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Abstract: The aim of this study was to evaluate whether genome-wide levels of DNA 

methylation are associated with age and the health risks of obesity (HRO); defined 

according to BMI categories as “Low HRO” (overweight and class 1 obesity) versus  

“High HRO” (class 2 and class 3 obesity). Anthropometric measurements were assessed in 

a subsample of 48 volunteers from the Metabolic Syndrome Reduction in Navarra 

(RESMENA) study and 24 women from another independent study, Effects of Lipoic Acid 

and Eicosapentaenoic Acid in Human Obesity (OBEPALIP study). In the pooled population; 

the methylation levels of 55 CpG sites were significantly associated with age after 

Benjamini-Hochberg correction. In addition, DNA methylation of three CpG sites located 

in ELOVL2; HOXC4 and PI4KB were further negatively associated with their mRNA 

levels. Although no differentially methylated CpG sites were identified in relation to HRO 

after multiple testing correction; several nominally significant CpG sites were identified in 

genes related to insulin signaling; energy and lipid metabolism. Moreover, statistically 

significant associations between BMI or mRNA levels and two HRO-related CpG sites 

located in GPR133 and ITGB5 are reported. As a conclusion, these findings from two 

Spanish cohorts add knowledge about the important role of DNA methylation in the  

age-related regulation of gene expression. In addition; a relevant influence of age on DNA 
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methylation in white blood cells was found, as well as, on a trend level, novel associations 

between DNA methylation and obesity. 
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1. Introduction 

Obesity plays a crucial role in metabolic syndrome features onset, and it has been defined as  

a chronic disease associated with important cardiorespiratory and cardiometabolic risks [1]. The 

predisposition to gain excessive weight and develop obesity as a result of the intake of energy-rich 

diets is partly controlled by specific genes [2]. In some studies, between 40% and 70% of the body 

weight variability has been attributed to genetic inheritance, being the number of associated genes 

continuously increasing due to Genome-Wide Association Studies (GWAS) [3]. The increase in 

obesity prevalence may also be the result of epigenetic changes [4,5]. Epigenetics studies the 

inheritable and reversible phenomena that affect gene expression without altering the underlying base 

pair sequence [6]. Thus, the same nucleotide sequence in two individuals can be differently expressed 

or not depending on specific epigenetic marks [7]. 

DNA methylation occurs preferentially in sequences whose pattern is a cytosine followed by a 

guanine residue, called CpG dinucleotides. These CpG sites are especially common in the promoter 

regions of many genes and, when methylated, tend to be associated with gene silencing [8]. These 

epigenetic marks are not permanent over time and many factors, such as nutrition, inflammation, 

physical activities, oxidative stress, hypoxia, smoking, sex or age, induce changes in the epigenome, 

contributing to its plasticity throughout life [9,10]. 

Several studies have also shown that changes in the epigenome vary during the different life cycle 

stages [11,12]. Thus, it has been reported that epigenetic marks at the early age are responsible for 

controlling gene expression during adulthood [13]. In this sense, different epigenetic patterns associated 

with aging seem to occur, which are related to changes in regulatory gene expression and metabolic 

functions. Aging could lead to genome-wide demethylation in certain gene coding regions [14], 

although, more often, aging has been related to increased methylation of certain CpGs in specific gene 

families, CpG islands [15] and bivalent chromatin domains [16]. These epigenetic modifications could 

be implicated in the onset of cancer and other diseases associated with advancing age, and also appear 

to depend on the gene and tissue analyzed. For example, studies in liver and visceral adipose tissue 

have revealed differences in DNA methylation with age at >5% of sites analyzed (from a total of one 

thousand randomly selected loci), many of them near genes that are involved in metabolic regulation, 

suggesting a potential role in the pathogenesis of age-related diseases [17]. 

Moreover, obesity is not only an aesthetic problem due to inadequate dietary and sedentary lifestyle 

habits, since excessive fat accumulation greatly raises the risk for other health problems, such  

as coronary heart disease, type 2 diabetes, hypertension, metabolic syndrome or reproductive  

problems [18]. All these complications are included under the name of health risk of obesity (HRO). 

The National Institutes of Health guidelines indicate that the HRO increases in a graded fashion when 

moving from the normal-weight through obese BMI categories [19]. In addition to a predisposing 



Int. J. Mol. Sci. 2015, 16 16818 

 

 

genetic makeup to easier weight gain and fat deposition, a lot of recognized scientific evidence has 

theorized about the roles of other putative determinants. Several investigations aiming to understand 

energy metabolism have been performed considering the potential involvement of epigenetics and 

perinatal programming [13,20,21]. Indeed, inheritance-oriented investigations concerning gene-nutrient 

interactions on energy homeostasis processes and metabolic cell functions are extending to all 

clinically chronic relevant diseases, such as type 2 diabetes, cardiovascular events, obesity and 

associated features of metabolic syndrome. 

The aim of this study was to evaluate whether genome-wide levels of DNA methylation in white 

blood cells are associated with age and the HRO, defined as the risk of obesity-related health 

problems, in two unrelated Spanish cohorts. 

2. Results and Discussion 

We have conducted a pilot study to examine the associations between DNA methylation and age,  

as well as HRO, in order to better understand epigenetic contributions to health in two Spanish 

populations, where these associations, to our knowledge, have not yet been examined. 

A total of 73 participants, 35.6% men, were suitable for the analysis. The general features of 

subjects grouped by study are shown in Table 1. As expected, the “High HRO” group evidenced 

greater levels (p < 0.05) of body weight, BMI and waist circumference than the “Low HRO” group 

(Table 1). Age and anthropometric measurements were significantly lower in the “Effects of Lipoic Acid 

and Eicosapentaenoic Acid (EPA) in Human Obesity” (OBEPALIP) population compared with the 

Metabolic Syndrome Reduction in Navarra (RESMENA) study (p-value < 0.001). These two cohorts 

differed in the inclusion criteria. The OBEPALIP study recruited only women without metabolic 

syndrome from 20 to 45 years old, while the RESMENA study had broader criteria (both genders  

aged between 35 and 70 years old with a high prevalence of metabolic syndrome). Moreover, 

anthropometric differences between the two populations were mainly due to age, the presence of 

metabolic syndrome and gender. Women from OBEPALIP study could be considered more 

metabolically healthy overweight and obese subjects (without other complications), while most 

subjects from RESMENA population had metabolic syndrome (81%). Metabolically healthy obese 

individuals display less visceral adipose tissue, smaller adipocytes, and a reduced inflammatory profile 

when compared with metabolically unhealthy obese individuals [22]. Healthy obese subjects are also 

at a lower risk thereof than individuals who are both unhealthy and obese [23]. The relatively low risk 

of cardiovascular disease among metabolically healthy people with respect to unhealthy obese people 

has been attributed to differences in white adipose tissue function between both groups of patients [24]. 

Table 1. General characteristics of the studied subjects. 

Variables 
Pooled Population RESMENA Study OBEPALIP Study 

TP LR HR TP LR HR TP LR HR 

n 73 40 33 48 18 30 25 22 3 

Age (year) 45 (10) 41 (10) 49 (10) + 48 (10) 47 (10) 49 (10) 37 (7) * 37 (8) 42 (2) 

Sex (M/F) 26/47 9/31 17/16 + 26/22 9/9 17/13 0/25 0/22 0/3 

Weight  

(Kg) 

95.5 

(17.8) 

85.8 

(10.4) 

107.0 

(18.0) + 

102.4 

(17.9) 

90.5 

(11.6) 

109.1 

(17.4) + 

82.7 

(7.6) * 

82.3 

(7.9) 

86.0 

(4.0) 
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Table 1. Cont. 

Variables 
Pooled Population RESMENA Study OBEPALIP Study 

TP LR HR TP LR HR TP LR HR 

BMI  

(kg/m2) 

34.6 

(4.1) 

31.5 

(2.3) 

38.1 

(2.7) + 

36.2 

(3.8) 

32.4 

(2.7) 

38.2 

(3.8) + 

31.5 

(2.7) * 

30.9 

(2.3) 

36.0 

(0.6) + 

WC  

(cm) 

106.0 

(13.4) 

98.1 

(8.8) 

115.3 

(11.9) + 

112.0 

(12.5) 

102.5 

(10.2) 

117.3 

(10.5) + 

94.7 

(5.7) * 

94.6 

(5.8) 

95.3 

(5.7) 

Metabolic Syndrome 1 39 12 27 39 12 27 0 * 0 0 

Smoking 12 7 5 8 3 5 4 4 0 

Data are expressed as mean (standard deviation). Abbreviations: TP, total population; LR, Low HRO;  

HR, High HRO; n, number of subjects; BMI, body mass index; WC, waist circumference; 1 The metabolic 

syndrome was diagnosed following the ATP III criteria; * Significant differences between the two 

populations, p-value < 0.001; + Significant differences between low and high HRO, p-value < 0.05. 

2.1. Identification of CpG Sites Differentially Methylated with Age in WBC 

In this study, the white blood cell (WBC) DNA methylation profile was analyzed in 73 subjects  

using Illumina Infinium HumanMethylation450 BeadChip (Illumina, San Diego, CA, USA). The age 

range was 21–58 years old. Linear regression analysis identified 54 CpG sites associated with age  

(Table S1). The top 8 significant loci located within or nearby to the CpG islands of ELOVL2,  

PRLHR, PI4KB, MFSD5, HOXC4, ZEB2 and FHL2 genes had the smallest p-value below the 

Benjamini-Hochberg threshold (≤0.05) adjusted for gender, smoking, metabolic syndrome, the 

research group that made each study, T cell (CD8+), T cell (CD4+), B cells and random batch effect 

(Figure 1a). The same CpGs showed the highest Spearman’s coefficients (Figure 1b) between DNA 

methylation levels and age in the WBC from the pooled population and in the two independent 

populations (RESMENA and OBEPALIP studies). The patterns of results in both cohorts were 

comparable (the correlation coefficients describe the same direction (positive or negative) and statistical 

significance at raw p-value <0.01). Moreover, the possible interaction effects between cohorts and age 

on DNA methylation levels that represent the combined effects of factors on the dependent measure 

were tested. No interaction effects were found. Thus, the impact of age and methylation is independent 

of the cohorts. 

DNA methylation is well known to change during aging [25]. Recent studies have demonstrated the 

presence of age-related CpG sites, which are characterized by a global loss of DNA methylation during 

aging [26]. However, some genes become hypermethylated with age [26]. The methylation levels of 

the CpG sites of ELOVL2, PRLHR, HOXC4, and FHL2 positively correlated with age. In this sense, 

DNA methylation levels could be used to estimate age [27]. Biological clocks, such as the epigenetic 

clock, are promising biomarkers of aging [28]. However, this pilot research requires further studies to 

replicate the age-related associations and find the predictive value of the estimate age. 

Increased DNA methylation of certain genomic regions may be involved in the silencing of gene 

transcription [29]. Therefore, it was tested if these selected CpG sites with increased DNA methylation 

were associated with decreased mRNA expression of genes located near the CpG sites in the 

RESMENA cohort. The DNA methylation levels of three of the selected CpG sites (cg16867657, 

cg01974375 and cg18473521) showed a statistically significant negative correlation with the mRNA 



Int. J. Mol. Sci. 2015, 16 16820 

 

 

levels of the respective genes (ELOV2, PI4KB and HOXC4) in the same cells (WBC) of the screened 

subjects (Figure 1c). 

The methylation levels of CpG sites located in genes like ELOVL2 and FHL2, have been  

strongly correlated with age in previous genome-wide methylation studies [30,31]. ELOVL2 encodes a 

transmembrane protein involved in the synthesis of long ω3- and ω6-polyunsaturated fatty acids  

(PUFA) [32]. Considering that PUFAs are involved in crucial biological functions including energy 

production, inflammation, and maintenance of cell membrane integrity, it is possible that ELOVL2 

methylation plays a role in the aging process through the regulation of different biological pathways. 

 

Figure 1. Associations between age and DNA methylation in different CpGs. (a) Manhattan 

plot of genome-wide p-values from the pooled population; (b) Adjusted p-values and 

Spearman correlation coefficients of the selected CpG sites with respect to age. CpGs are 

ranked by adjusted p-value, from smallest to largest. The number of subjects included in the 

pooled population, RESMENA study and OBEPALIP, were 73, 48 and 25, respectively.  
1 p-value of age-cohort interaction analyzed with a linear regression. * denotes statistical 

significance at adjusted p-value < 0.05; + denotes statistical significance at raw p-value < 0.01; 

(c) Graphical representation of the correlation between DNA methylation levels of the selected 

CpG sites and mRNA expression of the respective genes in RESMENA study (n = 24). Data 

are presented as linear regression (solid straight line) graph and 95% confidence interval 

(dotted lines). Localization: Chromosome on which the target locus is located and genomic 

position of C in the CpG dinucleotide; RefGene Group: Gene region feature category; 

adj.P.Val: adjusted p-value for multiple testing. 
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By using a linear mixed model in a transcriptomic approach, the gene expression of MFSD5 in skin 

was associated with age [33]. MFSD5 (major facilitator superfamily domain containing 5) encodes a 

protein that facilitates the transport across cytoplasmic or internal membranes of molybdate anion. 

However, the age-related mechanism that affects the expression of this gene remains to be elucidated. 

A CpG site of HOXC4 was significantly associated with age. HOXC4 is a member of the homeobox 

(HOX) family of master transcription factors crucial in morphogenesis and development [34].  

The expression of many HOX genes, including HOXC4, declines with age, even prior to adulthood [35]. 

An association of HOX genes with longevity has been proposed [36], although there is not direct 

evidence so far linking HOXC4 to human aging. ZEB2 is another age-associated gene. This gene (also 

known as SIP1) is a member of the Zfh1 family of 2-handed zinc finger/homeodomain proteins. Its 

relevance to tumor progression has been studied in several forms of human cancer [37], although the 

association of ZEB2 with age has not been previously reported. Lastly, phosphatidylinositol 4-kinase 

beta (PI4KB) is a soluble enzyme shuttling between the cytoplasm and the nucleus, which regulates 

the trafficking from the Golgi system to the plasma membrane [38]. Although this gene has been 

recently described as a candidate age-associated genomic region [39], its involvement in aging is  

still unclear. 

The Gene Ontology (GO) analysis of these CpG sites differentially methylated with age showed 

processes related to apoptosis, signal transduction and transcriptional regulation, rhythmic process, 

DNA repair and chromatin remodeling, cell differentiation or metabolic processes. However, no 

significant terms were found in GO enrichment analysis. 

2.2. Identification of CpG Sites Differentially Methylated in Relation to the Health Risks of Obesity (HRO) 

We identified 85 CpG sites (Figure 2a) differentially methylated (mean absolute methylation 

difference ≥ 10%; raw p-value < 0.01) between “Low HRO” (overweight and class 1 obesity) and “High 

HRO” (class 2 and 3 obesity). However, none of these CpGs remained statistically significant after 

Benjamini-Hochberg correction. Forty-one CpG sites were hypomethylated and 44 hypermethylated in 

the “Low HRO” group compared to the “High HRO” group (Table S2), as shown in the Volcano plot 

(Figure 2a). The GO analysis revealed that the genomic regions where these differentially methylated 

CpG sites are located have been involved in different processes related to apoptosis, transcriptional 

regulation and inflammatory response, cell cycle, oxidative stress response, energy reserve metabolic 

processes, insulin receptor signaling pathway and carbohydrate and lipid metabolic processes (Table S2). 

Eight CpG sites (Figure 2b) were selected for further demonstrating whether the changes in DNA 

methylation were accompanied by changes in gene expression. The selection of these CpG sites was 

based on two conditions: the methylation differences between “Low HRO” and “High HRO” were ≥10% 

and p-value ≤0.01, and previous reports associating these genes with obesity [40–47]. The patterns of 

results in both cohorts were comparable in most of the selected CpG sites (the same size effect 

direction (positive or negative) and statistical significance at raw p-value <0.01). The possible 

interaction effects between cohorts and HRO on DNA methylation levels were also tested. No interaction 

effects were found. Thus, the impact of HRO and methylation is independent of the cohorts. 
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(a) 

(b) 

Figure 2. Identification of CpGs and genes differentially methylated between “Low HRO” 

and “High HRO” subjects. (a) Volcano plot of the 358,639 CpG sites of raw p-values log 

versus mean methylation differences (effect size) comparing Low HRO group to High 

HRO groups. Hypermethylation means more methylation in the Low HRO group 

compared to the High HRO group, and hypomethylation refers to less methylation in the 

Low HRO group than in the High HRO group. CpG sites hypermethylated (n = 44) and 

hypomethylated (n = 41) are shown in black; CpG sites that were not differentially 

methylated (raw p-value > 0.01) are shown in grey; (b) p-values and effect size of the 

selected CpG sites between groups. CpGs are ranked by p-value, from smallest to largest.  
1 p-value of HRO-cohort interaction analyzed with ANOVA. +, denotes statistical 

significance at raw p-value < 0.01. 

The expression analysis of these selected genes identified that the DNA methylation levels at CpG 

sites measured by the probes cg21046080 and cg18770216 were negatively correlated with the expression 

of GPR133 and ITGB5, respectively, in WBC from the RESMENA cohort (n = 24) (Figure 3). 

Moreover, a linear regression model was used to analyze the potential associations in relation to 

each domain of variables (DNA methylation, age, gender, smoking, metabolic syndrome, the research 

Illumina ID 
Gene 

Name 
Localization 

RefGene 

Group 
P.Val 

Size Effect (%)
P.Val 

Interaction 1 
Pooled 

Population

RESMENA 

Study 

OBEPALI

P Study 

cg15445000 MED1 17:37608096 TSS1500 4.62 × 10−4 13.43+ 13.79+ 10.36 0.362 

cg26008260 ADCY3 2:25057298 Body 5.50 × 10−4 12.52+ 6.01 19.25+ 0.727 

cg18269141 PRKCZ 1:2063966 5′UTR 1.00 × 10−3 13.05+ 14.74+ 7.85 0.351 

cg21046080 GPR133 12:131506092 Body 1.96 × 10−3 −25.61+ −20.26+ −48.49+ 0.650 

cg18770216 ITGB5 3:124491657 Body 4.36 × 10−3 −12.82+ −7.13+ −22.60+ 0.451 

cg26303777 GALNT2 1:230311676 Body 4.89 × 10−3 15.79+ 11.28+ 30.51+ 0.427 

cg21473814 CRTC1 19:18873268 Body 4.98 × 10−3 −10.77+ −8.53+ −18.69+ 0.361 

cg02697649 FZD7 2:202901045 1stExon 6.76 × 10−3 15.34+ 11.43+ 32.02+ 0.558
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group that made each study and batch effect) and BMI as dependent variable in the pooled population 

(n = 73). Thus, the predictors of the model (metabolic syndrome and DNA methylation levels) 

explained up to 40% of the variation of the BMI in the case of cg18269141. This CpG is located in 

PRKCZ gene, a gene with a potential role in obesity and/or related traits [41]. The PRKCZ methylation 

in human adipose tissue is modified after gastric bypass and weight loss [41] and the hypermethylation 

of this gene may be involved in the pathogenesis of type 2 diabetes [48] (Table 2). 

 

Figure 3. Associations between CpG sites that exhibit differential DNA methylation 

between the HRO groups and the expression levels of their respective genes in WBC from 

the RESMENA cohort. Data are presented as linear regression (solid straight line) graph 

and 95% confidence interval (dotted lines). (a) cg21046080 and GPR133; (b) cg18770216 

and ITGB5. 

Table 2. Lineal regression analyses showing the contribution of DNA methylation to the 

variation of BMI adjusted by age, gender, smoking, metabolic syndrome, the research 

group that made each study, and batch effect in the pooled population (n = 73). 

BMI as Dependent 
Standardized 

Beta Coefficient 
Unstandardized B 

Coefficient (95% CI) 
p-Value a R2 

cg15445000_MED1 −0.249 −6.61 (−11.78; −1.43) 0.013 0.335 
cg26008260_ADCY3 −0.332 −103.66 (−168.75; −38.6) 0.002 0.349 
cg18269141_PRKCZ −0.356 −8.73 (−13.68; −3.78) 0.003 0.397 
cg21046080_GPR133 0.278 5.11 (1.68; 10.01) 0.017 0.292 
cg18770216_ITGB5 0.211 5.26 (0.21; 10.31) 0.041 0.299 

cg26303777_GALNT2 0.122 2.61 (−1.91; 7.11) 0.252 0.360 
cg21473814_CRTC1 −0.039 −1.13 (−7.28; 5.20) 0.771 0.270 
cg02697649_FZD7 −0.103 −2.08 (−6.21; 2.05) 0.318 0.279 

Adjusted R2 and all independent variables included in each model are presented in the table; Bold and italic 

style show statistically significant p-values; a p-value of Beta coefficient for DNA methylation levels;  

CI: Confidence interval. 

DNA methylation is an epigenetic event implicated in several human diseases by altering gene 

expression [49], these processes being suggested as a potential contributing factor to cancer risk [50]. 

Recent researches have shown that differential variability in methylation is also an important feature  

of obesity [51] and, for example, some genes have been revealed to be hypermethylated in lean 
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compared with obese subjects [52]. On the other hand, the methylation of specific genomic regions 

could be related to the response to a weight loss intervention, both in obese adults [4,53,54] and in 

adolescents [55]. Concerning the metabolic complications of obesity, it has been recently reported  

that the leukocyte methylome is altered in obesity associated with metabolic disturbances, including 

differences in 23 genes known to be associated with obesity, liver fat, type 2 diabetes and metabolic 

syndrome [56]. Moreover, platelet mitochondrial DNA methylation has been recently related to 

cardiovascular risk, although not with BMI [57]. 

In our study, we have described significant correlations between BMI and the methylation levels of 

five CpGs, which may explain some of the BMI variation observed in our studied population. In 

addition, we have found negative correlations between the methylation of two CpG sites (cg21046080 

and cg18770216) and the mRNA levels of the respective genes (GPR133 and ITGB5) in WBC of the 

RESMENA study. Existing data are consistent with a role for these genes in body weight regulation. 

They are specifically expressed in glands that hormonally are involved in the control of body  

weight and fat (GPR133 in adrenal glands) [40] or are up-regulated in obese children (ITGB5) [42].  

Henegar et al. [58] also reported that ITGB5 and other genes encoding the members of the integrin 

family were significantly induced and co-expressed in adipose tissue from obese adults. 

Our study has certain limitations. First, since the nature of this study is cross-sectional, we can only 

report associations between age/HRO and DNA methylation even if controlling for several potential 

covariates but not a causal relationship. Another limitation of this study is that, although the sample 

size is adequate from the standpoint of an initial association discovery, further replications would be 

needed in independent and larger samples. Furthermore, no blood cell count was carried out, resulting 

in a possible limitation in the interpretation of DNA methylation levels due to the influence of the 

tissue heterogeneity in epigenetic studies related to age and obesity [27,59]. Nevertheless, one of the 

aims of the present work was to use WBC as a source of easily isolated biomarkers of HRO, as other 

studies have previously reported [54,60]. Moreover, we performed an additional analysis to estimate 

the variation explained due to different blood cell types [61] and no significant differences were found 

for the blood cell types for HRO-related analysis (Table S3) and, in the case of age-related analysis,  

we have included the estimated T cell (CD8+), T cell (CD4+), and B cell levels as covariates. The 

expression analyses were performed only in one of the two Spanish populations. In addition, the 

association analysis between age and DNA methylation has been focused on middle-aged subjects. 

Another limitation of this work would be the lack of children, youth and elderly subjects to replicate 

the age-related associations. However, this research is an initial study that enables the extrapolation of 

these findings to other populations. Moreover, the larger strength of the present work is that the results 

(associations between DNA methylation and age or the measures of HRO) are independent of gender; 

the selected CpG sites identified in the age and HRO-related analyses were significant in both cohorts 

and in the pooled population, and after controlling for several covariates besides gender. Moreover, the 

experimental design of the current work includes a dual approach in the same cells (the combination of 

DNA methylation and gene expression microarrays) for the search of HRO biomarkers. It also uses  

a type of biological sample (WBC) very easy to obtain and non-invasive. 
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3. Experimental Section 

3.1. Subjects and Study Protocol 

The current analysis was conducted within a subsample of 48 obese adults (48 ± 10 years old;  

BMI 36.2 ± 3.8 kg/m2; 46.8% female) that participated in the RESMENA (Metabolic Syndrome 

Reduction in Navarra) project which is a randomized controlled trial [62], and 25 subjects from the 

OBEPALIP study [63], which consisted on healthy women with an age range between 21 and 45 years 

old and a BMI between 27.5 and 36.40 kg/m2. The metabolic syndrome was diagnosed following the 

ATP III criteria [64]. Both studies were approved by the Ethics Committee of the University of 

Navarra. Consequently, all participants provided written, informed consent for participation in 

agreement with the Declaration of Helsinki (as revised in Hong Kong in 1989, in Edinburgh in  

2000 and in Korea in 2008). DNA and RNA were obtained through a clinical study approved by the 

Ethics Committee of University of Navarra (project identification code: 48/2009 on 27 November 

2009 (RESMENA) and 007/2009 on 26 February 2009 (OBEPALIP)) and appropriately registered at 

www.clinicaltrials.gov; NCT01087086 and NCT01138774. 

3.2. Procedures 

Anthropometric measurements (body weight, height and waist circumference) were conducted 

according to validated protocols, as previously described [62,63]. In order to evaluate HRO, the pooled 

population was assigned to two groups according to BMI classification and risk of obesity-related 

health problems [65]: “Low HRO” (Overweight (BMI: 25.0–29.9 kg/m2) and class 1 obesity (BMI: 

30.0–34.9 kg/m2)) and “High HRO” (class 2 obesity (BMI: 35.0–39.9 kg/m2) and class 3 obesity  

(BMI > 40 kg/m2)). 

Venous blood samples were drawn by venipuncture after a 12-h overnight fast. The EDTA—Plasma 

samples and WBC were separated from whole blood by centrifugation at 3500 rpm, 5 °C, 15 min 

(Model 5804R, Eppendorf, Humburg, Germany), and were frozen immediately at −80 °C until assay 

(WBC in buffy-coat with and without TRIzol reagent). 

3.3. DNA Isolation and DNA Methylation Analysis 

Genomic DNA was isolated from WBC by using the MasterPureTM DNA Purification Kit  

(Epicentre Biotechnologies, Madison, WI, USA) according to the manufacturer’s instructions. DNA 

was quantified using the PicoGreen® dsDNA Quantitation reagent (Invitrogen, Carlsbad, CA, USA).  

Bisulfite modification of 500 ng genomic DNA was carried out using the EZ DNA methylation kit 

(Zymo Research, Orange, CA, USA) according to the manufacturer’s protocol. 

Bisulfite-treated genomic DNA was whole-genome amplified, hybridized to Infinium Human 

Methylation 450K BeadChips (Illumina, San Diego, CA, USA) and scanned using the Illumina 

iScanSQ platform. The intensity of the images was extracted with the GenomeStudio Methylation 

Software Module (v 1.9.0, Illumina, San Diego, CA, USA). β-Values were computed using the 

formula β-Value = M/(U + M) where M and U are the raw “methylated” and “unmethylated” signals, 

respectively. β-Values were corrected for type I and type II bias using the peak-based correction. The 
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data were normalized in R using a categorical Subset Quantile Normalization method (SQN) and 

probes associated with X and Y chromosomes were filtered out using the pipeline developed by 

Touleimat and Tost [66]. Probes containing Single Nucleotide Polymorphisms (SNPs) with a minor 

allele frequency (MAF) <0.001 in Iberian population and probes hybridizing multiple genomic 

locations (19,835) [67] were removed from the analysis. A total of 358,639 CpG sites were used in 

order to identify CpG sites associated with age and HRO. Moreover, we performed an additional 

analysis to estimate the variation explained due to different cell types [61] and no significant 

differences were found for blood cell types for HRO-related analysis (Table S3). However, the T cell 

(CD8+), T cell (CD4+) and B cell coefficients for age were significant, so these estimated cell types 

were included in the adjustment for age (Table S3). The limma package [68] for the R statistical 

software was used to compute a linear regression (for age outcome) or moderated F-statistic (for HRO) 

adjusted by the effect of confounding factors, such as gender, smoking, metabolic syndrome, the 

research group that made each study, and batch effect and T cell (CD8+), T cell (CD4+) and B cells for 

age-related analysis. Also, the age-cohort and HRO-cohort interaction were taken into consideration. 

Raw p values were adjusted using the Benjamini-Hochberg procedure [69] and an False Discovery 

Rate (FDR) cut-off of 0.05 for the age-related analyses and p-value cut-off of 0.01 in combination  

with methylation differences of 10% in the HRO-related analyses were used as statistical  

significant threshold. 

3.4. Gene Ontology (GO) Analysis 

Gene Ontology (GO) was used to investigate the biological relevance of the CpG sites that were 

associated with age or HRO [70]. GO annotations of genes were obtained from the Locus Link 

database of NCBI (http://www.ncbi.nlm.nih.gov/). 

3.5. Gene Expression Analysis 

A total of 24 RNAs were purified from WBC of the RESMENA study by using the TRIzol RNA 

isolation protocol (Life technologies, Foster City, CA, USA) and the integrity of isolated RNA was 

evaluated with the Experion chip electrophoresis unit (Bio-Rad Laboratories, Munich, Germany) 

following the manufacturer’s instructions. In all samples we evaluated the RNA quality indicator 

number (RQI), which was considered optimal when ranging from 7.9 to 10. A total of 500 ng of 

starting material was used as input for the Illumina TotalPrep Amplification Kit protocol (Life 

Technologies, Foster City, CA, USA). 

Array-based gene expression analysis was performed with the Whole-Genome Assay technology 

(Illumina, San Diego, CA, USA). Labeled sample cRNA was hybridized to HumanHT-12 v4 

Expression BeadChip Kit (Illumina, San Diego, CA, USA) and scanned using the Illumina HiScan™ 

SQ platform. The intensity of the images was extracted with the GenomeStudio Gene Expression 

Software Module (v1.9.0, Illumina, San Diego, CA, USA). 
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3.6. Statistical Methods 

Data are expressed as means (standard deviations, SD), except as otherwise indicated. The 

characteristics of participants according to the two studies and HRO were compared. Differences in 

continuous values in Low versus High HRO subjects were performed by the Student’s t-test. 

Categorical variables were analyzed by χ2 test. Spearman correlations were fitted to evaluate the 

potential correlations of DNA methylation with age and expression levels. In addition, multiple linear 

regression models were performed to analyze the prediction of BMI (outcome) for selected CpG sites 

from HRO-related analysis adjusted by age, gender, smoking, metabolic syndrome, the research group 

that made each study, and batch effect. For stringency, only a p-value <0.05 was considered for 

analyses. Statistical analyses were performed using SPSS Statistics 19 software package (SPSS Inc., 

IBM, Somers, NY, USA). 

4. Conclusions 

As a conclusion, we have been able to replicate several findings from previous studies in two 

different Spanish cohorts, supporting an important role of DNA methylation in the age-related 

regulation of gene expression. We have described a significant influence of age on DNA methylation 

and mRNA levels of different genes in WBC (i.e., ELOV2, HOXC4 and PI4KB) and found, on a trend 

level, novel associations between DNA methylation and measures of HRO in genes like GPR133 and 

ITGB5. These data reinforce the idea that epigenetic variation has an important impact on aging and 

HRO. These results are a first step in understanding the modifications of the epigenome (and gene 

expression) in relation to age- and BMI-related health outcomes. However, further studies on the 

relevance of these and other CpG sites in relation to age and HRO should be performed. 
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