 did not produce any significant genotoxic effect in kidney and did not 

modify the OTA response in this organ. The fact that AFB1 metabolites could not be 

analysed, makes impossible to determine if there is no exposure to them in kidney. 

 

The combined AFB1+OTA treatment decreased the number of micronuclei in the bone 

marrow and the net-FPG sensitive sites in liver with respect to the AFB1 treatment. On 

the contrary, co-administration of AFB1 did not have any influence on the net-FPG 

sensitive sites produced by OTA in kidney. In HepG2 cells, co-exposure to OTA 

significantly decreased DNA damage induced by AFB1, not only in breaks and apurinic 

sites but also in FPG-sensitive sites (Corcuera et al 2011a). AFB1 is bioactivated in 

liver by cytochrome P450 and its epoxide metabolite attacks DNA forming adducts 

(McLean and Dutton, 1995). The primary lesion evolves to secondary injuries such as 

apurinic sites (AP) that would be detected as direct strand breaks by the comet assay; or 

imidazole AFB1 formamidopyrimidine opened rings (AFB1-FAPY) (Bedard and 

Massey, 2006), that could be detected by incubating the DNA with a 

formamidopyrimidine glycosylase enzyme such as FPG. Moreover, FPG enzyme also 

detects 8-hydroxydeoxyguanosine (8-oxodG) (Collins and Dusinska, 2002). A time- and 

dose-dependent increase in 8-oxodG has been described in rat hepatic DNA after a 

single intraperitoneal injection of AFB1 (Shen et al., 1995). The toxic metabolite of 

AFB1, the AFB1-epoxide, is converted into AFB1-GSH catalyzed by the cellular 
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glutathione-S-transferase and the level of this enzyme is critical to modulate AFB1 

metabolism. Glutathion depletors enhanced AFB1-induced micronuclei in bone marrow 

cells, while inductors of glutathion-S-transferase possess inhibitory activities against 

AFB1-DNA binding (Raj et al., 1998). The importance of the antioxidant/detoxification 

enzymes and the regulation via Nrf2/Keap 1/ARE response in AFB1 has been the 

subject of many studies aimed to demonstrate that activators of this mechanism may 

modulate mutagenesis and carcinogenesis both in laboratory rats and in humans 

(Kensler et al, 2005, 2007; Eaton and Schaupp, 2014). Recently, Johnson et al., 2014, 

pretreating F344 rats with a synthetic oleanane triterpenoid, a powerful activator of 

Keap 1-Nrf2 signaling pathway, obtained a complete protection against AFB1-induced 

liver cancer, with a significant reduction in the level of urinary AFB1-N7-guanine (66%) 

and an elevation of aflatoxin-N-acetylcysteine (300%). OTA depletes GSH and some 

enzymes involved in free radical scavenging in vivo (O’Brien and Dietrich, 2005). 

Besides, in some studies, an inhibition of the pathways regulated by Nrf2 have been 

described in kidney but not in liver (Marin-Kuan et al, 2006; Cavin et al., 2007). Thus, 

the protection of OTA against AFB1 genotoxicity would not be explained through this 

mechanism.  Alternatively, this interaction could be explained by a type of competition 

for the cytochrome enzymes which are involved in the metabolism of both toxins. OTA 

persists in the organism much more than AFB1, and its maintained presence could 

somehow avoid or retard AFB1 bioactivation in liver, forcing AFB1 to take other 

metabolism routes. 

In conclusion, in this study, it has been demonstrated that simultaneous exposure to 

AFB1 and OTA  may modify the toxic effects of AFB1, probably due to metabolic 

factors, although this would need confirmation. From the point of view of risk 

assessment, these findings provide additional information but do not avoid the 

application of the precautionary principle of exposure reduction to genotoxic 

mycotoxins to a level as low as reasonably achievable. On the other hand, the 

combination of classical genotoxicity tests such as the MN assay and new techniques 

such as the comet assay, which can be applied to tissues other than bone marrow or 

blood, gives complementary results. This contributes to the 3Rs strategy by increasing 

the information that can be obtained from a single animal experiment, and also 

improves the risk assessment process by producing results that can be interpreted in a 

more rational way. 
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Fig. 1: Histopathology of H&E stained liver sections of (A) a control rat (24h)  x 100, 

(B) a rat treated with OTA (24h) x 200,  (C) a rat treated with AFB1 (24h) x 100. 

Inflammatory infiltrates are indicated, (D) a rat treated with AFB1 (24h) x 400. Intense 

diffuse necrosis of hepatocytes, characterized by pyknosis and destruction of the nuclei 

with shrunken cytoplasms that are strongly acidophilics are indicated with arrows, (E) a 

rat treated with AFB1+OTA x 100 (24h) and (F) a rat treated with AFB1 + OTA (24h) x 

400. Necrosis and associated inflammatory infiltration are indicated. 
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Figure 2: Micronucleus assay results. (A) Bone marrow cytotoxicity expressed as 

polychromatic erythrocytes / normochromatic erythrocytes ratio (PCE/NCE) after 3h or 

24h treatment with the mycotoxins. * Significantly different from C- (p≤0.05). ** Very 

significantly different from C- (p≤0.01). AFB1+OTA treatments have been compared 

with AFB1 treatment • Significantly different from AFB1 (p≤0.05). (B) Micronuclei 

induction of expressed as % of micronuclei in 2000 polychromatic erythrocytes ** Very 

significantly different from C- (p≤0.01).  
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Figure 3: Liver and kindey DNA damage after 3h/24h of treatment expressed as strand 

breaks (SB: single and double strand breaks and AP sites) and oxidative DNA damage 

as net endo III sensitive sites (Net endo III-SS: oxidized pyrimidines) and net FPG 

sensitive sites (Net FPG-SS: 8-oxodGua, FAPY, FAPY-AFB1. * Significantly different 

from C- (p≤0.05). The mean and SD have been represented (n=5).  
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