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Abstract 

Patients affected by cutaneous leishmaniasis need a topical treatment which cures lesions without 

leaving scars. Lesions are produced not only by the parasite but also by an uncontrolled and 

persistent inflammatory immune response. In this study, we proposed the loading of β-lapachone (β-

LP) in lecithin-chitosan nanoparticles (NP) for targeting the drug to the dermis, where infected 

macrophages reside, and promote wound healing. The loading of β-LP in lecithin-chitosan NP was 

critical to achieve important drug accumulation in the dermis and permeation through the skin. In addition, it 

did not influence the drug antileishmanial activity. When topically applied in L. major infected BALB/c mice, 
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β-LP NP achieved no parasite reduction but they stopped the lesion progression. Immuno-histopatological 

assays in CL lesions and quantitative mRNA studies in draining lymph nodes confirmed that β-LP exhibited 

anti-inflammatory activity leading to the downregulation of IL-1β and COX-2 expression and a decrease of 

neutrophils infiltrate. 
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Background 

Currently, cutaneous leishmaniasis (CL) is considered as a major global health problem. Over 12 

million people suffer from this neglected disease worldwide and, approximately, 1.5 million people are 

infected annually. CL shows different clinical manifestations depending on the Leishmania specie 

implicated in the infection. Some forms of the disease can exhibit localised ulcerative skin lesions 

(LCL) that may spontaneously heal while other forms can diffuse (DCL) or lead to significant mucosal 

tissue destruction and disfigurement (MCL) [1]. In general, species that are prevalent in the Old World 

(OWCL) produce limited clinical manifestations compared with New World species (NWCL) [2].  

Presently, there is no satisfactory therapy for CL. The World Health Organization (WHO) recommends 

the topical treatment for uncomplicated LCL, although if the topical treatment fails or the patient has a 

more severe forms of the disease, the experts advice the parenteral therapy [1, 3]. Topical treatments 

present advantages such as better patient compliance and lower systemic toxicity and costs [4]. 

Among the topical treatments, paramomycin (PM) has been used in several formulations for more 

than 40 years. In spite of the variable cure rate that some studies showed (from 9% to 90% against 

OWCL and NWCL species) [2], a meta-analysis of 14 randomised controlled trials confirmed that 

topical PM was as effective as intralesional antimonials in treating OWCL and less effective against 

NWCL. Besides, the ointment produced skin irritation [5]. Thus, recent clinical trials confirmed the 

effectiveness and well-tolerance of the PM-based formulation WR279396, which contained 15% PM 

and 0.5% gentamicin, in ulcerative CL lesions produced by L. major [6] and L. panamensis [7]. 

However, further studies are necessary regarding to drug development, delivery, safety, efficacy and 

costs.  

New topical products for CL treatment are expected to accelerate parasite clearance, prevent parasite 

dissemination and reduce the chance of relapse. Furthermore, they should exhibit more rapid and 

stable repair processes that do not lead to scars and disfigurement [4]. These properties rely on the 

ability of the formulation to deliver the active compound in the infected macrophages residing in the 

dermis in amount and time enough to destroy parasites and modulate the immune response in a 

manner that contributes to eradicate the parasite avoiding ulcer formation and tissue destruction [8].  

β-lapachone (β-LP), a o-naphthoquinone obtained from the bark of the Lapacho tree (Bignoniaceae 

family, Tabebuia sp.) exhibits a wide range of activities including antitumor, antifungal, antiviral, 

antibacterial or antitrypanosomal properties [9]. Furthermore, its antileishmanial activity has been 
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tested in vitro against L. infantum and L. amazonensis with a IC50 < 3 µM [10]. β-LP has intrinsic 

antileishmanial activity and physicochemical characteristics that could be of interested to permeate 

and penetrate through the skin such as low molecular weight (242.3 Da) and suitable log P (2.5). 

Besides, in vitro and in vivo studies have demonstrated the efficacy of β-LP in promoting wound 

healing [11, 12]. Because of these reasons, we decided to evaluate this drug formulated in lecithin 

(LEC)-chitosan nanoparticles (NP) for the topical treatment of CL. Nanocarriers such as polymeric 

particles, microemulsions, liposomes or lipidic NP have demonstrated the ability to increase drug 

solubility and enhance the penetration and permeation of drugs into and through the skin. They also 

offer better controlled release properties than the classical topical formulations such as hydrogels, 

ointments or creams, due to the fact that they prevent rapid clearance to systemic circulation and 

systemic side effects [13, 14]. Formulations based on LEC-chitosan NP have been reported as topical 

delivery systems for drugs. Active agents such as clobetasol-17-propionate [15], quercetin [16] or 

diflucortolone [17] that have been loaded in LEC-chitosan NP have enhanced their permeation ability 

and increased their skin accumulation compared with creams or gels.  

With this purpose, in the present study, LEC-chitosan NP loaded with β-LP were prepared and 

evaluated in vitro against L. major parasites and peritoneal macrophages. Moreover, studies to 

examine the capacity of the formulations to permeate and penetrate across pig ear skin as well as 

their effect on wound healing were carried out. Finally, their efficacy was determined for the topical 

treatment of CL lesions in L. major infected BALB/c mice.  

 

Methods 

Preparation and characterization of β-lapachone nanoparticles 

β-LP NP were prepared following the procedure reported by Sonvico et al. with modifications [18]. 

Briefly, chitosan (Q 95/100, 1% w/v) was solubilized in 2% w/v lactic acid and β-LP (10 mg/mL) was 

also dissolved in an ethanolic solution of LEC. The organic phase was prepared by mixing LEC:DDAB 

solutions (60:30 mM, respectively) or LEC:MNL solutions (75:45 mM, respectively) in ethanol: acetone 

(5:4 v/v). Afterwards, β-LP NP suspensions were obtained by injection of 4 mL of this organic mixture 

into 4 mL of the chitosan solution. The organic solvents were evaporated and the non-entrapped β-LP 

was separated by centrifugation. The β-LP NP were recovered for further characterization and the 

encapsulation efficiency was determined by UV-Visible spectrophotometry.  
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In vitro permeation studies 

Permeation studies using Franz diffusion cells were carried out in pig ear skin according to OECD 

guideline 428. The amount of β-LP in the skin samples was quantified by HPLC-UV.   

 
Effect of β-lapachone and β-lapachone nanoparticles on L. major amastigotes in vitro 

Macrophages were infected with metacyclic promastigotes of L. major (clone VI, 

MHOM/IL/80/Friendlin) in a 7:1 proportion (parasites:macrophages). Infected cells were treated with β-

LP, β-LP NP or unloaded NP with or w/o Imiquimod (IMQ, 0.1 µg/mL). After 48 hours, slides were 

fixed and stained for evaluation [19]. The percentage of infected macrophages was evaluated by 

counting 200 macrophages using an optical microscope. Nitric oxide (NO) in cell culture supernatants 

was determined by the Griess reaction.  

 
In vivo evaluation of β-lapachone formulations in L. major-infected BALB/c mice 

The infected mice were randomly separated in cages (5 animals per cage) and two different 

treatments were evaluated and compared with non-treatment infected mice (control). The groups 

were: 20 mg/kg of β-LP NP and the equivalent of unloaded NP applied topically. Lesions were covered 

with 100 µL of the NP formulations (β-LP NP (5 mg/mL) or unloaded NP). Topical treatment was 

applied daily for a period of 21 days.  

 
Histological analysis and immunohistochemistry 

Skin sections were stained with hematoxylin and eosin (H&E) and Masson trichrome. 

Immunohistochemistry was applied using the following primary antibodies: rat anti-mouse F4/80 

(1:400; eBiosciences, 14-4801), rat anti-mouse NIMP-R14 (1:10000; Abcam, ab2557), rabbit anti-CD3 

(1:300; Thermo Scientific, RM9106) and rabbit anti-iNOS (1:500; Santa Cruz Biotechnology, sc-650). 

Then, the EnVision system (Dako, K4011) was used in all cases according to manufacturer 

instructions. For each assay, digital images were obtained and the area percentage stained in each 

image was quantified using Fiji 2.0 software. 

 
RNA extraction and quantitative real time RT-PCR 

IL-1β, Cox-2, iNOS, IL-4, TNF-α, IFN-γ, TGF-β and β-actin expression were measured in the mice skin 

lesions and draining lymph nodes by quantitative real time PCR using iQ SYBR Green supermix (Bio-
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Rad) and specific primers for each gene (see Supplementary Table 1) in a CFX96 system from Bio-

Rad.  

 
Supplementary material methods 

The in vitro antileishmanial activity against L. major promastigotes, in vitro cytotoxicity assay in mouse 

peritoneal macrophages, wound healing studies, statistical analysis and further details of the 

experiments can be found in the Supplementary Materials 

 

Results 

 
Preparation and characterization of β-lapachone nanoparticles 

LEC-chitosan NP containing MNL or DDAB were prepared and, particle size (Ø), polydispersity index 

(PDI), Z-potential and encapsulation efficiency (EE) were determined in order to characterise the NP 

(Table 1). The mean size of the NP prepared for this study ranged from 317 to 574 nm, showing 

LEC:DDAB NP smaller sizes than LEC:MNL NP. The Z-potential value was higher for the NP 

containing DDAB (around 90 mV) than those containing MNL (around 30 mV) but in all cases they 

were positively charged. Moreover, NP suspensions were found to have a suitable PDI, ranging from 

0.21 to 0.27. Compared to LEC:MNL NP, LEC:DDAB NP were observed to have better EE and 

exhibited 2-fold higher β-LP loadings (25.8 and 52.4, respectively).  

 
In vitro skin permeation studies 

To assess the influence of the LEC-chitosan NP on the permeation and accumulation of β-LP into the 

skin, in vitro skin studies were performed in pig ear skin using Franz diffusion cells. In this study, the 

two chitosan-NP formulations, LEC:DDAB NP and LEC:MNL NP, were also compared with a β-LP 

chitosan hydrogel. It was observed that the β-LP hydrogel cession capacity was the lowest among the 

different skin layers and the receptor compartment (RC) in the three skin models (intact skin, tape 

stripped and dermal membranes, Figure 1A-C). This cession capacity increased when dermal 

membranes were used, rising from 0.24 to 1.25% the total percentage of β-LP in the hydrogel. As it 

was expected, the total amount of β-LP quantified in the LEC:DDAB NP was higher in the ulcerative 

skin models than in intact skin (1.67, 4.47 and 16.10% for intact skin, tape stripped and dermal 

membranes, respectively). Although the total amount of β-LP found in intact skin was similar if we 

compare LEC:DAAB NP with LEC:MNL NP (Figure 1A), it is important to point out that the amount of 
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drug determined in the 900 µm thick skin layer (that simulates the dermis) was 10-fold higher in the 

case of LEC:DDAB NP (0.09 and 0.95%, respectively). Finally, in the three skin models the 

incorporation of the β-LP into LEC:DDAB NP notably enhanced the retention of the drug in the dermis 

(900 µm) compared with the other formulations. 

 
In vitro antileishmanial activity and cytotoxicity studies  

The antileishmanial activity assay in L. major promastigotes treated with β-LP and β-LP loaded NP 

revealed that the encapsulation of the drug into the two NP formulations did not affect its 

leishmanicidal activity (Table 2) because they have comparable IC50 values (IC50 = 2.6 µM for 

LEC:MNL NP and IC50 = 1.9 µM for LEC:DAAB NP). Besides, cytotoxicity studies in peritoneal 

macrophages showed that when β-LP was incorporated into the NP, the toxicity increased moderately 

(IC50 = 2.1 µM for LEC:MNL NP and IC50 = 3.4 µM for LEC:DAAB NP compared with a IC50 = 6.3 µM 

for free β-LP). As the LEC-chitosan NP prepared with MNL or DDAB had similar promastigotes activity 

and toxicity, the activity in intracellular amastigotes was only performed with LEC:DDAB NP due to 

their higher EE and higher permeation and penetration values through the skin. As it is shown in Table 

3, a 2-fold higher antileishmanial activity of free β-LP in the amastigote form compared with the 

promastigote form can be clearly stated (IC50= 0.7 and IC50= 1.5, respectively). Moreover, β-LP loaded 

NP, prepared with DDAB, presented higher activity in the amastigote form (IC50= 0.3), being 6 times 

more potent in the amastigote form than in promastigotes (IC50= 1.9), which suggests a possible 

immunomodulatory effect for the system. Furthermore, β-LP NP showed less toxicity than free β-LP 

because it presents a selectivity index (SI) value of 11.3 instead of 9.1. A dose-response effect could 

also be observed when increasing concentrations of β-LP or β-LP NP were used (Figure 2A). This led 

to a decrease from 46 to 11 in the number of amastigotes per 100 macrophages (p < 0.05) at 1 µM 

concentration (compared to control). The combination of β-LP NP with the immunomodulator IMQ also 

produced a significant decrease at 1 µM (p < 0.05) although an increase in the number of amastigotes 

was observed at low concentrations (0.01 and 0.1 µM) when β-LP was combined with IMQ (Figure 

2B). In the case of unloaded NP, concentrations of these NP alone or in combination with IMQ 

reduced L. major infection (Figure 2C). This reduction was significant at 1 and 10 µM of unloaded NP 

and also at 10 and 20 µM of unloaded NP with IMQ (p < 0.05). Moreover, unloaded NP at 20 µM 

caused a very significant decrease in the number of amastigotes (p < 0.01). Regarding the NO 

concentration determined in the supernatants of infected macrophages, there were no remarkable 
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changes in the production of NO by infected macrophages after treatment with β-LP or β-LP NP alone 

or combined with IMQ (Figures 2D and 2E). However, an increase in the production of NO was 

observed after 48 hours treatment with unloaded NP alone or with IMQ at 1, 10 and 20 µM (Figure 

2F). The highest NO production corresponded to 20 µM of unloaded NP combined with IMQ, in which 

NO production increased from 4 µM in control cells to 27 µM. These results suggest that, at higher 

concentrations, the system could have an effect in the activation of macrophages, leading to NO 

production.  

 
Wound healing studies 

Previous studies showed the activity of β-LP in accelerating wound healing [11, 12]. Cytotoxicity 

studies after 24 hours revealed that after treatment with β-LP at 1 and 2.5 µM a slightly increase in cell 

proliferation was observed (Supplementary Figure 1A). It was also observed that with the highest 

concentrations of unloaded NP (100, 250 and 500 µM) cell proliferation increased in a dose-

dependent manner (Supplementary Figure 1B). Moreover, neither the β-LP nor the NP improved the 

healing percentage in 3T3 fibroblasts after 12 hours (Supplementary Figure 1C).  

 
Efficacy of β-lapachone NP in L. major infected BALB/c mice 

To evaluate the in vivo efficacy of β-LP NP in the treatment of CL lesions, BALB/c mice were infected 

subcutaneously by inoculating 2 x 105 metacyclic promastigotes of L. major in the base of the tail. The 

infection induced a progressive increase in the lesion size in all the animals and no statistical 

significant differences were observed between mice before treatment (p > 0.05). After 5-7 weeks, 

treatments were started and, although a slightly reduction in size area was observed in mice treated 

with unloaded NP during the first 2 weeks, similar lesions to control group (untreated group) 

developed at the end of treatment (21 days). In contrast, treatment with β-LP NP resulted in a 

significant reduction in lesion size compared with the control group, from 61.2 ± 21.2 (control group) to 

35.7 ± 29.4 (p < 0.05, topical β-LP NP) (Figure 3A and Figure 3B). Moreover, it can be seen in Figures 

3C-F that topical treatment with unloaded or β-LP loaded NP did not lead to a reduction in the parasite 

burdens of skin, liver, spleen or draining lymph node compared to the control group.  
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Histopathology and immunohistochemistry of CL lesions 

Histopathological and immunochemistry investigations were performed to evaluate the effect of the 

treatment and to confirm the macroscopic reduction of the lesion size. At the end of the experiment, 

control mice (untreated) showed CL lesions in which two different regions were observed: i) the ulcer 

focus, corresponding to the scab and necrotic and granulotic tissue (Supplementary Figure 2D) and ii) 

an area characterised by an epidermal hyperkeratosis and enormous inflammation that invaded 

subcutaneous and muscular tissues (Supplementary Figures 2B and 2C). Immunohistochemistry 

showed that the inflammatory infiltrate was mainly composed of macrophages (16%), neutrophils 

(39%), and also lymphocytes (2.1%). Whereas the neutrophils were mainly located in the necrotic 

region (Figures 4C and 4G), L. major infected macrophages and free parasites were the dominant 

cellular infiltrate within the non-necrotic and inflamed tissue in both untreated and treated mice 

(Figures 4D and 4H, supplementary Figures 2B and 2C). In the β-LP NP treated mice, we observed 

that the necrotic area, the depth of the inflammatory infiltrate that does not reach the muscular tissue 

(Figure 4E), as well as the neutrophils (Figures 4G and 4I), decreased.  

 
Real time-PCR studies 

The expression at the transcripcional levels of several cytokines (TNF-α, IL-1β, IL-4, TGF-β, IFN-γ) 

and markers (COX-2, iNOS) associated either with skin inflammation or CL lesion outcome were 

analysed in the CL lesions and draining lymph nodes. Results showed that there were no differences 

in skin IFN-γ, IL-4, TNF-α, iNOS or TGF-β between treated and non-treated mice (data not shown). 

Although the highest expression was seen in the lesion (data not shown), only significant differences 

between control and β-LP treated mice in IL-1 and COX-2 expression were detected in the draining 

lymph nodes (Figures 5A and 5B).  

 

Discussion 

Looking for a better CL topical therapy and aiming to explore the goodness of NP skin delivery in CL 

lesions, in the current study, β-LP was encapsulated in NP containing LEC, a safe and biocompatible 

excipient widely used in delivery systems, as well as chitosan, an antimicrobial agent with penetration-

enhancing properties. Moreover, DDAB or MNL, two different lipids with antimicrobial activity [20, 21] 

and different charge, were also included into the formulations to investigate if they could affect either 

the β-LP skin delivery and/or the anti-leishmanial activity. Permeation and penetration studies 
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confirmed that β-LP loaded in LEC-chitosan NP containing DDAB presented a higher ability than NP 

containing MNL and chitosan hydrogel to penetrate and also to permeate across the intact skin or 

dermal membranes (Figure 1A and 1C). The ability of chitosan and LEC-chitosan NP to enhance skin 

penetration has been previously demonstrated with several drugs [15-17]: the positive charge of 

chitosan ensured close contact between the NP and the skin and produced an occlusive barrier that 

increased the hydration. This occlusion is known to facilitate the permeation of the drugs into the skin. 

Besides, DDAB could disrupt the lipid bilayers of skin and further facilitate the drug permeation [22]. 

Upon arrival in the dermis, the efficacy of the topical therapy will be determined by the activity of the 

formulation against intramacrophagic amastigotes. The results (Table 2) showed a high activity of β-

LP against L. major parasites and a SI around 9 (Table 2), better than what had been previously 

described with L. infantum and L. amazonensis [10]. The encapsulation of the drug in the NP slightly 

modified the drug activity and the therapeutic index although unloaded vesicles also showed 

leishmanicidal effect against promastigotes (Table 2) and amastigotes (Table 3 and Figures 2A-C). 

We hypothesise that the positively charged NP may interact with the negatively charged parasites 

producing disruption of the membrane and the death of the parasite. The superior efficacy against 

intramacrophagic amastigotes (IC50 of 117.7 vs 3.5 against promastigotes and amastigotes, 

respectively) would indicate that unloaded NP produced macrophage-mediated leishmanicidal 

mechanisms. This immunostimulatory effect was confirmed by NO production, which closely 

correlated with the parasite elimination in a concentration-dependent manner (Figures 2C and 2D). 

The role of NO production by the inducible NO synthase (iNOS) in killing L. major parasites in vitro 

and for controlling the infection in vivo is well-known [23]. It has been previously described the ability 

of DDAB liposomes to generated reactive oxygen species (ROS) and activated p38 MAPK, implicated 

in iNOS expression through IL-12 or TNF- production [24]. Furthermore, a recent work described the 

leishmanicidal effect of phosphatidylcholine DDAB liposomes against L. donovani promastigotes and 

amastigotes, being their activity superior to other cationic liposomal formulations [21]. Similarly, other 

cationic NP, chitosan-nanoemulsion templates, improved AmB leishmanicidal activity [25] and 

enhanced iNOS and TNF- expression were determined in the hamster splenocytes  

However, although NP induced NO production per se in the infected macrophages and the loading of 

-LP in NP was addressed with the aim to both target the drug to macrophages and concurrently 

activate their microbial mechanisms, β-LP NP had similar antileishmanial activity than the free drug 
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(Figure 2A) and no significant NO production was observed (Figure 2D). A certain anti-inflammatory 

activity of β-LP has been previously described in vitro in LPS-stimulated alveolar and RAW 264.7 

macrophages [26] and in vivo in LPS-induced lung edema [26]. -LP inhibited NF- and ERK1/2 

activation, down-regulating iNOS expression and TNF-α release [26]. Our results could indicate that 

the drug may also inhibit cationic NP-mediated macrophage activation and, consequently, the NO 

production (Figure 2D).  

Because of the lack of immunostimulatory effect of β-LP NP, we decided to study β-LP and β-LP NP 

efficacy co-administered with the immunomodulator IMQ, a TLR7 agonist, known to activate NF-κB 

transcription factor and produce TNF-α and NO. IMQ is currently the only topical immunotherapeutic 

approach assayed in patients affected by CL with variable success [27]. It has been reported that IMQ 

administered alone at 1 g/mL produced complete elimination of L. donovani intracellular amastigotes 

[28]. In fact, an interaction between PM and IMQ was previously described [29]. Aiming to find out if β-

LP could lead to a higher activity with IMQ, 0.1 g/mL IMQ were co-administered with β-LP, β-LP NP 

or unloaded NP in this work. However, no modifications of their activity (Figures 2A-C) were detected. 

In agreement with this, NO production by infected macrophages was similar with or without the IMQ 

co-administration (Figures 2D-F). 

There are many antileishmanial drugs with immunomodulatory activities [30] whose loading in 

immunoadjuvant carriers or their co-administration with immunostimulants have been proposed as a 

mean to both enhance the drug targeting and the host immune response [21, 25, 31]. However, there 

are compounds that display dual immune effect depending on the immune environment. I.e. berberine 

[32] and 18b-glycyrrhetinic acid [33] had antileishmanial activity via MAPKinases, iNOS induction and 

NO up-regulation. However, they showed inhibitory effects on LPS-iNOS in macrophages [34, 35]. 

Thus, we should keep in mind that the loading of immuno-active drugs in NP could greatly affect their 

activity as well as the effect produced by the unloaded carriers. 

The acceleration of the lesion healing should be another characteristic of topical CL therapy and this 

was one the reasons why β-LP was chosen as the drug candidate. Previous studies demonstrated 

that β-LP promoted the proliferation of keratinocytes, fibroblasts and endothelial cells, the migration of 

fibroblasts and endothelial cells, induced macrophages to release VEGF and EGF and thus accelerate 

wound healing in C57BL/6 mice [11, 12]. On the other hand, several studies support the use of 

chitosan to treat wound infections [36] by mechanisms such as reduction of TNF-α mRNA expression 
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and induction of VEGF production by macrophages [37]. In the current study, although β-LP (1-2.5 

µM) and unloaded NP (> 100 µM DDAB) induced 3T3 fibroblast proliferation (Supplementary Figure 

1A and 1B), no effect was observed in the healing of scratches in fibroblast monolayers 

(Supplementary Figure 1C). The effects of chitosan in macrophages and fibroblasts can be highly 

affected by factors such as the molecular weight and the deacetylation degree (DDA) [36] [38]. In the 

current study, we used a chitosan with high molecular weight and high DDA (Q 95/100) and this type 

of chitosans have been previously reported as stronger activators than small chitosans or their 

oligomers. Currently, it is not known whether their formulation in NP could affect the process of wound 

healing. 

Based on the good intrinsic antileishmanial activity of β-LP and the enhancement in β-LP skin 

penetration mediated by LEC-chitosan-DDAB NP delivery, we addressed the in vivo evaluation of the 

formulation efficacy in L. major infected BALB/c mice. The topical and daily application of β-LP NP did 

not clear the infection but delayed the lesion progression. Unlike humans, where ulcerative CL are 

associated with low infectious loads and non-ulcerative lesions with impaired parasite clearance, the 

BALB/c murine CL model is always associated with widespread tissue destruction and uncontrolled 

parasite replication provoked by persistence of Th2 cells and IL-10, resulting in chronic tissue 

remodelling with necrosis and fibrosis. Thus, in BALB/c mice the size of the lesion may reflect the 

parasite burden as well as the degree of inflammation caused by the host immune response to the 

parasite [39]. In our work, the immunohistopatology of the lesions showed that, after the treatment, the 

tissue surrounding the ulcers, which presented epidermal hyperkeratosis, and massive infiltration of 

infected macrophages were similar (Figures 4A and 4E). However, β-LP decreased the ulceration 

area, crust and necrosis with infiltrated neutrophils (Figure 4E). This effect was associated with a 

significant reduction in the mRNA expression of IL-1β and COX-2 (Figures 5A and 5B). β-LP was 

previously described to attenuate the expression of IL-1β and COX-2 in vitro in LPS-stimulated BV2 

microglia [40]. Elevated levels of IL-1β and IL-1 mediated inflammosome family proteins are implicated 

in chronic and non-healing wounds of diabetic mice and in several autoinflammatory diseases 

characterized by recurrent episodes of skin lesions [41]. Mice with hyperactive inflammosome 

developed a neutrophil rich inflammation of skin [42] and the persistence of neutrophils in the wound is 

associated with delayed healing, excessive scar formation and significant tissue damage to the host 

[43]. Therefore, IL-1 induced COX-2 expression and the synthesis of PEG2, well-known lipid mediator 
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of manifestations of skin inflammation such as edema and increased vascular permeability with influx  

influx of neutrophils and macrophages [44] .  

On the other hand, studies about the effect of IL-1β in the parasite were only made early after parasite 

infection giving contradictory results depending on the Leishmania species. Whereas it contributed to 

NO-mediated resistance to L. amazonensis, L. braziliensis and L. infantum-chagasi [45], IL-1 

production was irrelevant [46] or detrimental in early L. major infections and the effect should be 

mediated by Th2-bias adaptive immune response [47]. IL-1b was one of the genes significantly 

stronger up-regulated in resistant C57BL/6 mice vs susceptible BALB/c mice although the analysis 

was made from 16 h L. major infected mice [48]. Our study would indicate poor contribution of IL-1b in 

the chronic state of the infection.   

COX-2 mediated PGE2 production is a mechanism for which Leishmania parasite suppressed 

macrophage activation and COX-2 inhibition could thus favour the elimination of Leishmania parasites. 

However, COX-2 expression was high in self-controlled lesions of C57BL/6 mice and in severe lesions 

in BALB/C mice infected with L. amazonensis. Moreover, its expression was not modified in BALB/c 

mice treated with antimonials [49]; the antileishmanial activity of glycyrrhizic acid was mediated by 

inhibition of COX-2 in L. donovani infected macrophages although, in that case, it was concomitant 

with enhanced expression of iNOS, IL-12, TNF-α and down-regulation of IL-10 and TGF-β [50]. In our 

study, β-LP COX-2 downregulation occurred without any modification of iNOS expression.  

Finally, the effect of the neutrophils in Leishmania infection progression has been analysed only at the 

early onset of infection [51]. In L. major infected BALB/c mice, the early uptake of Leishmania infected 

neutrophils by macrophages exacerbated the infection by PEG2 and TGF-β production [52]. The 

pattern of exclusive distribution observed in our study (neutrophils in the necrotic area and 

macrophages in the inflamed tissue, Figures 4C and 4G vs 4D and 4H) when the infection is already 

well-established suggests that, at this time, neutrophils could influence the lesion progression but not 

the parasitic load evolution. 

Overall, our data would indicate that topical β-LP NP treatment mediated the down-regulation of IL-1β 

and COX-2. This had no effect in the parasite elimination although the neutrophils infiltrate and tissue 

necrosis at the site of infection decreased. The role of epidermal cells such as keratinocytes and 

neutrophils has only been previously evaluated in early infected animals. However, the analysis of 
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their influence once Leishmania infection has been well-established could open new therapeutic 

strategies in the topical treatment of CL. 
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Figure Legends 

Figure 1.  Permeation and penetration studies in pig ear skin for the different formulations and 

percentage of β-LP quantified in the different skin layers and receptor compartment (RC). Pig ear skin 

was intact (A), partially damaged (without SC) by tape stripped (B) or highly damaged (tissue without 

epidermis or dermal membranes, DM) (C). Results are expressed as mean ± SD for at least three 

independent experiments.  

Figure 2. In vitro efficacy studies and NO measurement. Anti-amastigote activity in mouse peritoneal 

macrophages after 48 hours β-LP and β-LP NP treatment without (A) and with imiquimod (IMQ) (B); or 

unloaded NP without and with IMQ (C). The concentration of DDAB in β-LP NP is four-fold higher than 

the concentration of β-LP. AmB was used as positive control of infection. After 1 µM AmB treatment, 

3.3 ± 1.2 amastigotes per 100 macrophages were found. Nitrite production by infected mouse 

peritoneal macrophages after 48 hours of treatment with β-LP and β-LP NP without (D) and with IMQ 

(E); or unloaded NP without and with IMQ (F). The concentration of DDAB in β-LP NP is four-fold 

higher than the concentration of β-LP. Macrophages stimulated with E. Coli LPS (0.1 µg/mL) were 

used as positive control. Results are expressed as mean ± SD (n=3). Data were analysed using a 

Mann–Whitney test. * p < 0.05; ** p < 0.01. 

Figure 3. In vivo efficacy studies. Lesion size in L. major infected BALB/c mice after 21 days of 

treatment with topical β-LP loaded NP (20 mg/kg daily) or the equivalent of unloaded NP. Results are 

expressed as median (n=10-12, per group). Multiple comparison between groups were made with a 

one–way analysis of variance (ANOVA) followed by Dunnet post-test. *** p < 0.001 (A). Photograph 

showing a control mouse (left) and a mouse treated with β-LP NP (right) (B). Parasite burden 

comparison after 21 days treatment in skin (C), liver (D), spleen (E) and lymph node (F). Results are 

expressed as median (n=10-12, per group).   

Figure 4. Images of skin sections after 21 days of treatment for control (infected untreated mice, A, B, 

C and D) and mice treated with β-LP NP (E, F, G and H). Sections were stained with H&E (A and E) 
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and with antibodies against CD3 (lymphocytes, B and F), NIMP-R14 (neutrophils, C and G) and F4/80 

(macrophages, D and H), scale bar = 2 mm. Sections stained with anti-CD3 at a final magnification of 

5x (B and F), scale bar = 200 µm.  NIMP-R14 (neutrophils), F4/80 (macrophages) and CD3 

(lymphocytes) staining was quantified using the percentage area stained in each image by counting 

the number of pixels staining above a threshold intensity and normalising to the total number of pixels. 

Results are expressed as mean ± SD for 8 mice per group (I). Data were analysed using a Mann–

Whitney test. * p < 0.05. 

Figure 5. Expression of IL-1β (A) and COX-2 (B) in the draining lymph nodes after 21 days of 

treatment determined by real-time quantitative PCR. Results are expressed as mean ± SD (n ≥ 4). 

Data were analysed using a Mann–Whitney test. * p < 0.05; ** p < 0.01. 
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Figure 1 
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Figure 3 
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Figure 5 

 

 

Table 1. Physicochemical properties of unloaded and β-lapachone loaded nanoparticles (NP): 

diameter, polydispersity index (PI), Z-potential and encapsulation efficiency (EE). 

 

NP composition Molar ratio (mM) Diameter (nm) PI Z-potential (mV) EE (%) 

LEC*:MNL† 75:45 574.2 ± 15.2 0.27 28.5 - 

LEC:MNL:β-LP‡ 75:45:36.5 436.5 ± 6.5 0.27 31.8 25.8 ± 7.4 

LEC:DDAB§ 90:30 317.1 ± 1.9 0.21 88.3 - 

LEC:DDAB:β-LP 90:30:36.5 330.1 ± 3.5 0.24 90.2 52.4 ± 2.4 

* Lecithin; † Monolaurin; ‡ β-lapachone; § Didecyldimethylammonium bromide. 

 

 

 

Table 2. In vitro activity on Leishmania major promastigotes and toxicity in mouse peritoneal 

macrophages for β-lapachone and nanoparticles (NP) after 48 hours of treatment. 

 

NP composition 
L. major promastigotes 

IC50 (µM) 

Peritoneal macrophages 

IC50 (µM) 

LEC*:MNL† (‡) 80.5 ± 13.5 48.8 ± 2.8 

LEC:MNL:β-LP§ (ǁ) 2.6 ± 0.7 2.1 ± 1.7 

LEC:DDAB¶ (#) 117.7 ± 11.3 34.2 ± 2.1 

LEC:DDAB:β-LP (**) 1.9 ± 0.2 3.4 ± 2.1 

β-LP 1.5 ± 0.7 6.3 ± 0.6 

* Lecithin; † Monolaurin; (‡) IC50 expressed as [MNL]; § β-lapachone; (ǁ) [MNL] =19.2 µM; 

¶ Didecyldimethylammonium bromide; (#) IC50 expressed as [DDAB]; (**) [DDAB] = 1.4 µM.  
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Table 3. In vitro activity on Leishmania major amastigotes and selectivity index (SI) for β-lapachone, 

unloaded or β-lapachone loaded Lecithin:Didecyldimethylammonium bromide (DDAB) nanoparticles 

(NP) after 48 hours of treatment. 

 
L. major amastigotes  

IC50 (µM) 
SI 

β-LP* 0.7 ± 0.1 9.1 

Unloaded NP (†) 3.5 ± 0.8 9.8 

β-LP NP (‡) 0.3 ± 0.2 11.3 

* β-lapachone; (†) IC50 expressed as [DDAB]; (‡) [DDAB] =1.2 µM;  
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Supplementary Materials 

 
Methods 

 
Chemicals 

β-lapachone (3,4-dihidro-2,2-dimetil-2H-nafto[1,2-b]piran-5,6-diona, β-LP) was obtained from Tocris 

Bioscience (Bristol, UK). Emulmetik 930 (95% soybean lecithin, LEC) was kindly gifted by Lucas 

Meyer Cosmetics (Champlan, France). Chitosan 95/100 (Q 95/100) and chitosan 95/200 (Q 95/200) 

were supplied by Heppe Medical Chitosan GmbH (Halle, Germany). 2-hydroxipropyl-β-cyclodextrin 

(HP-β-CD), β-glycerolphosphate (β-GP), 1-monolaurin (1-lauroyl-glycerol, MNL), 

didecyldimethylammonium bromide (DDAB), sodium hydroxide, 3-(4,5-dimethylthiazol-2-yl)-2, 5-

diphenyl-tetrazolium bromide (MTT) and acetonitrile were obtained from Sigma-Aldrich (St. Louis, MO, 

Canada). Propylene glycol (PG) was obtained from Acofarma (Barcelona, Spain). Lactic acid was 

supplied by Sharlau (Barcelona, España). Ethanol absolute and acetone absolute were supplied by 

Panreac (Barcelona, Spain). All other reagents were of analytical grade and were used without further 

purification. 

 
Cell culture 

Mouse peritoneal macrophages isolated from BALB/c mice were cultured in RPMI 1640 medium 

(Invitrogen, Carlsbad, CA, USA) supplemented with 10% heat-inactivated fetal bovine serum (FBS) 

(Gibco, Gaithersburg, MD, USA), 100 µg/mL penicillin and 100 µg/mL of streptomycin solution (Sigma, 

St Louis, MO, USA) in 5% CO2 at 37 °C. 3T3 mouse fibroflast cell line was cultured in Dulbecco´s 

modified Eagle´s medium (DMEM, Gibco) containing 10% FBS, 2 mM L-glutamine (Gibco) and 100 

µg/mL each of penicillin/streptomycin (Gibco) in 5% CO2 at 37 °C.  

 
Parasites 

Leishmania major promastigotes (clone VI, MHOM/IL/80/Friendlin) were maintained at 26 °C in 

continuos stirred Schneider´s modified medium (Sigma) supplemented with 10% FBS and 40 mg/ml of 

gentamicin (Sigma) in flasks. Procyclics were obtained after 1-2 days culture and metacyclics were 

selected from 5 to 6 days stationary cultures by treatment with peanut agglutinin (PNA) (Sigma). 

Briefly, stationary promastigote cultures were washed twice in phosphate buffered saline (PBS, 

pH=7.4, Gibco), resuspended to 2 mL of RPMI 1640 medium and incubated with 20 µg/mL of PNA (5 
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mg/mL in PBS) to select L. major metacyclics. After 20 minutes of incubation, 10 mL of RPMI 1640 

were added carefully and the suspension was centrifuged (Allegra X-30 centrifuge, Beckman Coulter, 

Fullerton, CA, USA) at 500 rpm for 5 minutes. The non-agglutinated promastigotes were collected, 

washed two times in PBS and used throughout the work. 

 
Animals 

BALB/c mice (Harlan, Spain) weighing approximately 20 g and 8 weeks of age were kept under 

conventional conditions with free access to food and water. Animals were housed in groups of 5 in 

plastic cages in controlled environmental conditions (12:12 hours light/dark cycle and 22 ± 2 °C). This 

study was conducted according to ethical standards approved by the Animal Ethics Committee of the 

University of Navarra in strict accordance with the European legislation in animal experiments. 

 
Preparation and characterization of β-lapachone nanoparticles 

β-LP NP were prepared following the procedure reported by Sonvico et al. with modifications [18]. 

Briefly, different stock solutions of LEC (600 mg/mL), DDAB (50 mg/mL) and MNL (100 mg/mL) were 

dissolved in ethanol absolute and filtered (0.22 µm). Chitosan (Q 95/100) was solubilised 2% (w/v) of 

lactic acid  at 1% (w/v) concentration and β-LP (10 mg/mL) was also dissolved in the ethanolic solution 

of LEC. The organic phase was prepared by mixing LEC:DDAB solutions (60:30 mM, respectively) or 

LEC:MNL solutions (75:45 mM, respectively) with acetone absolute in a 5:4 ratio, respectively. 

Immediately afterwards, β-LP NP suspensions were obtained by injection of 4 mL of this organic 

mixture (syringe inner diameter 0.75 mm) into 4 mL of the chitosan aqueous solution magnetically 

stirred (800 rpm). Then, the organic solvents were evaporated in a rotavapor (Buchi R-144, Flawil, 

Switzerland) at 40 °C and non-entrapped β-LP was separated from β-LP-loaded NP by centrifugation 

at 3,000 rpm for 5 minutes (Hettich Mikro 220R, Tuttlingen, Germany). The supernatant, which 

contained β-LP NP, was recovered for further characterization and the pellet was discarded. 

Moreover, unloaded NP were prepared for comparison under the same protocol. 

The particle size distribution and zeta potential of the NP were measured by photon correlation 

spectroscopy (PCS) and electrophoretic laser Doppler anemometry, respectively, using a Zetaplus 

apparatus (Brookhaven Instrument Corporation, USA). The diameter of the NP was determined after 

dispersion in distilled water (1:10) and measured at 25 °C with a scattering angle of 90 °C. The zeta 
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potential was measured after dispersion of the NP in 1 mM pH 6 KCl solution. Formulations were 

placed in glass vials, stored in the dark at 4 °C and kept no more than 1 week. 

 
Determination of β-lapachone loading 

The encapsulation efficiency (EE%, amount of β-LP encapsulated/total amount of β-LP x 100) was 

determined for each batch. Ethanol 70% was added to a known volume of the recovered supernatant 

containing β-LP NP and sonicated for 1 minute in order to digest the NP. Then, the amount of β-LP 

was quantified in duplicate by UV-Visible spectrophotometry at 257 nm (Agilent 8453, Waldbronn, 

Germany). For calculations, calibration curves were designed over the range of 0.5 and 12 μg/mL (R2> 

0.95).  

 
Preparation of β-lapachone hydrogel 

Approximately 1 mL of chitosan hydrogel containing β-LP was prepared according with the following 

method. Firstly, to solubilise β-LP (10 mg/mL), 100 µl of ethanol absolute were needed. The dissolved 

drug was mixed with 250 µL of an aqueous HP--CD solution. Then, the mixture was added to 250 µL 

of an aqueous -GP solution containing 20 µL of PG and, after stirring, it was added to 500 µL of 

chitosan (Q 95/200), which was previously dissolved in an aqueous solution with lactic acid 2% (w/v). 

Finally, the mixtures were stirred on a vortex and subsequently loaded on a metal sample plate to 

allow the gelation process. The final concentrations for -GP, chitosan (Q 95/200) and HP--CD were 

30% (w/v), 1% (w/v) and 11.6% (w/v), respectively. All formulations were prepared 24 hours before the 

study and were stored, protected from light, in glass vials at 4 °C.  

 
Preparation of pig ear skin 

Skin cultures were obtained from domestic pig ears in a local slaughterhouse. Ears were taken from 

the animals and transported to the laboratory in a maximum of 2-3 hours. After washing with tap 

water, the outer region of the ear was excised with a scalpel and sectioned at a thickness of ca. 1 mm 

using a dermatome (Aesculap GA 630, Tuttlingen, Germany). Then, skins were stored in Parafilm® 

(Bemis, Neenah, WI, USA) at − 20 °C for no longer than a month. Studies were carried out with intact 

skin and damaged skin (without stratum corneum or epidermis). Before the experiments, the skin was 

allowed to thaw at room temperature in PBS for 30 minutes. 

In the case of damaged skin, tape stripping procedure was performed. Adhesive tape (Scotch 

Transparent Tape 600, 3M, St. Paul, MN, USA) was applied pressing onto the skin and then removed 
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with one quick movement. To determine the number of adhesive applications required to eliminate the 

stratum corneum (SC), 0, 15, 30 and 60 tapes were applied. After that, samples were staining with 

Mayer’s hemalun (Merck Darmstadt, Germany) and analyzed under a microscope (Olympus BH2, 

Hamburg, Germany). It was observed that 30 pieces of adhesive tape were necessary to remove all 

the SC.  

In the studies with dermal membranes (without epidermis), full-thickness skin was immersed in water 

at 60 °C for 45 seconds to separate the epidermal layer. 

 
In vitro permeation studies 

Permeation studies using Franz diffusion cells were carried out on a MicroettePlusTM apparatus 

(Hanson Research Corp., Chatsworth, CA, USA). Transcutaneous diffusion was assessed according 

to OECD guideline 428. The Franz cell receptor compartments (4 mL) were filled with HP-β-CD 25% 

(w/v) in PBS to ensure that sink conditions were maintained over the time course of the experiment. 

Moreover, the receptor medium was homogenised by magnetic stirring (400 rpm) and maintained at 

32 ± 1 °C. Skin biopsies were placed horizontally between the donor and the receptor compartments 

with the SC, epidermis or dermis side up, ensuring their contact with the receptor medium. The whole 

device was then fixed with a clamp.  

All Franz diffusion cell experiments were conducted under infinite doses conditions: 150 µL of the 

different β-LP formulations (solution, hydrogel and NP) were deposited on 1.74 cm2 of skin in the 

donor compartment. The punch areas were devoid of visible structural changes (scratches, erosion or 

scars) as such skin damage could affect the diffusion and metabolism of the tested compound. 

The drug diffusion kinetic was evaluated by automatically sampling 1 mL aliquots of the receptor fluid 

at the following predetermined times: 0, 0.5, 1, 3, 6, 8 and 24 hours. Each aliquot withdrawn was 

replaced with an equal volume of receptor phase. Franz cell blank experiments were conducted with 

the formulations without drug. At the end of the experiment, the excess of formulation was removed 

and the skin pieces were stored at – 80 °C for some minutes. Then, the skin samples were embedded 

in OCT compound (Optimal Cutting Temperature compound, Tissue-Tek, Sakura Finetek, Villeneuve 

d’Ascq, France) and frozen again to make the cuts aesier. Skin sections were cut using a microtome 

cryostat (Leica CM 1900, Leica Microsystems, Schweiz, AG, Germany) and, after separating the SC 

(20 µm), the epidermis (80 µm) and the dermis (900 µm), the drug concentration in each layer was 

determined. 
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Skin sections were pretreated with trypsin (1.5% (v/v), Gibco) and collagenase D (300 µg/mL, Roche, 

Basel, Switzerland) in 70% ethanol for 12 hours at 4 °C. Then, skin biopsies were homogenized for 1 

minute using an ultrasonic cell disruptor (Misonix, Farmingdale, NY, USA). The amount of β-LP was 

quantified by HPLC-UV. Analysis was carried out in a 1100 series LC (Agilent, Germany) with a diode-

array detector set at 257 nm. The chromatographic system was equipped with a reversed-phase 150 

mm x 2.1 mm C18 Alltima column (5 μm particle size; Altech, USA) and a Gemini C18 precolumn (5 

μm particle size; Phenomenex, CA, USA). The mobile phase, pumped at 0.25 mL/min, was a mixture 

of acetonitrile and water (1:1). Under these conditions, β-LP eluted at 5.8 ± 0.2 min. For calculations, 

calibration curves were designed over the range of 0.5 and 12 μg/mL (R2> 0.999). Results are 

expressed as mean ± SD for at least three independent experiments. 

 
In vitro antileishmanial activity against L. major promastigotes  

The antileishmanial effect of β-LP, β-LP NP (with DDAB or MNL) or unloaded NP was determined in L. 

major promastigotes by the MTT assay. Briefly, 2 x 105 parasites per well were seeded in 96-well 

plates with different concentrations of β-LP or NP (ranging from 0 to 200 µM). Plates were then 

incubated at 26 °C for 48 h. Previously, β-LP was disolved in DMSO (Sigma-Aldrich). Untreated cells 

were used as control and cells treated with Amphotericin B (AmB, Sigma) were used as positive 

control. After incubation, 20 µL of a MTT solution (5 mg/mL in PBS) were added to each well and 

plates were incubated at 26 °C for 4 h. To ensure complete solubilisation of the formazan crystals, 50 

µL of 10% SDS in 0.01 M HCl lysing buffer was added and plates were gently shaken for 20 minutes. 

Parasite viability was determined using a microplate reader (iEMS Reader MS, Labsystems) at 570 

nm. Results are expressed as mean ± SD for at least three independent experiments in duplicate. 

 
In vitro cytotoxicity assay in mouse peritoneal macrophages 

To estimate the toxicity of β-LP, β-LP NP (with DDAB or MNL) or unloaded NP, an in vitro cytotoxicity 

assay was performed in mouse peritoneal macrophages using Alamar Blue (AB). Briefly, BALB/c mice 

were inoculated with 1 mL of 3% (w/v) thioglycolate (Sigma-Aldrich). After 3 days, animals were 

euthanized by cervical dislocation and 5 mL of cold RPMI 1640 medium were injected into the 

peritoneal cavity and then recovered with a syringe. Cells were collected from the peritoneal fluid by 

centrifugation (Allegra X-30 centrifuge, Beckman Coulter, Fullerton, CA, USA) at 1,500 rpm for 10 

minutes. Then, the pellet was resuspended in RPMI 1640 supplemented with 10% FBS, 1% of a 100 
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U/mL penicillin and 100 µg/mL of streptomycin solution (Sigma). Macrophages were adjusted to 2.5 x 

104 cells per well and cultured in supplemented RPMI 1640 in 96-well plates at 37 °C under 5% CO2 

for 24 hours. Then, different concentrations of β-LP and NP (0 to 300 μM) were added to wells and 

plates were incubated again for 48 hours. After 48 hours incubation, 20 μL of the AB reagent solution 

(final concentration of AB=10% (v/v)) (Invitrogen) were added to wells and plates were incubated for 4 

hours. Finally, sample flourescences were measured using a microplate fluorimeter (λ excitation 560 

nm; λ emission 590 nm; Polar Star Galaxy, BMG Labtechnologies, Offenburg, Germany). Results are 

expressed as mean ± SD for at least three independent experiments in duplicate. 

 
Effect of β-lapachone and β-lapachone nanoparticles on L. major amastigotes in vitro 

Peritoneal macrophages of BALB/c mice were collected and cultured as described above. 

Macrophages in a concentration of 5 x 104 were seeded in Labtek plates (BD Biosciences, Franklin 

Lakes, IL, USA) and incubated at 37 °C with humidified atmosphere containing 5% CO2. After 24 

hours incubation, macrophages were washed with RPMI 1640 medium and infected with metacyclic 

promastigotes of L. major, isolated as previously described, in a 7:1 proportion 

(parasites:macrophages). Infected cells were incubated overnight at 37 °C. Then, wells were washed 

twice with RPMI 1640 and treated with β-LP, β-LP NP or unloaded NP at different concentrations for 

48 hours at 37 °C. The same experiments were also carried out with the addition of 0.1 µg/mL of 

Imiquimod (IMQ, Sigma-Aldrich) to wells. AmB was used as reference drug and untreated infected 

cells were used as a positive control of infection.  After 48 hours, slides were fixed with methanol and 

stained with Giemsa for evaluation (Merck Darmstadt, Germany) [19]. The percentage of infected 

macrophages was evaluated by counting 200 macrophages using an optical microscope (Nikon 

Eclipse E400 + Y-THM + Y-THR, Chiyoda-ku, Tokyo, Japan). Experiments were performed at least 

three times in duplicate and results are presented as mean ± SD. 

 
Measurement of nitric oxide 

Nitrite (NO2−) accumulation in cell culture supernatants of infected peritoneal macrophages was used 

as an indicator of nitric oxide (NO) production and it was determined by the Griess reaction. Briefly, 

100 μL of culture supernatants from macrophage culture were dispensed in 96-well plates. Then, 100 

μL of the Griess reagent (Sigma) were added to each well and plates were incubated at room 

temperature for 20 minutes. The optical density of the coloured product formed was measured on a 
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microplate reader (iEMS Reader MS, Labsystems) at 570 nm. The amount of NO formed in each 

sample was calculated by comparing them with a standard sodium nitrite (NaNO2) concentration 

curve. 0.1 µg/mL of Escherichia Coli lipopolysaccharide (E. Coli LPS, Sigma-Aldrich) was use as 

positive control. Results are expressed as mean ± SD for at least three independent experiments. 

 
Wound healing studies  

Firstly, the cytotoxicity of β-LP, β-LP NP or unloaded NP was determined in 3T3 mouse fibroblasts 

after 24 hours of treatment by the MTT assay, as described in the in vitro antileishmanial studies. For 

the wound healing studies cells were grown to confluence on 6-well plates. Then, cell culture media 

was gently aspirated and single horizontal scratches were done in the centre of each well with a 200 

µL sterile plastic tip. After washing the wells twice with PBS, different concentrations of β-LP, β-LP NP 

or unloaded NP were suspended in 2 mL of new fresh media and added to each well. Plates were 

maintained at 37 °C and 5% CO2. The filling up of the gaps was monitored by taking images (10x) 

each 15 minutes during 12 hours (10 random fields were examined for each well) using an Zeiss 

observer Z1 microscope. The wound healing area was determined by computer using the Fiji WH 2.0 

software. Results are expressed as percentage of wound healing of three independent experiments 

(mean ± SD). 

 
Infection 

Animals were infected by subcutaneous inoculation of 100 µL of PBS containing 2 x 105 infective 

metacyclic promastigotes (isolated as previously described) of L. major in the base of the tail. Lesions 

were measured each 2 days with a digital caliper.  

 
In vivo evaluation of β-lapachone formulations in L. major-infected BALB/c mice 

After 5-7 weeks, lesions of measurable size (average area of 20 mm2) developed and treatment with 

20 mg/kg of β-LP NP or the equivalent of unloaded NP were initiated (10-12 mice per group). 

Untreated infected mice were used as control. Lesions were covered with 100 µL of the NP 

formulations (β-LP NP (5 mg/mL) or unloaded NP). Topical treatment was applied daily for a period of 

21 days. Once treatments were finished, animals were kept for 3 days before sacrifice. Final results 

are expressed as mean of the lesion area (mm2) ± SD measured with a caliper. Moreover, the 

parasitic load was quantified by a limiting-dilution assay. Firstly, skin fragments from ulcerated lesions 

as well as spleen, liver and popliteal lymph of infective mice were aseptically removed and treated with 
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collagenase D in collagenase buffer (10 mM Hepes pH 7.4, 150 mM NaCl, 5 mM KCl, 1 mM MgCl2 

and 1.8 mM CaCl2; final collagenase concentration: 2 mg/ml) for 20 minutes at 37 °C. Then, samples 

were homogenized in 20 mL of RPMI 1640 medium (Gibco) with a sterile syringe piston and 

centrifuged at 1,250 rpm for 5 minutes for sedimentation (Allegra X-30 centrifuge, Beckman Coulter, 

Fullerton, CA, USA). The pellet was resuspended in RPMI 1640 medium and 2 mL of lysis buffer (0.14 

M ammonium chloride in 17 mM Tris-HCl) were added. After 2 minutes at 37 °C, 20 mL of RPMI 1640 

were added and samples were centrifuged at 1,250 rpm for 5 minutes. The pellet was resuspended in 

1 mL of Schneider´s modified medium supplemented with 10% heat-inactivated FBS and 40 µg/ml of 

gentamicin (Sigma, St. Louis, MO, Canada). The homogenate was submitted to serial dilutions in 

triplicates in sterile 96 well culture plates and incubated at 26 °C. Each well was examined for the 

presence of parasites and the number of parasites was quantified by the highest dilution at which 

parasites could grow over a 7-10 day period. The lowest dilution at which parasites were detected was 

10-1, which was considered the limit of quantification. Results are expressed as the median calculated 

per group.  

 
Histological analysis and immunohistochemistry 

Skin lesions were formalin-fixed, paraffin-embedded and cut in 3-µm thick sections. Some sections 

were stained with hematoxylin and eosin (HE) and Masson trichrome. In addition, 

immunohistochemistry was applied using the following primary antibodies: rat anti-mouse F4/80 

(1:400; eBiosciences, 14-4801), rat anti-mouse NIMP-R14 (1:10000; Abcam, ab2557), rabbit anti-CD3 

(1:300; Thermo Scientific, RM9106) and rabbit anti-iNOS (1:500; Santa Cruz Biotechnology, sc-650). 

Antigen retrieval was applied: 2 µg/ml proteinase K at 37 °C for 30 minutes (for F4/80 and NIMP-R14) 

or heating for 30 minutes at 95 °C in 0,01 M Tris-1 mM EDTA pH 9 in a Pascal pressure chamber 

(Dako, S2800) (for CD3 and iNOS). In the case of rat primary antibodies, sections were first incubated 

with rabbit anti-rat (Dako, E0468) secondary antibody. Then, the EnVision system (Dako, K4011) was 

used in all cases according to manufacturer instructions. For each assay, digital images were scanned 

using a digital microscope system (Aperio ScanScope CS2, Leica Biosystems, Nussloch, Germany) 

and snapshots of higher magnification images were captured using image software (Aperio 

ImageScope, Leica Biosystems). Then, the percentage area stained in each image was then 

quantified by counting the number of pixels staining above a threshold intensity and normalising to the 
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total number of pixels. Threshold intensity was set such that only clearly stained pixels were counted. 

The software used was Fiji WH 2.0.  

 

RNA extraction and quantitative real time RT-PCR 

Before RNA extraction, lymph nodes were homogenized in 1 mL of Tri Reagent (Sigma-Aldrich) and 

total RNA was obtained following the Tri Reagent protocol. Total RNA (1 μg) was treated with DNase 

(Gibco-BRL) prior to RT with M-MLV reverse transcriptase (Gibco-BRL) in the presence of RNaseOUT 

(Gibco-BRL). IL-1β, Cox-2, iNOS, IL-4, TNF-α, IFN-Υ, TGF-β and β-actin expression were measured 

by quantitative real time PCR using iQ SYBR Green supermix (Bio-Rad) and specific primers for each 

gene (see Supplementary Table 1) in a CFX96 system from Bio-Rad. The amount of each transcript 

was expressed by the formula: 2ct(β-actin)−ct(gene), being ct the point at which the fluorescence rises 

appreciably above the background fluorescence. 

 
Statistical Analysis 

Statistical significance was analyzed using Prism 6.0 software (Graphpad Software Inc., San Diego, 

CA, USA). Differences were tested using the Mann–Whitney test for two groups comparison or the 

One–Way ANOVA with Dunn´s post-test for multiple comparison (in vivo study of efficacy). * p < 0.05; 

** p < 0.01; *** p < 0.001. 

 

Supplementary Tables  

Supplementary Table 1. Primers used in this study. 

Gene Sense primer (5´-3´) Antisense primer (5´-3´) 

Cox-2 CAAAAGCTGGGAAGCCTTCTC CCTCGCTTATGATCTGTCTTG 

IL-1β GCCACCTTTTGACAGTGATG TAATGGGAACGTCACACACC 

iNOS TCCTACACCACACCAAACTG AATCTCTGCCTATCCGTCTC 

IL-4 GCTATTGATGGGTCTCAACC TCTGTGGTGTTCTTGTTGC 

TNF-α CTTCCAGAACTCCAGGCGGT GGTTTGCTACGACGTGGG 

IFN-Υ TCAAGTGGCATAGATGTGGAAGAA TGGCTCTGCAGGATTTTCATG 

TGF-β CGGCAGCTGTACATTGAC TCAGCTGCACTTGCAGGAGC 

β-actin CGCGTCCACCCGCGAG CCTGGTGCCTAGGGCG 
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Supplementary Figures 

Supplementary Figure 1 

 

Supplementary Figure 2 
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Supplementary Figure Legends 

Supplementary Figure 1. Proliferative and wound healing studies. Percentage of 3T3 fibroblasts 

viability after 24 hours treatment with β-LP and β-LP NP (A) or unloaded NP (B). Percentage of wound 

healing in 3T3 fibroblasts treated with β-LP, β-LP NP or unloaded NP after 12 hours (C). The 

concentration of DDAB in β-LP NP is four-fold higher than the concentration of β-LP. Results are 

expressed as mean ± SD (n=3). 

Supplementary Figure 2. H&E stained skin sections obtained for a control mouse (infected and non-

treated, A, B, C and D) and healthy mouse (non-infected and non-treated, E and F). (A) Scanned CL 

lesion shows two clear areas: an inflamed region (magnified in B and C), and the necrotic tissue 

(magnified in D), scale bar = 2 mm. (B) Inflamed area with epidermal hyperplasia (green arrow) and 

impressive infiltration of infected macrophages and free parasites (magnified in C) that disturb the 

subcutaneous and muscular layers, final magnification of 10x, scale bar = 300 µm. (C) Detail of 

infected macrophages and parasites, final magnification of 20x, scale bar = 200 µm. (D) Detail of 

necrotic and granulation tissue, final magnification of 20x, scale bar = 200 µm. (E, F) Scanned healthy 

skin to clearly appreciate the hyperkeratosis and inflammation, E, scale bar = 2 mm and F, final 

magnification of 10x, scale bar = 300 m. 
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