Table 1 Baseline characteristics in whole sample and categorized by gender

Variable	Total	Men	Women	
variable	(n=16)	(n=6)	(n=10)	p
Age (years)	25.94±3.02	25.50±2.35	26.20±3.46	0.669
Weight (kg)	68.25±12.92	81.97±6.15	60.02±7.52	< 0.001
BMI (kg/m^2)	23.99 ± 3.05	26.42±1.95	22.54 ± 2.68	0.008
Waist/hip ratio	0.86 ± 0.07	0.93 ± 0.04	0.81 ± 0.05	< 0.001
Body fat mass (kg)	16.94±5.10	17.37±3.82	16.68 ± 5.92	0.804
Body fat free mass (kg)	51.31±11.07	64.60±4.38	43.34±2.29	< 0.001
Systolic pressure (mmHg)	102.31±9.27	103.33±12.11	101.43±6.90	0.729
Diastolic pressure (mmHg)	67.69±8.57	68.33±11.69	67.14±5.67	0.815

Data are shown as mean \pm standard deviation. p value: Comparison between men and women baseline characteristics. p<0.05 was considered significant.

BMI, Body Mass Index

Table 2 Nutritional composition of the three assessed types of jams per 100g

Nutritional features	HS Mean ± SD	LS Mean ± SD	LSA Mean ± SD	P HS-LS	P HS-LSA	P LS-LSA
Energy (kcal/100g)	185.9±8.6	21.2±3.7	26.2±4.7	< 0.05	< 0.05	ns
Carbohydrates (g/100g)	46.0±2.1	4.2 ± 0.8	5.1±0.9	< 0.05	< 0.05	ns
Sugars (g/100g)	41.8±1.6	2.6 ± 0.1	2.7 ± 0.1	< 0.05	< 0.05	ns
- Fructose (g/100g)	12.8 ± 2.2	<1.3	1.3±0.1	nc	< 0.05	nc
- Glucose (g/100g)	12.7±2.1	<1.3	1.4±0.1	nc	< 0.05	nc
- Sucrose (g/100g)	16.4±5.7	< 0.5	< 0.5	nc	nc	nc
Sucralose (mg/100g)	nd	252.9 ± 8.6	281.8±9.9	nc	nc	ns
Total fibre (g/100g)	0.5 ± 0.1	1.12 ± 0.2	1.64 ± 0.2	ns	< 0.05	ns
Soluble Fibre (g/100g)	< 0.5	0.71 ± 0.01	0.65 ± 0.01	nc	nc	< 0.05
Free polyphenols (µmol catechin/100g)	480.4±32.2	369.0±64.8	839.8±43.3	ns	< 0.05	< 0.05

Data expressed as mean \pm SD, (three samples for three different batches). p < 0.05 between jams was considered significant.

HS high-sugar jam, LS low-sugar jam, LSA low-sugar with antioxidant extract jam, nc non-calculable, nd non-detectable, ns non-significant.

Table 3 Variation of postprandial lipid profile after 2 h of eating each type of jam

	Time (minutes)							p		
	Jam	0	30	60	90	120	Jam	Time	Jam × Time	
	LSA	191.13±23.62 ^a	181.75±23.61 ^b	181.88±22.54 ^b	182.06±21.52 ^{ab}	182.00±24.97 ^{ab}				
Total-c (mg/dL)	LS	194.31±35.16 ^a	181.94±33.70 ^b	185.94±37.15 ^b	186.75±36.41 ^b	188.19±34.46 ^{ab}				
	HS	197.00±56.95 ^a	184.13±49.91 ^b	186.06±45.96 ^b	184.19±36.11 ^{ab}	184.88±35.13 ^{ab}	0.849	< 0.001	0.913	
HDL-c (mg/dL)	LSA	63.84 ± 15.72^{a}	60.54±14.75 ^b	60.52±15.58 ^b	60.14 ± 14.22^{b}	61.24 ± 13.86^{ab}				
	LS	64.91±17.73 ^a	61.51 ± 16.80^{b}	62.71±17.13 ^{ab}	64.05±18.62 ^{ab}	64.24 ± 17.77^{ab}				
	HS	66.29±26.98 ^a	61.41±22.37 ^b	62.41±23.26 ^{ab}	60.66±17.99 ^{ab}	61.41±17.50 ^{ab}	0.606	< 0.001	0.455	
LDL-c (mg/dL)	LSA	108.33±21.06 ^a	105.72±21.14 ^a	105.89±20.66 ^a	106.83±21.22 ^a	105.46±22.55 ^a				
	LS	109.44±28.43 ^a	104.46±28.29 ^b	107.26±29.42 ^{ab}	106.84±28.94 ^{ab}	108.05 ± 28.82^{ab}				
	HS	109.56±34.23 ^a	105.66±33.15 ^a	106.82±28.28 ^a	107.46±27.61 ^a	107.29±27.83 ^a	0.987	0.005	0.799	
TDC:	LSA	94.81±28.26 ^a	77.44±26.74 ^b	77.31±27.92 ^b	75.44 ± 28.54^{b}	76.50 ± 28.89^{b}				
TG (mg/dL)	LS	99.81±35.58 ^a	79.88±31.25 ^b	79.88±31.51 ^b	79.31±30.11 ^b	79.50±29.21 ^b				
	HS	105.75±44.61 ^a	85.25±34.14 ^b	84.19±36.60 ^b	80.31±31.51 ^b	80.88±34.28 ^b	0.284	< 0.001	0.748	

Data are reported as mean \pm SD (n = 16). Effect of jam, time and Jam \times time was analyzed with repeated measures ANOVA.

Values in a row with different superscript letters (a, b) are significantly different, p < 0.05, by Bonferroni post hoc test.

No were differences between jams at different time points

Total-c total cholesterol, *HDL-c* high-density cholesterol, *LDL-c* low-density cholesterol, *TG* triglycerides, *LSA* low-sugar including antioxidant jam, *LS* low-sugar jam, *HS* high-sugar jam

Table 4 Variation of postprandial antioxidant status after 2 hours of eating each type of jam

		Time (minutes)					p		
	Jam	0	30	60	90	120	Jam	Time	Jam × Time
	LSA	1.10±0.51 ^a	1.03±0.47 ^a	1.04±0.51 ^a	0.98 ± 0.50^{a}	0.99±0.51 ^a			
MDA (μM)	LS	1.05±0.41 ^a	1.00 ± 0.45^{a}	1.03±0.45 ^a	0.98 ± 0.40^{a}	1.02±0.47 ^a			
(1-)	HS	1.12±0.47 ^a	1.11±0.40 ^a	1.01±0.41 ^a	1.05±0.45 ^a	0.97±0.44 ^a	0.850	0.003	0.703
	LSA	52.44±22.82 ^a	52.60±24.38 ^a	53.84±18.43 ^a	60.93±24.66 ^a	62.39±22.61 ^a			
GPx (nmol/min/mL)	LS	54.16±28.49 ^a	58.42±29.45 ^a	59.51±27.56 ^a	57.13±26.73 ^a	58.62±26.91 ^a			
	HS	57.10±29.05 ^a	53.56±29.27 ^a	61.70±28.41 ^a	58.34±33.10 ^a	62.10±32.58 ^a	0.912	0.067	0.450
Uric acid (mg/dL)	LSA	5.15±1.21 ^a	5.18±1.19 ^a	5.11±1.21 ^a	5.06±1.22 ^a	5.02±1.25 ^a			
	LS	5.12 ± 1.02^{a}	5.13±1.03 ^a	5.14 ± 0.94^{a}	5.14±0.99 ^a	5.08±0.99 ^a			
	HS	5.36±0.85 ^a	5.35±0.81 ^a	5.37±0.82 ^a	5.27±0.82 ^a	5.21±0.82 ^a	0.450	0.032	0.740
	LSA	1.07 ± 0.48^{a}	1.11±0.49 ^a	1.04±0.49 ^a	1.16±0.53 ^a	1.04 ± 0.63^{a}			
TAC (mmol/L)	LS	1.06±0.50 ^a	1.16 ± 0.68^{a}	1.39 ± 0.60^{b}	1.20±0.55 ^a	1.14 ± 0.48^{a}			
	HS	1.12±0.45 ^a	0.99±0.54 ^a	1.06±0.50 ^a	1.14±0.56 ^a	1.27±0.54 ^a	0.591	0.832	0.404

Data are reported as mean \pm SD (n = 16). Effect of jam, time and Jam \times time was analyzed with repeated measures ANOVA.

Values in a row with different superscript letters (a, b) are significantly different, p < 0.05, by Bonferroni post hoc test.

MDA malondialdehyde, GPx glutathione peroxidise, TAC total antioxidant capacity, LSA low-sugar including antioxidant jam, LS low-sugar jam, HS high-sugar jam