
Facu l t ad de C i enc i a s

Extensions of Topological Abelian Groups

Hugo José Bello Gutiérrez





S c h o o l o f S c i e n c e

Extensions of Topological Abelian Groups

Submitted by Hugo José Bello Gutiérrez in partial fulfillment of the requirements for
the Doctoral Degree of the University of Navarra

This dissertation has been written under our supervision in the Doctoral Program in
Complex Systems, and we approve its submission to the Defense Committee.

Signed on June 9, 2016

Dr. María Jesús Chasco Ugarte Dr. Xabier Eduardo Domínguez Pérez





Declaración:
Por la presente yo, D. Hugo José Bello Gutiérrez, declaro que esta tesis es fruto de mi
propio trabajo y que en mi conocimiento, no contiene ni material previamente publi-
cado o escrito por otra persona, ni material que sustancialmente haya formado parte de
los requerimientos para obtener cualquier otro título en cualquier centro de educación
superior, excepto en los lugares del texto en los que se ha hecho referencia explícita a
la fuente de la información.

(I hereby declare that this submission is my own work and that, to the best of my knowl-
edge and belief, it contains no material previously published or written by another per-
son nor material which to a substantial extent has been accepted for the award of any
other degree of the university or other institute of higher learning, except where due
acknowledgment has been made in the text.)

De igual manera, autorizo al Departamento de Física y Matemática Aplicada de la Uni-
versidad de Navarra, la distribución de esta tesis y, si procede, de la “fe de erratas” corres-
pondiente por cualquier medio, sin perjuicio de los derechos de propiedad intelectual
que me corresponden.

Signed on June 9, 2016

Hugo José Bello Gutiérrez

c© Hugo José Bello Gutiérrez

Derechos de edición, divulgación y publicación:
c© Departamento de Física y Matemática Aplicada, Universidad de Navarra





Contents

Abstract 10

Introduction 15

1 Preliminaries 21

§1.1 Abelian groups . . . . . . . . . . . . . . . . . . . . . . . . . . 21

§1.2 General topology . . . . . . . . . . . . . . . . . . . . . . . . . 24

§1.3 Topological abelian groups . . . . . . . . . . . . . . . . . . . . 27

§1.4 Topological vector spaces . . . . . . . . . . . . . . . . . . . . 32

2 Extensions of topological abelian groups 33

§2.1 Equivalence and splitting . . . . . . . . . . . . . . . . . . . . 33

§2.2 Push-out and pull-back extensions . . . . . . . . . . . . . . . 36

3 The Ext group in the category of topological abelian groups 45

§3.1 Addition of extensions . . . . . . . . . . . . . . . . . . . . . . 45

§3.2 Ext and dense subgroups . . . . . . . . . . . . . . . . . . . . 48

§3.3 Ext and open subgroups . . . . . . . . . . . . . . . . . . . . . 51

§3.4 Ext, products and coproducts . . . . . . . . . . . . . . . . . . 53

§3.5 Ext and quotients . . . . . . . . . . . . . . . . . . . . . . . . 57

4 The Ext group in the category of topological vector spaces 65

§4.1 The ExtTVS group . . . . . . . . . . . . . . . . . . . . . . . . 65

§4.2 “ Being a topological vector space” as a three space property 67

5 Cross-sections 71

§5.1 Topological abelian groups and cross-sections . . . . . . . . . 71

§5.2 Topological vector spaces and continuous cross-sections . . . 80

6 Quasi-homomorphisms 83

§6.1 Quasi-homomorphisms and
pseudo-homomorphisms . . . . . . . . . . . . . . . . . . . . . 83

§6.2 The group topology defined by
a quasi-homomorphism . . . . . . . . . . . . . . . . . . . . . . 84

7



Contents 8

§6.3 Quasi-homomorphisms and the Ext group . . . . . . . . . . . 86
§6.4 Quasi-homomorphisms to R and T . . . . . . . . . . . . . . . 91

7 Extensions of topological abelian groups by T and R 97
§7.1 Splitting extensions by R and T . . . . . . . . . . . . . . . . . 97
§7.2 Examples of non-splitting extensions . . . . . . . . . . . . . . 101

Index of symbols 112

Alphabetical Index 115

Bibliography 116



To my mother.



Abstract

An extension of topological abelian groups is a short exact sequence
E : 0 → H

ı→ X
π→ G → 0 where all homomorphisms are assumed to be

continuous and open onto their images. E is said to split if it is equivalent
to the trivial extension 0→ H → H×G→ G→ 0. It is known that E splits
if and only if ı(H) splits as a topological subgroup of X (i.e. there exists a
closed subgroup L ≤ X such that the map ı(H)×L→ X; (ı(h), l) 7→ ı(h)+l
is a topological isomorphism).

Given G and H, the set of all extensions of topological abelian groups
of the form 0 → H → X → G → 0, endowed with the Baer Sum is an
abelian group denoted by Ext(G,H). This group will be trivial when every
extension of the previous form splits.

This thesis is devoted to the following two important problems:

(a) Study the properties of Ext in the category of topological abelian
groups. In particular find conditions under which Ext(G,H) = 0.

(b) Find ways to describe the extensions of topological abelian groups of
the form 0→ H → X → G→ 0 using the properties of G and H.

Regarding (a),

• We construct the group Ext(G,H) in the realm of topological abelian
groups, and we obtain results concerning the behavior of this group
when we take dense subgroups, open subgroups, products, coproducts
and quotients in G or H (§3.2 - §3.5). As an example, we show that
there exists a metrizable group topology τ on R such that Ext((R, τ),R)
is an infinite dimensional vector space (7.2.11).

• We prove that Ext(G,H) = 0 whenever G is a product of locally pre-
compact abelian groups and H is a product of copies of R and T (7.1.9).

Two notions will be the key to study (b): quasi-homomorphisms and
continuous cross-sections.

A map q : G → H is called a quasi-homomorphism if q(0) = 0 and
(x, y) 7→ q(x+y)−q(x)−q(y) is continuous at 0. The quasi-homomorphism
q is said to be approximable if there exists a homomorphism a : G → H
such that q − a is continuous at 0. We will study the connections between
quasi-homomorphisms and extensions. It turns out that approximable quasi-
homomorphisms produce trivial extensions.

Given an extension of topological abelian groups 0→ H → X
π→ G→ 0,

a continuous map s : G → X is called a continuous cross-section of E if
π◦s = IdG. If E admits a continuous cross-section then X is homeomorphic
to H ×G.
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We prove:

• If G is a kω zero-dimensional abelian group and H is a compact abelian
group, then every extension of the form 0→ H → X → G→ 0 admits
a continuous cross-section (5.1.14).

• Let H be either a Banach space or the unit circle T. Let {Gα : α <
κ} be a family of topological abelian groups such that every quasi-
homomorphism of the form Gα → H is approximable. Then ev-
ery quasi-homomorphism of the form

∏
α<κGα → H is approximable

(6.4.4).



Resumen

Una extensión de grupos topológicos abelianos es una sucesión exacta
corta E : 0→ H → X → G→ 0 en la cual los homomorfismos son continuos
y abiertos sobre sus imágenes. Se dice que E escinde cuando es equivalente
a la extensión trivial 0→ H → H×G→ G→ 0. Es sabido que E escinde si
solo si ı(H) escinde como subgrupo topológico de X (i.e. existe un subgrupo
cerrado L ≤ X tal que la función ı(H)× L → X; (ı(h), l) 7→ ı(h) + l es un
isomorfismo topológico).

Dados G y H, el conjunto de todas las extensiones de grupos topológicos
abelianos de la forma 0 → H → X → G → 0, dotado con la suma de Baer
es un grupo abeliano denotado por Ext(G,H). Este grupo es trivial cuando
toda extensión de la forma anterior escinde.

Esta tesis se centra en el estudio de los siguientes problemas:

(a) Estudiar las propiedades de grupo Ext en la categoŕıa de grupos topológicos
abelianos. En particular, encontrar condiciones en las que Ext(G,H) = 0.

(b) Encontrar maneras de describir las extensiones de la forma 0 → H →
X → G→ 0 usando las propiedades de G y H.

Con respecto a (a),

• Construimos el grupo Ext(G,H) en el contexto de grupos topológicos
abelianos y obtenemos resultados que conciernen al comportamiento
de este grupo cuando tomamos subgrupos densos, subgrupos abiertos,
productos, coproductos y cocientes en G o H. A modo de ejemplo, de-
mostramos que existe τ una topoloǵıa de grupo metrizable en R tal que
Ext((R, τ),R) es un espacio vectorial de dimensión infinita. (7.2.11).

• Demostramos que Ext(G,H) = 0 siempre G sea un producto de grupos
abelianos localmente precompactos y H sea un producto de copias de
R y T (7.1.9).

Dos nociones serán fundamentales para el estudio de (b):
cuasi-homomorfismos y cross-sections continuas.

Una se dice que una función q : G → H es un cuasi-homomorfismo si
q(0) = 0 y (x, y) 7→ q(x + y) − q(x) − q(y) es continuo en 0. El quasi-
homomorfismo q es aproximable si existe un homomorfismo a : G → H
tal que q − a es continuo en 0. Estudiaremos las conexiones entre cuasi-
homomorfismos y extensiones. Los cuasi-homomorfismos aproximables pro-
ducen extensiones triviales.

Dada una extensión de grupos topológicos 0 → H → X
π→ G → 0, una

función continua s : G → H se dice que es una cross-section continua para
E si π ◦ s = IdG. Si E admite una cross-section continua, entonces X es
homeomorfo a H ×G.
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Demostraremos que

• Si G es un grupo topológico abeliano kω y zero-dimensional y H es
un grupo abeliano compacto, entonces toda extensión de la forma 0→
H → X

π→ G→ 0 admite una cross-section continua (5.1.14).

• Sea M un espacio de Banach B o el ćırculo unidad T. Sea {Gα :
α < κ} una familia de grupos abelianos topológicos tales que para
todo α < κ, todo cuasi-homomorfismo de Gα en M es aproximable.
Entonces todo cuasi-homomorfismo de

∏
α<κGα en M es aproximable

(6.4.4).



Chapter 0. Abstract 14



Introduction

An extension of topological abelian groups is a short exact sequence E : 0→
H

ı→ X
π→ G→ 0 where all homomorphisms are assumed to be continuous

and open onto their images. The extension E splits if ı(H) splits as a
topological subgroup of X.

The study of the extensions of topological abelian groups started in 1951
(as far as the author knows) with the work of Calabi [Cal51]. In his disserta-
tion Calabi adapts the notion of extension of abelian groups to the realm of
topological groups 1 and he studies what is known as the extension problem
in the context of topological groups:

Problem 1. Given G and H, study the properties of the extensions of topo-
logical abelian groups of the form 0→ H → X → G→ 0.

Inspired by Calabi, Sze-tsen Hu published [Hu52], where he studies
Problem 1 and investigates the relations between the different cohomol-
ogy theories for topological groups established in the literature. Among
other results, he describes the structure of all extensions that admit con-
tinuous cross-sections ([Hu52, 5.3, 5.4 p. 17]) and proves that if A(X) is
the free abelian topological group over a Tychonov space X and an exten-
sion 0 → H → X → A(X) → 0 admits a continuous cross-section (i.e. a
continuous left inverse) then it splits [Hu52, 5.6].

In 1967 Moskowitz developed in his paper [Mos67] the homological al-
gebra of the class L of locally compact abelian groups. He studied the ex-
tensions of locally compact abelian groups and proved that the only groups
H ∈ L such that every extension of locally compact abelian groups of the
form 0 → H → X → G → 0 splits are those topologically isomorphic to
Rn × Tκ for some n < ω and κ an arbitrary ordinal. In [Mos67, Section
VI] he introduces the group Ext(G,H) of all extensions of locally compact
abelian groups of the form 0 → H → X → G → 0 using the techniques
developed for abelian groups by Mac Lane in [ML95]. Nevertheless, he is
only interested in the case in which H is elementary 2. He uses the Ext

1In his work, Calabi prefers the definition that avoids the use of short exact sequences:
given topological groups G,X and H, X is said to be an extension of G by H, if it contains
H as a closed subgroup and X/H is topologically isomorphic to G.

2H is elementary if it is topologically isomorphic to Rn×Tα×Zm×F where n,m ∈ ω,

15
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group to find several Hom-Ext exact sequences for various subclasses of L
(see [Mos67, Th. 6.2]).

The study of homological constructions in L was continued by Fulp and
Griffith in [FG71a] and [FG71b]. They studied the group Ext(G,H) for
arbitrary groups G and H in L, and found the following Hom-Ext sequences
for the class L: Given an extension 0 → A → B → C → 0 of topological
abelian groups in L, for every G ∈ L there are exact sequences of abelian
groups

0→ CHom(C,G)→ CHom(B,G)→ CHom(A,G)

→ Ext(C,G)→ Ext(B,G)→ Ext(A,G)→ 0

0→ CHom(G,A)→ CHom(G,B)→ CHom(G,C)

→ Ext(G,A)→ Ext(G,B)→ Ext(G,C)→ 0

This result sharpened the ones developed by Moskowitz in that direction
and provided many applications. These two authors started the study of
the so called splitting problem on topological groups:

Problem 2. Find conditions on two topological abelian groups G,H that
force Ext(G,H) to be trivial (that is, every extension of topological abelian
groups of the form 0→ H → X → G→ 0 splits).

They focused in the case in which G and H are in L (see [FG71a, Th.
5.1, Th. 5.2] and [FG71b, Th. 3.1, Th. 3.3, Cor. 3.5]). One year after the
appearance of these two important papers, Fulp published [Ful72], obtain-
ing more results in the direction of Problem 2. It is worth mentioning that
Sahleh and Alijani in [SA14a] and [SA14b] recently continued the study of
the group Ext in the class L and Problem 2 using the techniques of Fulp
and Griffith.

An extension of topological vector spaces is a short exact sequence 0→
Y → X → Z → 0 in which Y,X,Z are topological vector spaces and the
maps are relatively open and continuous linear mappings. It is clear that
an extension of topological vector spaces is in particular an extension of
topological abelian groups.

In 1984 Kalton, Peck and Roberts published the seminal work [KPR84]
in which they undertook an extensive study of the extensions of topological
vector spaces. In particular, they were interested in the following problem:

Problem 3. Which topological vector spaces Z have the property that every
extension of topological vector spaces 0→ R→ X → Z → 0 splits?

The spaces that satisfy such property are called K-spaces. These three
authors proved that the Banach spaces `p and Lp are K-spaces for 0 < p < 1

α is any ordinal number and F is finite (see [Mos67, p. 394])
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(see [KPR84, Th. 5.7, Cor. 5.16]) and for 1 < p < ∞ (see [KPR84, Th.
5.18]). On the other hand, Kalton ([Kal78]) Ribe ([Rib79]) and Roberts
([Rob77]) proved independently that `1 is not a K-space. Problem 3 was
later studied by Domański in his paper [Dom85].

The key that the authors use in [KPR84] and [Dom85] to study the
behavior of the extensions of topological vector spaces is the notion of quasi-
linear mapping. A map q : Z → Y between topological vector spaces is
quasi-linear if it satisfies the following properties:

(a) q(0) = 0.

(b) The map (x, y) 7→ q(x+ y)− q(x)− q(y) is continuous at the origin.

(c) The map (λ, x) 7→ q(λx)− λq(x) is continuous at the origin.

(This is the definition given by Domański in [Dom85, §3] which differs
from the one in [KPR84, page 85]). It turns out that for every quasi-linear
mapping q : Z → Y there is a canonical procedure to construct an extension
of topological vector spaces Eq : 0 → Y → Y ⊕q Z → Z → 0. Further-
more Eq is trivial (i.e. splits) if and only if q is approximable (in the sense
that there exists a linear mapping a : Z → Y which does not need to be
continuous but satisfies that q − a is continuous at the origin).

In his paper [Cab03], Cabello noticed that these constructions could be
translated very naturally to the context of topological abelian groups. Given
topological abelian groups G,H, he defined a quasi-homomorphism as a map
q : G→ H satisfying the conditions (a) and (b) above. In [Cab03, Lemmas
2 and 3] Cabello points out that, as it is the case with quasi-linear mappings,
using a quasi-homomorphism q : G → H one can produce an extension of
topological abelian groups Eq : H → H ⊕q G→ G→ 0 which will be trivial
if and only if q is approximable (in the sense that there is a homomorphism
a : G→ H with q − a continuous at the origin).

In 1980, Cattaneo explored the connections between the theory of ex-
tensions of topological abelian groups and that of extensions of topological
vector spaces. He was interested in the following problem:

Problem 4. If Y,Z are topological vector spaces and E : 0 → Y → X →
Z → 0 is an extension of topological abelian groups, what additional prop-
erties do we need to impose on Y and Z so that X admits a compatible
topological vector space structure that transforms E into an extension of
topological vector spaces?

He proved in [Cat80, Prop. 2] that such a topological vector space struc-
ture can be constructed on X if Y is Fréchet and Z is metrizable and com-
plete. In a latter work Cabello showed that the same is also true if both Y
and Z are complete and locally bounded ([Cab04, Th. 4]).
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The aim of this dissertation is to investigate the extensions of topological
abelian groups in a general setting (outside L) and to continue the work of
Fulp and Griffith in the study of problems 1 and 2. As a mean to do
this, we will explore the applications of the notions of quasi-homomorphism
and cross-section in the framework of topological abelian groups. Parallelly,
we will study the extensions of topological vector spaces and Problem 4
using the techniques and ideas of Kalton, Peck, Ribe, Roberts, Domański,
Cattaneo and Cabello.

This document is organized as follows:
Chapter 2 provides a detailed explanation of the theory of extensions

of topological abelian groups (which will be assumed to be Hausdorff). We
will start chapter 3 with the introduction of the Ext group in the realm of
topological abelian groups, then in §3.2 to §3.5 we will study the behavior
of this group when we take dense subgroups, open subgroups, products,
coproducts and quotients. We will show that for every topological abelian
groups G and H

• If H is Čech-complete, Ext(G,H) ∼= Ext(%G,H), where %G is the
Răıkov completion of G, (3.2.4).

• If H is divisible and A is an open subgroup of G, Ext(G,H) ∼= Ext(A,H)
(3.3.2).

• Ext(G,
∏
α<κHα) ∼=

∏
α<κ Ext(G,Hα) for every family {Hα : α < κ}

of topological abelian groups (3.4.1).

• Ext(
⊕

α<ω Gα, H) ∼=
∏
α<ω Ext(Gα, H) where

⊕
α<ω Gα is a count-

able coproduct of topological abelian groups (3.4.4).

We will also apply these properties to attack Problem 2 and show that
several results proven by Fulp, Griffith, Sahleh and Alijani in [FG71a],[FG71b],
[SA14a], and [SA14b] can be formulated in a more general context.

Chapter 4 deals with the extensions of topological vector spaces. §4.1 is
concerned with constructing the Ext group in the class of topological vector
spaces and studying its properties using the techniques of chapter 3. In the
second section of this chapter we will tackle Problem 4 by proving that given
an extension of topological abelian groups 0 → Y → X → Z → 0, X is a
topological vector space in any of the following situations:

• Z is metrizable topological vector space and Y is a Fréchet topological
vector space (4.2.2).

• Z is a complete locally bounded topological vector space and Y is a
locally bounded topological vector space (4.2.3).

This improves several results proven by Cattaneo and Cabello in [Cat80]
and [Cab04].
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Chapter 5 is devoted to the study of the notion of a cross-section in
the context of topological abelian groups and to find situations in which an
extension of topological groups 0 → H → X

π→ G → 0 admits a cross-
section (i.e. a right inverse for π) which is continuous or at least continuous
at 0. We will finish this chapter using continuous cross-sections to study
Problem 2. The main results of this chapter are the following:

• Let G,X be topological abelian groups and let π : X → G be an open
continuous epimorphism. Suppose that kerπ is compact and that G
is a zero-dimensional kω-space; then there exists a continuous cross-
section for π (5.1.14).

• Ext(G,H) = 0 whenever G is the free abelian topological group A(Y )
on a zero-dimensional kω-space Y , and H is a compact abelian group
(5.1.15).

In chapter 6 we discuss Cabello’s quasi-homomorphisms of topological
abelian groups as well as the stronger notion of pseudo-homomorphism which
we introduce here. In §6.2 and §6.3 we will explore the connection be-
tween quasi-homomorphisms and extensions of topological abelian groups
and we will present several cases in which the group Ext can be charac-
terized via the use of quasi-homomorphisms or pseudo-homomorphisms. In
§6.4 we will apply the results of the previous two sections to study the quasi-
homomorphisms of the form q : G → M , where G is any topological group
and M is R or T. Among others, we prove the following result:

• Let M be either a Banach space B or the unit circle T. Let {Gα : α <
κ} be a family of topological abelian groups such that for every α < κ,
every quasi-homomorphism of Gα to M is approximable. Then every
quasi-homomorphism of

∏
α<κGα to M is approximable (6.4.4).

Finally, in chapter 7 we apply the techniques of the previous chapters to
focus on the extensions of topological abelian groups of the form 0→M →
X → G→ 0 where M is R or T. In the first section of this chapter we will
present several conditions on G that force the splitting of every extension of
the previous form (this connects with problems 2 and 3). As a consequence
of the results of §7.1 we will deduce that:

• If G =
∏
i∈I Gi is a product of locally precompact abelian groups and

α and β are arbitrary ordinal numbers, Ext(G,Tα × Rβ) = 0 (7.1.9).

The last section of chapter 7 is devoted to construct various examples of
non-splitting extensions by R and T. In particular, we will use the weakened
topologies on Rn defined by Stevens ([Ste82]) to construct a group topology
τ such that Ext((R, τ),R) is an infinite dimensional vector space.



Chapter 0. Introduction 20

Acknowledgments

I want to thank the Asociación de Amigos de la Universidad de Navarra for
the financial support which enabled me to work on a full-time basis on my
dissertation. This work was also partially supported by the project: Grupos
topológicos. Dualidad y aplicaciones MTM2013-42486-P.

I wish to thank my two advisors Maŕıa Jesús Chasco and Xabier Domı́n-
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Chapter 1

Preliminaries

§1.1 Abelian groups

(1.1.1) Terminology. We will denote by ω the natural numbers and by P
the prime numbers. As usual, we will denote by R the group of real numbers,
by Q the group of rational numbers and by Z the group of integer numbers.
The unit circle T will be considered as the quotient R/Z.

Since we will deal only with abelian groups we will use additive notation.
We will use Greek letters to denote ordinal numbers which will be used as
index sets. Given a family of abelian groups {Gα : α < κ}, we will use∏
α<κGα to denote its product and

⊕
α<κGα to denote its direct sum.

Recall that an abelian group D is divisible if for every m ∈ Z and d ∈ D
there exists x ∈ D such that mx = d. A group is called torsion (resp. torsion
free) if every element has finite (resp. infinite) order. An abelian group F
is called free if it is a direct sum of infinite cyclic groups.

(1.1.2) Free abelian group generated by a set. Given a set X, the free
abelian group A(X) generated by X is the group of all formal sums of the
form

n1 · x1 + · · ·+ nk · xk, ni ∈ Z, xi ∈ X and xi 6= xj ∀i, j ≤ k

with the natural operation. Notice that A(X) is the direct sum of the infinite
cyclic groups generated by the elements of X.

Let B be an abelian group and let f : X → B be a map. Then f̃ :
A(X)→ B;

∑
i≤k nixi 7→

∑
i≤k nif(xi) is the unique group homomorphism

that makes commutative the diagram

X
f //� _

η

��

B

A(X)
f̃

<<

21
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where η : X ↪→ A(X) is the natural inclusion defined by η(x) = 1 ·x ([Fuc70,
Th. 14.2]).

(1.1.3) Exact sequences of abelian groups. A sequence A1
α1→ A2

α2→
· · · αn−1→ An of abelian groups and homomorphisms is said to be exact if
αm−1(Am−1) = kerαm for every 2 ≤ m ≤ n − 1. An exact sequence of the
form E : 0 → A1 → A2 → A3 → 0 is called a short exact sequence or an
extension of abelian groups.

Five-lemma. Suppose that we have the following commutative diagram of
abelian groups and homomorphisms in which the horizontal sequences are
exact

A //

α
��

B //

β
��

C //

γ
��

D //

δ
��

E

ε
��

A′ // B′ // C ′ // D′ // E′

If α, β, δ and ε are isomorphisms then γ is also an isomorphism (see [ML95,
Lemma 3.3 Ch. I]).

Given two short exact sequences E : 0 → H → X → G → 0 and
E′ : 0→ H → X ′ → G→ 0, we say that E and E′ are equivalent if there is
a homomorphism T : X → X ′ making commutative the following diagram

E 0 // H // X //

T
��

G // 0

E′ 0 // H // X ′ // G // 0

As a consequence of the Five-lemma if such T exists, it must be an iso-
morphism. The class of all short exact sequences equivalent to E will be
denoted by [E]. The extension E is said to split if it is equivalent to the
trivial sequence 0→ H → H ×G→ G→ 0.

(1.1.4) Push-out and Pull-back. 1The Push-out and Pull-back in the
category of abelian groups, can be used to define canonically the push-out
and pull-back sequences associated to a given sequence.

Let E : 0 → H
ı→ X

π→ G → 0 be a short exact sequence of abelian
groups and k : H → H ′, t : G′ → G two homomorphisms. Then

(i) The diagram

E : 0 // H
ı //

k
��

X
π // G // 0

H ′

1We will not give the proofs of these facts here in the introduction. Nevertheless, later
in §2.2 we will prove a generalized version of these results (for topological abelian groups).
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can be completed to a commutative diagram of the form

E : 0 // H
ı //

k
��

X
π //

s
��

G // 0

kE : 0 // H ′
r // PO // G // 0

where (PO, r, s) is the push-out triple of ı and k in the category of abelian
groups, and the bottom sequence kE is a short exact sequence. kE is called
the push-out extension of E and k (see [ML95, Lemma 1.4 Ch. III]).

(ii) The diagram

E : 0 // H
ı // X

π // G // 0

G′

t

OO

can be completed to a commutative diagram of the form

E : 0 // H
ı // X

π // G // 0

Et : : 0 // H // PB r
//

s

OO

G′

t

OO

// 0

where (PB, r, s) is pull-back triple of π and t in the category of abelian
groups, and the bottom sequence Et is a short exact sequence. Et is called
the pull-back extension of E and t (see [ML95, Lemma 1.2 Ch. III]).

(iii) Using the terminology of (i) and (ii), the extensions k(Et) and (kE)t
are equivalent (see [ML95, Lemma 1.6 Ch. III]).

(1.1.5) The group Ext in the category of abelian groups. Consider
the maps

∆G : G −→ G×G ∇H : H ×H −→ H
g 7−→ (g, g) (h, h′) 7−→ h+ h′

Given two short exact sequences E1 : 0 → H
ı1→ X1

π1→ G → 0, E2 : 0 →
H

ı2→ X2
π2→ G → 0 denote by E1 × E2 the extension 0 → H × H

ı1×ı2→
X1 ×X2

π1×π2→ G×G→ 0. Using the notation of (1.1.4.i) and (1.1.4.ii), we
will define the addition of the equivalence classes [E1] and [E2] as

[E1] + [E2] =
[(
∇H(E1 × E2)

)
∆G

]
=
[
∇H
(
(E1 × E2)∆G

)]
.

The second identity follows from (1.1.4.iii). This operation is called the Baer
sum.
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The set Ext(G,H) of all equivalence classes of short exact sequences of
the form 0 → H → X → G → 0 endowed with the Baer sum is an abelian
group ([0 → H → H × G → G → 0] acts as the neutral element and the
inverse of a class [E] is [−IdHE], see [ML95, Th. 2.1 of Ch. III]).

(i) If 0→ A→ B → C → 0 is a short exact sequence of abelian groups and
G is an abelian group, there exist exact sequences:

0→ Hom(C,G)→ Hom(B,G)→ Hom(A,G)

→ Ext(C,G)→ Ext(B,G)→ Ext(A,G)

0→ Hom(G,A)→ Hom(G,B)→ Hom(G,C)

→ Ext(G,A)→ Ext(G,B)→ Ext(G,C)

(see [ML95, Th. 3.2 and 3.4 of Ch. III])

(ii) Given an abelian group G:

(a) G is divisible if and only if Ext(X,G) = 0 for every abelian group X
(see [Fuc70, Lemma 52.1 (A)]).

(b) G is free if and only if Ext(G,X) = 0 for every abelian group X (see
[Fuc70, Lemma 52.1 (B)]).

(iii) Let {Gα : α < κ} be a family of abelian groups and let X be an abelian
group. Then for every abelian group X:

Ext
(⊕
α<κ

Gα, X
)
∼=
∏
α<κ

Ext(Gα, X), Ext
(
X,
∏
α<κ

Gα

)
∼=
∏
α<κ

Ext(X,Gα)

(see [ML95, Exercise 3 of Sec.8 Ch. III])

An abelian group G that satisfies that Ext(X,G) = 0 for every torsion
free abelian group X is called a cotorsion group ([Fuc70, §54]).

§1.2 General topology

(1.2.1) Terminology. We will follow the notation and terminology of [Eng89].
We will denote a topology defined on a set X by τ . Given a subset A of a
topological space (X, τ), we will denote by τ|A the topology induced by τ
on A i.e. the one whose open sets are of the form O ∩A with O ∈ τ .

Given two topologies τ and τ ′ on a set X if τ ⊂ τ ′ we will write τ ≤ τ ′

and we will say that:

• τ ′ is finer (stronger) than τ .

• τ is coarser (weaker) than τ ′.
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A family of non-empty sets B ⊂ τ is called a base for a topological space
(X, τ) if every non-empty open subset of X can be represented as the union
of a subfamily of B.

A neighborhood of a point x in a topological space (X, τ) is a set U ⊂ X
such that x ∈ O ⊂ U for some O ∈ τ . We will use Nx(X) to denote the set
of all neighborhoods of x in (X, τ). A family B(x) of neighborhoods of x
is called a base for a topological space (X, τ) at the point x (or a system of
neighborhoods of x) if for any neighborhood V of x there exists U ∈ B(x)
such that x ∈ U ⊂ V .

The adherence of a set A will be denoted by A and the interior by Å.

Let X be a Hausdorff topological space. Here we recall some topological
properties that we will use in the text:

• We will say that X is zero-dimensional if each point x ∈ X admits a
basis B(x) consisting of closed and open sets (clopen sets).

• X is called paracompact if every open cover of X has a locally finite
refinement2. Metric spaces and compact spaces are paracompact (see
[Eng89, 5.1.1 and 5.1.3]).

• X is totally disconnected if it has no non-trivial connected subsets. Dis-
crete spaces and zero-dimensional T2-spaces are totally disconnected
(see [Eng89, p. 369].

• A Tychonov space X is Čech-complete space if it is a Gδ-set in its Čech-
Stone compactification βX ([Eng89, §3.9]). Locally compact spaces
are Čech- complete, complete metrizable spaces are Čech-complete
([Eng89, 4.3.26])

(1.2.2) Initial and final topologies. Let X be a set and let H = {fα :
X → Yα : α < κ} be a family of maps where Yα is a topological space for
every α < κ. The initial (or weak) topology τI on X is the coarsest topology
on X that makes continuous all the maps in H. The initial topology τI
has the following properties:

• The family of all finite intersections of sets of the form f−1
α (Oα) where

Oα is open in Yα, constitutes a base for τI ([Wil70, 8.9]).

• Given a topological space Y , a map f : Y → (X, τI) is continuous if
and only if fα ◦ f is continuous for every α < κ ([Wil70, 8.10]).

2Recall that a family {Aα : α < κ} is locally finite if for every x ∈ X and U ∈ Nx(X),
the set {α < κ : Aα ∩ U 6= ∅} is finite
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Let A = {aα : Yα → X; α < κ} be a family of maps where Yα is a
topological space for every α < κ . The final (or strong) topology τF on X
is the finest topology on X that makes all the maps of A continuous. The
final topology τF has the following properties:

• A subset O ⊂ X is open in τF if and only if a−1
α (O) is open in Yα for

all α < κ ([Wil70, 9H]).

• Given a topological space Y , a map a : (X, τF ) → Y is continuous if
and only if a ◦ aα is continuous for every α < κ ([Wil70, 9H]).

(1.2.3) Open maps. Recall that a map f : X → Y between topological
spaces is open if f(O) is open in Y for every O open in X. f is said to be
relatively open if its corestriction X → f(X); x 7→ f(x) is open.

(1.2.4) Perfect mappings. Let X and Y be topological spaces. Suppose
that X is Hausdorff. A continuous map f : X → Y is perfect if it is closed
and all fibers f−1(y) are compact subsets of X. Some well-known facts
concerning perfect mappings are the following:

(i) The inverse image of a compact set by a perfect mapping is compact
([Eng89, Th. 3.7.1]). A perfect map is one-to-one if and only if it is an
embedding.

(ii) Given topological spaces X,Y, Y ′, if f : X → Y is a perfect map and
g : X → Y ′ is any continuous map then their diagonal product f4g : X →
Y × Y ′; x 7→ (f(x), g(x)) is perfect ([Eng89, Th. 3.7.10]).

(1.2.5) Inverse limits of topological spaces. Suppose thatXα is a topo-
logical space for every α < κ and that {πα,β : Xα → Xβ : β < α < κ} is a
family of continuous mappings satisfying that πα,α = IdXα and πα,γ ◦πγ,β =
πα,β for every β < γ < α. Then the family P = {Xα, πα,β : β < α < κ} is
called an inverse system3. The space

lim
←
P = {(xα)α<κ : xβ = πα,β(xα) ∀β < α < κ} ⊂

∏
α<κ

Xα

is called the inverse limit of the system P and it is a closed subspace of∏
α<κXα.

It is known that if for every α < κ, Bα is a base for Xα and πα :∏
γ<κXγ → Xα is the canonical projection then {lim← P ∩ π−1

α (Uα) : Uα ∈
Bα} is a base for lim← P (see [Eng89, Prop 2.5.5]).

3The usual definition of an inverse system does not require the index set to be well
ordered. Nevertheless, we will use this less general definition because it suits our purposes.
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Suppose that {fα : Y → Xα : α < κ} is a family of continuous maps
such that πα,β ◦ fα = fβ ∀β < α < κ. Then the map f : Y → lim← P; y 7→
(fα(y))α<κ is continuous (see [Dug66, Th. 2.5 Appendix 2]).

(1.2.6) kω-spaces. A Hausdorff topological space X is called a kω-space,
if it has an increasing sequence of compact subspaces {Kn : n < ω} such
that X =

⋃
n<ωKn and a subset A is closed in X if and only if A ∩Kn is

closed for every n < ω (see [FS77]). Given another topological space Y , a
map f : X → Y is continuous if and only if f|Kn : Kn → Y is continuous for
every n < ω.

(1.2.7) Character and pseudocharacter. Let X be a Hausdorff topo-
logical space. The character of a point x ∈ X is the smallest cardinal
number of the form4 |B(x)|, where B(x) is a base for X at the point x. The
pseudocharacter of x is the smallest cardinal number of the form |U| where
U is a family of open subsets of X such that

⋂
U∈U U = {x}.

If a compact space has countable pseudocharacter, then it is first count-
able. This is because for compact spaces character and pseudocharacter
coincide ([Eng89, 3.1.F]).

§1.3 Topological abelian groups

(1.3.1) Terminology. All the topological groups will be Hausdorff.

Let G be an abelian group and τ a topology on G. We will say that
(G, τ) is a topological abelian group if the maps

(G, τ)× (G, τ) −→ (G, τ) (G, τ) −→ (G, τ)
(x, y) 7−→ x+ y x 7−→ −x

are continuous. In this situation τ will be called a group topology.

Let N be a family of subsets of an abelian group G such that 0 ∈
U ∀U ∈ N . The family N is a system of open neighborhoods of 0 for a
group topology on G if and only if it satisfies the following properties (see
[HR62, Th. 4.5]):

(a) For every U, V ∈ N there exists another W ∈ N with W ⊂ U ∩ V .

(b) For every U ∈ N , there exists V ∈ N with −V ⊂ U .

(c) For every U ∈ N , there exists V ∈ N with V + V ⊂ U .

(d) For every U ∈ N and g ∈ U , there exists V ∈ N with g + V ⊂ U .

4Given a set A, we will use |A| to denote its cardinal.
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(1.3.2) Group topologies induced by group-norms. A group-norm on
an abelian group G is a function ν : G→ R, satisfying the following condi-
tions for all x, y ∈ G:

(a) ν(x) ≥ 0,

(b) ν(x) = 0 if and only if x = 0,

(c) ν(x+ y) ≤ ν(x) + ν(y),

(d) ν(x) = ν(−x).

The family B = {x+ Uε : ε ∈ R, ε > 0, x ∈ G}, where Uε = {x ∈ G : ν(x) <
ε}, is a basis for a metrizable group topology on G that we will denote by
τν . The topology τν is called the group topology induced by the group-norm
ν.

Notice that the topology on a topological abelian group G is induced by
a group-norm if and only if it is induced by an invariant metric (i.e. a metric
d : G×G→ R such that d(x+a, y+a) = d(x, y) ∀a, x, y ∈ R). Furthermore,
a topological group has a countable basis of open neighborhoods at 0 if and
only if it has a topology induced by an invariant metric (and therefore a
group-norm) ([HR62, 8.3]).

(1.3.3) Initial and final group topologies. Let G be an abelian group
and let H = {fα : G → Hα : α < κ} be a family of homomorphisms where
Hα is a topological abelian group for every α < κ. The initial (or weak)
group topology τI on G induced by H is the coarser group topology on G
that makes continuous all the homomorphisms of H. The initial group
topology τI has the following properties:

• The family of all finite intersections of sets of the form f−1
α (Oα) where

Oα is open in Hα, conforms a base for τI .

• Given a topological abelian group H, a homomorphism f : H →
(G, τI) is continuous if and only if fα ◦f is continuous for every α < κ.

Let A = {aα : Hα → G; α < κ} be a family of homomorphisms where
Hα is a topological abelian group for every α < κ . The final (or strong)
group topology τF on G is the finest group topology on G that makes con-
tinuous all the homomorphisms of A. Given a topological abelian group
H, a homomorphism a : (G, τF ) → H is continuous if and only if a ◦ aα is
continuous for every α < κ.

It is easily seen that the final group topology induced by A on G does
not coincide in general with the final topology induced by A (defined as in
(1.2.2)).

(1.3.4) Group topologies on the direct sum. Let {Gα : α < κ} be
family of topological abelian groups. The box topology on the direct sum
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⊕
α<κGα is the group topology induced by the system of neighborhoods{( ∏

α<κ

Uα
)
∩
⊕
α<κ

Gα : Uα ∈ N0(Gα) ∀α < κ
}
.

The coproduct topology on
⊕

α<κGα is the final group topology with respect
to the natural inclusions Gγ ↪→

⊕
α<κGα.

(i) The coproduct topology on
⊕

α<κGα is the finest group topology that
induces the original topologies on all groups Gα ([CD03, Cor. 10]).

(ii) If κ = ω the box topology and the coproduct topology on
⊕

α<κGα coin-
cide ([CD03, Prop. 11]).

(1.3.5) Locally compact abelian groups. Locally compact abelian groups
are those that contain a compact neighborhood of the neutral element. The
class of locally compact abelian groups will be denoted by L, and our ba-
sic reference for this class will be [HR62]. It is known that any G ∈ L is
topologically isomorphic to Rn×G0 where n < ω and G0 ∈ L has a compact
open subgroup (This is the structure theorem for locally compact abelian
group, see [HR62, 24.30]).

(1.3.6) Locally precompact abelian groups. A topological abelian group
is called locally precompact if it can be embedded as dense subgroup of a
locally compact abelian group. Q is an example of a locally precompact
abelian group that is not locally compact.

(1.3.7) p-adic numbers. Given p ∈ P, the group of p-adic numbers Qp is
defined as the group of formal series of the form

∑
n∈Z

xnp
n (xn ∈ {0, . . . , p− 1} ∀n ∈ Z and ∃k ∈ Z : xn = 0∀n < k)

endowed with the natural addition.
The family of subgroups

Hk =
{∑
n∈Z

xnp
n ∈ Qp : xn = 0∀n < k

}
≤ Qp, k ∈ Z

conforms a system of neighborhoods of 0 =
∑

0·pn for a locally compact, to-
tally disconnected group topology on Qp in which theHk’s are compact. Fur-
thermore, the Hk’s are the only proper closed subgroups of Qp (see [HR62,
10.16]) which implies that all the non-trivial proper closed subgroups of Qp

are open. The group of p-adic integers is defined as Zp = H0.

(1.3.8) Pontryagin duality. Let G be a topological abelian group and
let CHom(G,T) be the group of all continuous homomorphisms from G
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to T, with the pointwise operation. The elements of CHom(G,T) are called
continuous characters and the dual group G∧ is defined as the abelian group
CHom(G,T) endowed with the compact-open topology. Recall that the
family of subsets

P (F, r) = {χ ∈ CHom(G,T) : χ(F ) ⊂ (−r, r) + Z} ⊂ CHom(G,T)

where F ⊂ G is compact and r ∈ R, constitutes a basis of open neigh-
borhoods of 0 for the compact open topology on CHom(G,T). The bidual
group G∧∧ is defined as (G∧)∧.

A subgroup H of a topological abelian group G is said to be dually closed
if for every element x of G\H there is χ ∈ G∧ such that χ(H) = {0 + Z}
and χ(x) 6= 0 + Z. The subgroup H is said to be dually embedded if every
continuous character defined onH can be extended to a continuous character
on G.

We have the following facts:

(a) If G is in L, the map

G −→ G∧∧

g 7−→
(
evg : G∧ → T; χ 7→ χ(g)

)
is a topological isomorphism (this is the celebrated Pontryagin duality theo-
rem, see [HR62, 24.8])

(b) G is compact (resp. discrete) if and only if G∧ is discrete (resp. compact)
(see [HR62, 23.17]).

(c) Z∧ ∼= T, T∧ ∼= Z and R∧ ∼= R (see [HR62, 23.27(a) and 23.27(e)]).

(1.3.9) MAP groups. A topological abelian group G is called maximally
almost periodic (shortly MAP) if for every x ∈ G\{0} there exist χ ∈ G∧
with χ(x) 6= 0+Z. MAP groups are also called groups with sufficiently many
characters.

(i) Locally compact abelian groups are MAP ([HR62, 22.17]).

(ii) Compact subgroups of Hausdorff MAP abelian groups are dually embed-
ded and dually closed ([BMP96, Prop. 1.4]).

(1.3.10) Locally quasi-convex topological abelian groups. A subset
A of a topological abelian group G is called quasi-convex if for every x ∈
G \ A there is a χ ∈ G∧ such that χ(a) ∈ [−1/4, 1/4] + Z ∀a ∈ A and
χ(x) /∈ [−1/4, 1/4] + Z. A topological abelian group is called locally quasi-
convex if it has a neighborhood basis of 0 consisting of quasi-convex sets.

(1.3.11) Răıkov Completeness. A topological abelian group G is Răıkov-
complete (shortly complete) if every Cauchy filter in G converges (see [AT08,
Section 3.6]).



31 §1.3. Topological abelian groups

For every topological abelian group G there exists a Răıkov-complete
topological abelian group %G such that G is a dense subgroup of %G. %G
is called the Răıkov completion of G and is unique in the sense that for
every Răıkov-complete topological abelian group G∗ containing G as a dense
subgroup, there exists a topological isomorphism φ : G∗ → %G such that
φ(g) = g ∀g ∈ G (see [AT08, Th. 3.6.14]).

Every continuous homomorphism of topological abelian groups f : G→
H can be extended to a unique continuous homomorphism %f : %G → %H
([AT08, Cor. 3.6.17]).

A topological group G is locally precompact if and only if its Răıkov
completion is locally compact.

(1.3.12) Almost-metrizability. Recall that a topological abelian group
G is almost-metrizable if it contains a compact subgroup K such that G/K
is metrizable.

(i) A topological group is Čech-complete if and only if it is almost-metrizable
and Răıkov-complete (see [AT08, Theo. 4.3.15]).

(ii) Metrizable topological abelian groups and locally compact groups are
almost-metrizable.

(1.3.13) Three space properties in topological abelian groups. A prop-
erty (P) is called a three space property in the category of topological abelian
groups when given any topological abelian group G and any closed subgroup
H ≤ G, if H and G/H have the property (P) then G has the property (P).

The following are examples of three space properties in this category:

• Metrizability ([HR62, 5.38(e)]).

• Răıkov completeness ([War89, Exercise 5.1]).

• Compactness and local compactness ([HR62, Th. 5.25]).

However, σ-compactness, sequential completeness and realcompactness are
not three space properties (see [BT06] for more examples).

(1.3.14) Free abelian topological groups. Let X a completely regular
Hausdorff topological space. The free abelian topological group over X is the
free abelian group A(X) endowed with the unique Hausdorff group topology
that satisfies the following properties:

• The mapping η : X ↪→ A(X); x 7→ 1 · x, becomes a topological
embedding.

• For every continuous mapping f : X → G, where G is an abelian topo-
logical group, the group homomorphism f̃ : A(X)→ B;

∑
i≤k nixi 7→∑

i≤k nif(xi) is continuous.

(see [Aus99, Th. 12.1] and [AT08, §7]).
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§1.4 Topological vector spaces

(1.4.1) Terminology. Our basic reference for topological vector spaces will
be [Sch86]. We will only consider vector spaces over the field R.

Let X be a vector space and τ a topology on X. We will say that (X, τ)
is a topological vector space if the maps

(X, τ)× (X, τ) −→ (X, τ) R× (X, τ) −→ (X, τ)
(x, y) 7−→ x+ y (r, x) 7−→ r · x

are continuous. In this situation τ will be called a vector space topology.
Normed spaces are topological vector spaces. Given a normed space X,

we will use B(x, δ) to denote the open ball centered at x ∈ X with radius
δ > 0.

Recall that a subset A of a topological vector space X is bounded if
∀U ∈ N0(X), there exists λ ∈ R such that A ⊂ λU ([Sch86, §5 Ch. I]). A
subset B ⊂ X is called convex if for every x, y ∈ B, {λx + (1 − λ)y : 0 <
λ < 1} ⊂ B ([Sch86, §1 Ch. II]). Locally bounded (resp. locally convex)
topological vector spaces are those that admit a system of bounded (resp.
convex) neighborhoods of the neutral element.

The Răıkov completion of a topological vector space X is a topological
vector space that contains X as a dense subspace (see [Sch86, 1.5 Ch. 1]).

A topological vector space is called Fréchet if it is metrizable, (Răıkov)
complete and locally convex. Complete normed spaces are called Banach
spaces.

(1.4.2) Three space properties in topological vector spaces. A prop-
erty (P) is called a three space property in the category of topological vector
spaces when given any topological vector space X and any closed subspace
Y ≤ X, if Y and X/Y have the property (P) then X has the property
(P). If a property (P) is a three space property in the category of topolog-
ical abelian groups then it is also a three space property in the category of
topological vector spaces.

Local boundedness is a three space property in the category of topolog-
ical vector spaces ([RD81a, Th. 3.2]). Nevertheless, local convexity is not a
three space property in this category (see [KPR84, Chapter 5].)

(1.4.3) `p. Given x = (xn)n∈ω ∈ Rω, and p ∈ (0,∞) we define ‖x‖p =
(
∑∞

n∈ω |xn|p)1/p. The space `p is defined as the subspace {x ∈ Rω : ‖x‖p <
∞} ≤ Rω endowed with the topological vector space structure induced by
‖ · ‖p. For p ≥ 1, `p is a Banach space.



Chapter 2

Extensions of topological
abelian groups

Throughout this chapter we will develop the basis of the theory of extensions
of topological abelian groups. The notions of push-out and pull-back exten-
sion (§2.2) will give us a crucial device to obtain new extensions from others
and will be the key for our future constructions. Notice that the objects
and results presented in this chapter generalize the theory of extensions of
abelian groups ((1.1.3), (1.1.4))

§2.1 Equivalence and splitting

(2.1.1) Definitions. A short exact sequence of topological abelian groups
E : 0 → H

ı→ X
π→ G → 0 is called an extension of topological abelian

groups if the maps ı and π are relatively open (see (1.2.3)), continuous
homomorphisms. If there is no place to confusion, we will often abbreviate
this by saying that E is an extension.

Notice that the exactness of E implies that ı(H) = kerπ is closed.
Furthermore, according to the first isomorphism theorem ([HR62, (5.27)]),
X/ı(H) is topologically isomorphic to G.

Two extensions of topological abelian groups E : 0 → H → X → G →
0 and E′ : 0 → H → X ′ → G → 0 are said to be equivalent if there
exists a continuous homomorphism T : X → X ′ making the squares in (E1)
commutative.

0 // H // X //

T
��

G // 0

0 // H // X ′ // G // 0

(E1)

Under these conditions we will say that T witnesses the equivalence of E

33
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and E′ and we will write E ≡ E′. We will denote by [E] the class of all
extensions of topological abelian groups equivalent to E.

(2.1.2) Lemma. Let H be a subgroup of a group G and let τ and τ ′ be
(not necessary Hausdorff) group topologies on G such that both coincide in
H (i.e. τ ′|H = τ|H), τ ′ ≤ τ and (G, τ)/H = (G, τ ′)/H. Then τ ′ = τ .

Proof. See [Roe72]. �

We will show now that the continuous homomorphism T of the above
definition is in fact a topological isomorphism.

(2.1.3) Proposition. Let E : 0 → H
ı→ X

π→ G → 0 and E′ : 0 → H
ı′→

X ′
π′→ G → 0 be extensions of topological abelian groups. Suppose that a

continuous homomorphism T : X → X ′ makes the squares in the following
diagram commutative

E : 0 // H
ı // X

π //

T
��

G // 0

E′ : 0 // H
ı′
// X ′

π′
// G // 0

Then T is a topological isomorphism.

Proof. The five-lemma (1.1.3) implies that T is an isomorphism of abelian
groups. Let T be the group topology on X ′ induced by the isomorphism T
and τ the original topology on X ′. Notice that T is finer that τ . Denote by
ıT : H → (X ′, T ) and πT : (X ′, T ) → G the maps defined by ıT (h) = ı′(h)
and πT (x) = π′(x) respectively. Since ıT : H → (X ′, T ) and ı′ : H → (X ′, τ)
are embeddings τ|ı′(H) = T|ı′(H). πT : (X ′, T ) → G and π′ : (X ′, τ) → G
are open and continuous homomorphisms. Consequently, (X ′, T )/ı′(H) =
(X ′, τ)/ı′(H) and according to (i), T = τ . This proves that T is a topological
isomorphism. �

(2.1.4) Remark. Notice that a property (P) is a three space property in
the category of topological abelian groups (1.3.13) if and only if given any
extension of topological abelian groups of the form 0 → H → X → G → 0
in which H and G have (P), then X also has the property (P).

(2.1.5) Splitting of extensions of topological abelian groups. LetG
and H be topological abelian groups and let ıH : H → H × G and πG :
H × G → G, be the canonical maps. Considering on G × H the product
topology, the short exact sequence E0 : 0 → H

ıH→ H ×G πG→ G → 0 is triv-
ially an extension of topological abelian groups which is called the trivial
extension of G by H.
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We say that the extension of topological abelian groups E : 0 → H
ı→

X
π→ G→ 0 splits if it is equivalent to the trivial extension E0.

Given a topological abelian group A and a subgroup B ≤ A, B is said to
split from1 A if there exists another subgroup C ≤ A such that the natural
homomorphism φ : B ×C → A; (b, c) 7→ b+ c is a topological isomorphism.

(i) E splits if and only if ı(H) splits from X.

Proof. Suppose that E : 0 → H
ı→ X

π→ G → 0 splits and consider
T : H × G → X the topological isomorphism witnessing the equivalence
between E and the trivial extension E0 : 0 → H

ıH→ H ×G πG→ G → 0. The
map φ : ı(H)× T ({0} ×G)→ X; (ı(h), T (0, g)) 7→ ı(h) + T (0, g) = T (h, g)
is a topological isomorphism.

Conversely, suppose that there exists a subgroup Y ≤ X such that the
map ϕ : ı(H) × Y → X; (ı(h), y) 7→ ı(h) + y is a topological isomorphism.
Write ϕ−1 = (f1, f2) : X → ı(H) × Y and define t : X → H × G as t(x) =
(ı−1(f1(x)), π(f2(x))). One can easily prove that t ◦ ı = ıH . Furthermore,
since π ◦ f2(x) = π(x), we obtain that πG ◦ t = π. Consequently t witnesses
the equivalence of E and E0. �

E is said to split algebraically (or to be algebraically splitting) if, regarded
as a short exact sequence of abelian groups, it splits (in the sense of (1.1.3)).
Now we introduce a criterion that will be very useful in the following sections:

(ii) An extension of topological abelian groups E : 0 → H → X → G → 0
is algebraically splitting if and only if it is equivalent to an extension of
topological abelian groups of the form Eτ : 0 → H

ıτ→ (H × G, τ)
πτ→ G → 0

where τ is a group topology (not necessarily the product topology) on H ×G
and ıτ , πτ are the canonical mappings.

Proof. Let T : X → H ×G be an isomorphism of abelian groups witnessing
the algebraic equivalence of E and the trivial extension. Define τ as the
group topology on H × G induced by T i.e. the group topology that has
{T (U) : U ∈ N0(X)} as a system of neighborhoods of 0. The converse
implication is trivial. �

(2.1.6) Example. Let D be any dense subgroup of R of the form Z+aZ for
some a /∈ Q (to check that these groups are dense in R see [Mor77, Cor.1,
Prop. 23 §2]). Take π : D → D/Z; d→ d+ Z, the natural projection. The
sequence E : 0→ Z ↪→ D

π→ D/Z→ 0 is an extension of topological abelian
groups. Notice that by definition of D, we see that E splits algebraically.

Let us see that the extension E does not split. Suppose that E splits.
By definition of splitting extension of topological abelian groups, D is topo-
logically isomorphic to Z × L for some L ≤ R. This implies that taking

1 Some authors express this by saying that B splits topologically, from A or that B is
a topological direct summand of A.
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Răıkov completions,

R ∼= %D ∼= %(Z× L) ∼= Z× %L,

which gives us a contradiction because R is not algebraically isomorphic (as
an abelian group) to the product Z× %L.

(2.1.7) Proposition. Let E : 0 → H
ı→ X

π→ G → 0 be an extension of
topological groups. The following are equivalent:

(i) E splits.

(ii) There exists a continuous homomorphism S : G→ X with π ◦ S = idG.

(iii) There exists a continuous homomorphism P : X → H with P ◦ ı = idH .

Proof. (i) ⇒ (ii). If E splits, there exists a continuous homomorphism
T : H ×G −→ X making the squares in (E2) commutative

E : 0 // H
ı // X

π // G // 0

E0 : 0 // H ıH
// H ×G
T

OO

πG
// G // 0

(E2)

where iH and πG are the canonical maps. Define S : G → X as S(g) =
T (0, g). Using the commutativity of the right square (E2), π(S(g)) =
π(T (0, g)) = πG(0, g) = IdG(g).

(ii) ⇒ (iii). Since for every x ∈ X, x − S ◦ π(x) ∈ kerπ, the map P :
X → H; x 7→ ı−1(x− S ◦ π(x)) is a well-defined continuous homomorphism
that satisfies the required property.

(iii) ⇒ (i). Define t : X → H × G as t(x) = (P (x), π(x)). Since
t ◦ ı(h) = (h, 0) = ıH(h) and πG ◦ t(x) = π(x), it follows that t witnesses the
equivalence between E and the trivial extension E0. �

§2.2 Push-out and pull-back extensions

(2.2.1) Push-out square. Given topological abelian groups A, B and C
and continuous homomorphisms u : A → B and v : A → C, we will call
Push-out (briefly PO) the quotient of the product B × C by the subgroup
∆ = {(−u(a), v(a)) : a ∈ A} (2). If we consider the maps r : C → PO; c 7→

2PO is endowed with the quotient topology of the corresponding product topology on
B × C
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(0, c) + ∆ and s : B → PO; b 7→ (b, 0) + ∆ we obtain the following commu-
tative diagram:

A
u //

v
��

B

s
��

C r
// PO

The triple (PO, s, r) is called the push-out of u and v.

The push-out satisfies the following universal property:

(i) For every topological abelian group G and continuous homomorphisms
r′ : C −→ G, s′ : B −→ G with s′ ◦ u = r′ ◦ v, there is a unique continuous
homomorphism φ from PO to G making the diagram (E3) to commute.

A
u //

v
��

B

s
��

s′

��

C r
//

r′ ,,

PO
φ

!!
G

(E3)

Proof. Define φ : PO = (B × C)/∆ → G as φ((b, c) + ∆) = s′(b) + r′(c).
The identities (E7) and (E5) imply that φ is a well-defined homomorphism.

φ
(
(b, c) + (−u(a), v(a)) + ∆

)
= φ

(
(b− u(a), c+ v(a)) + ∆

)
= s′(b− u(a)) + r′(c+ v(a)) (E4)

= s′(b) + r′(c)

= φ
(
(b, c) + ∆

)
. (E5)

φ
(
(b+ b′, c+ c′) + ∆

)
= s′(b+ b′) + r′(c+ c′) (E6)

= s′(b) + r′(c) + s′(b′) + r′(c′)

= φ
(
(b, c) + ∆

)
+ φ

(
(b′, c′) + ∆

)
. (E7)

The composition of φ with the natural mapping (a, b) 7→ (a, b) + ∆ is con-
tinuous, hence φ is continuous. Since φ(s(b)) = φ((b, 0) + ∆) = s′(b) and
φ(r(c)) = φ((0, c) + ∆) = r′(c), φ makes (E3) commutative.

To see that φ is unique suppose that there exists another continuous
homomorphism φ′ : PO → G such that φ′ ◦ s = s′ and φ′ ◦ r = r′. Then

φ′
(
(b, c) + ∆

)
= φ′

(
(b, 0) + ∆

)
+ φ′

(
(0, c) + ∆

)
= φ′

(
s(b)

)
+ φ′

(
r(c)

)
= s′(b) + r′(c) = φ

(
(b, c) + ∆

)
.

Thus φ = φ′. �
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(ii) Suppose that there exists another triple (PO′, r′ : B → PO′, s′ : C →
PO′) satisfying the universal property described in (i). Then PO and PO′

are canonically isomorphic i.e. there exists an isomorphism PO → PO′,
making the corresponding diagram commutative.

Proof. This is a consequence of (i). �

(2.2.2) Proposition-definition. Let E : 0 → H
ı→ X

π→ G → 0 be an
extension of topological abelian groups, Y a topological abelian group and
t : H → Y, a continuous homomorphism. If (PO, r, s) is the push-out of
ı and t, there is an extension of topological abelian groups tE, making the
diagram

E : 0 // H
ı //

t
��

X
π //

s
��

G // 0

tE : 0 // Y r
// PO p

// G // 0

(E8)

commutative. The extension tE is called the push-out extension of E and
t.

Proof. Consider the map p : PO = (X × Y )/∆ → G; (x, y) + ∆ 7→ π(x),
where ∆ = {(−ı(h), t(h)) : h ∈ H}. Notice that p is well-defined because

p
(
(x, y) + (−ı(h), t(h)) + ∆

)
= π

(
x− ı(h)

)
= π(x) = p

(
(x, y) + ∆

)
,

furthermore, by construction p makes (E8) commutative. The continuity
of p follows from the fact that its composition with the mapping (x, y) 7→
(x, y) + ∆ is continuous. To see that p is open notice that for every V ∈
N0(PO), p(V ) ⊃ p(s(s−1(V ))) = π(s−1(V )). This inclusion combined with
the fact that π is open and s is continuous gives us that p(V ) ∈ N0(G).

The surjectivity of π trivially implies that p is onto. Furthermore, r :
Y → PO; y 7→ (0, y) + ∆ is one-to-one because if (0, y) ∈ ∆, there exist
h ∈ H with 0 = −ı(h) and y = t(h) which implies that y = 0 (by the
injectivity of ı). Since

ker p =
{

(x, y) + ∆ : π(x) = 0
}

=
{

(x, y) + ∆ : ∃h such that x = −ı(h)
}

=
{

(0, y) + ∆ : y ∈ Y
}

= r(Y ),

tE is a short exact sequence.
It only remains to check that r : Y → r(Y ) is open. Pick V ∈ N0(Y ).

We have to show that:

∃U ′ ∈ N0(X), ∃V ′ ∈ N0(Y ) : r(V ) ⊃ (U ′ × V ′ + ∆) ∩ r(Y ). (E9)

Since r(y) = (0, y) + ∆, (E9) is equivalent to:

∃U ′ ∈N0(X), ∃V ′ ∈ N0(Y ) :

(0, y) + ∆ ∈ (U ′ × V ′ + ∆) =⇒ (0, y) + ∆ ∈ ({0} × V + ∆). (E10)
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Since r is injective, (E10) is actually equivalent to:

∃U ′ ∈N0(X),∃V ′ ∈ N0(Y ) :

(0, y) + ∆ ∈ (U ′ × V ′ + ∆) =⇒ y ∈ V. (E11)

Taking a symmetric V ′ ∈ N0(Y ) with V ′ + V ′ ⊂ V and U ′ = −ı(W ) with
t(W ) ⊂ V ′, W ∈ N0(H), we obtain (E11), which proves that r is open. �

(2.2.3) Proposition. Let E : 0 → H
ı→ X

π→ G → 0 and E′ : 0 → Y
r′→

X ′
p′→ G→ 0 be extensions of topological abelian groups and let k : H → Y ,

s′ : X → X ′ be continuous homomorphism. Assume that the diagram (E12)
is commutative

E : 0 // H
i //

k
��

X
π //

s′
��

G // 0

E′ : 0 // Y
r′
// X ′

p′
// G // 0

(E12)

Then E′ is equivalent to the push-out extension kE defined in (2.2.2).

Proof. Consider the push-out triple (PO, r, s) of ı and k as in (2.2.1). In
view of the proof of (2.2.1.i), the continuous homomorphism φ : PO =
(X × Y )/∆ → X ′; (x, y) 7→ s′(x) + r′(y) makes the following diagram
commutative:

H
ı //

k
��

X

s
��

s′

��

Y r
//

r′ ,,

PO
φ

""
X ′

(E13)

Let us see that φ witnesses the equivalence between E′ and kE, in other
words, that φ makes the squares in (E14) commutative.

kE : 0 // Y
r // PO

p //

φ
��

G // 0

E′ : 0 // Y
r′
// X ′

p′
// G // 0

(E14)

Indeed, the commutativity of left square in (E14) is a trivial consequence
of (E13). Furthermore, using the exactness of E′ and the commutativity of
(E12)

p′
(
φ
(
(x, y) + ∆

))
= p′

(
r′(y) + s′(x)

)
= 0 + p′

(
s′(x)

)
= π(x) = p

(
(x, y) + ∆

)
.
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Since we are working in the class of Hausdorff topological abelian groups,
it is necessary to check that when we consider the push-out extension kE
we stay in the class of Hausdorff topological abelian groups. This is a con-
sequence of the following fact:

Fact. Let A,B and C be Hausdorff topological abelian groups. If u : A→ B
is an embedding of topological abelian groups with closed image then for
every continuous homomorphism v : A→ C, the associated push-out PO =
(B × C)/∆ = (B × C)/{(−u(a), v(a)) : a ∈ A} is Hausdorff.

Using that u is an embedding, we can write

∆ = {(−u(a), v(a)) : a ∈ A}
=
{

(b,−v(u−1(b))) : b ∈ u(A)
}

= Graph
(
(−v) ◦ (u−1

|u(A))
)
.

Since (−v)◦(u−1
|u(A)) : u(A)→ C is continuous andB is Hausdorff, Graph

(
(−v)◦

(u−1
|u(A))

)
is closed in u(A)×C (see [Eng89, Cor. 2.3.22]), which is closed in

B × C. Accordingly, ∆ is closed in B × C and PO, being the quotient of a
Hausdorff group by a closed subspace, it is Hausdorff.

�

(2.2.4) Corollary. Consider extensions of topological abelian groups E :
0 → H → X → G → 0, E′ : 0 → H → X ′ → G → 0 and a continuous
homomorphism k : H → Y . If E ≡ E′ then kE ≡ kE′.

(2.2.5) Pull-back square. Let A, B and C be topological abelian groups
and u : B → A, v : C → A continuous homomorphisms. Define the topo-
logical abelian group PB = {(b, c) ∈ B × C : u(b) = v(c)} ≤ B × C, and
r : PB → C; (b, c) 7→ c, s : PB → B; (b, c) 7→ b. The following diagram is
commutative:

PB
s //

r
��

B

u
��

C v
// A

The triple (PB, r, s) is called the pull-back of u and v and it has the following
universal property:

(i) Given a topological abelian group G and continuous homomorphisms r′ :
G → C, s′ : G → B with v ◦ r′ = u ◦ s′, there is a unique continuous
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homomorphism ϕ : G→ PB making (E15) commutative.

A B
uoo

C

v

OO

PB
roo

s

OO

G

ϕ
aa

s′

^^

r′

dd

(E15)

Proof. The continuous homomorphism ϕ : G → PB; x 7→ (s′(x), r′(x))
makes (E15) commutative. To prove the uniqueness of ϕ suppose that ϕ′ :
G → PB is another continuous homomorphism such that s ◦ ϕ′ = s′ and
r ◦ ϕ′ = r′. Write ϕ′(x) = (ϕ′1(x), ϕ′2(x)) ∀x ∈ G. ϕ′1(x) = s ◦ ϕ′(x) = s′(x)
and ϕ′2(x) = r ◦ ϕ′(x) = r(x), hence ϕ′ = ϕ. �

(ii) Suppose that there exists another triple (PB′, r′ : PB′ → C, s′ : PB′ →
B) satisfying the universal property described in (i). Then PB and PB′

are canonically isomorphic i.e. there exists an isomorphism PB′ → PB,
making the corresponding diagram commutative.

Proof. This is a trivial consequence of (i). �

(2.2.6) Proposition-definition. Let 0 → H
ı→ X

π→ G → 0 be an ex-
tension of topological abelian groups and let t : Y −→ G be a continuous
homomorphism. Let (PB, r, s) be the pull-back of π and t. There exists
an extension of topological abelian groups Et completing the commutative
diagram (E16)

E : 0 // H
ı // X

π // G // 0

Et : : 0 // H
I
// PB r

//

s

OO

Y

t

OO

// 0

(E16)

The extension Et is called the pull-back extension of E and t.

Proof. The (well-defined) continuous homomorphism

I : H −→ PB = {(x, y) ∈ X × Y : π(x) = t(y)}
h 7−→ (ı(h), 0)

makes (E16) commutative.

Let us see that Et is an extension of topological abelian groups. Since ı
is an embedding and I(H) = ı(H) × 0, I is also an embedding. Moreover,
as ker r = {(x, 0) ∈ PB} = {(x, 0) : π(x) = 0, x ∈ X} = ı(H) × {0}, the
sequence Et is exact. The surjectivity of π implies that for every y ∈ Y ,
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there exists x ∈ X such that π(x) = t(y), which means that r is also onto.
To check that r is open, notice that for every U ∈ N0(X), V ∈ N0(Y ),

r
(
(U × V ) ∩ PB

)
⊃ t−1(π(U)) ∩ V.

Since π is open, r((U × V ) ∩ PB) ∈ N0(Y ) and this gives us that r is
open. �

(2.2.7) Proposition. Let E : 0 → H
ı→ X

π→ G → 0 and E′ : 0 → H
I′→

X ′
r′→ Y → 0 be extensions of topological abelian groups and let t : Y → G,

s′ : X ′ → X be two continuous homomorphisms. Assume that the diagram
(E17) is commutative

E : 0 // H
ı // X

π // G // 0

E′ : : 0 // H
I′
// X ′

r′
//

s′

OO

Y

t

OO

// 0

(E17)

Then E′ is equivalent to the pull-back extension Et defined in (2.2.6).

Proof. Let (PB, r, s) the pull-back of π and t. In view of (2.2.5.i), the contin-
uous homomorphism ϕ : X ′ 7→ PB; x 7→ (s′(x), r′(x)) makes commutative
the diagram

G X
πoo

Y

t

OO

PB
roo

s

OO

X ′

ϕ
bb

s′

__

r′

dd

(E18)

It suffices to show that the diagram (E19) is commutative.

E′ : : 0 // H
I′ // X ′

r′ //

ϕ

��

Y // 0

Et : : 0 // H
I
// PB r

// Y // 0

(E19)

The commutativity of the right square of (E19) follows from the commuta-
tivity of (E18). Using (E17)

ϕ
(
I ′(h)

)
=
(
s′
(
I ′(h)

)
, r′
(
I ′(h)

))
=
(
ı(h), 0

)
= I(h),

which completes the proof. �
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(2.2.8) Corollary. Consider two extensions of topological abelian groups
E : 0 → H → X → G → 0 and E′ : 0 → H → X ′ → Y → 0 and a
continuous homomorphisms t : Y → G. If E ≡ E′ then Et ≡ E′t.

(2.2.9) Proposition. Let E : 0 → H
ı→ X

π→ G → 0 be an extension of
topological abelian groups and let k : H → H ′, t : G′ → G be continuous
homomorphisms. Then the extensions k(Et) and (kE)t are equivalent.

Sketch of the proof. Displaying the extensions E, kE, (kE)t, Et and k(Et)
we obtain the following commutative diagram

(kE)t : 0 // H ′ // PB(kE)t
//

��

G′

t

��

// 0

kE : 0 // H ′ // POkE // G // 0

E : 0 // H
ı //

k

OO

X

OO

π // G // 0

Et : 0 // H //

k
��

PBEt

��

//

OO

G′

t

OO

// 0

k(Et) : 0 // H ′ // POk(Et)
// G′ // 0

where the unspecified arrows are the canonical mappings and

POkE = (H ′ ×X)/{(−k(h), ı(h)) : h ∈ H} = (H ′ ×X)/∆1

PB(kE)t = {((h′, x) + ∆1, g
′) : t(g′) = π(x)} ≤ POkE ×G′

PBEt = {(x, g′) : t(g′) = π(x)} ≤ X ×G′
POk(Et) = (H ′ × PBEt))/{(−k(h), (ı(h), 0)) : h ∈ H} = (H ′ × PBEt)/∆2

A routine verification shows that the continuous homomorphism

PB(kE)t −→ POk(Et)(
(h′, x) + ∆1, g

′) 7−→ (
h′, (x, g′)

)
+ ∆2

witnesses the equivalence of (kE)t and k(Et). �

(2.2.10) Notes. (2.2.2) and (2.2.6) were introduced in the category of topo-
logical abelian groups by Castillo in [Cas00]. (2.2.3) and (2.2.7) appear in
[Bel] without proof; the argument shown here imitates the one for abelian
groups ([ML95, lemmas 1.2, 1.3, 1.4 and 1.5 of Ch. III]).
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Chapter 3

The Ext group in the
category of topological
abelian groups

We proceed now to define the Ext group in the context of topological abelian
groups. The definition of this object will be a direct translation of the
definition of Ext commonly used in homological algebra (1.1.5). In sections
§3.2 to §3.5 we will study the properties of this group and we will apply
them to investigate Problem 2.

The results of this chapter continue the work of Fulp and Griffith ([FG71a],
[FG71b]) and Sahleh and Alijani ([SA14a], [SA14b]) which was focused on
the class of locally compact abelian groups.

§3.1 Addition of extensions

(3.1.1) The Ext group. Let G,H be topological abelian groups. We de-
note by Ext(G,H) the set of all equivalence classes of extensions of topolog-
ical abelian groups of the form 0→ H → X → G→ 0, with the equivalence
relation defined in (2.1.1).

Consider the natural maps ∆G : G −→ G×G; g 7→ (g, g) and ∇H : H ×
H −→ H; (h, h′) 7→ h + h′. Notice that given two extensions of topological
abelian groups E1 : 0→ H → X1 → G→ 0 and E2 : 0→ H → X2 → G→
0, its product E1 × E2 (defined as in (1.1.5)) is an extension of topological
abelian groups. Using the terminology of lemmas (2.2.6) and (2.2.2), we will
define the addition of the equivalence classes [E1] and [E2] as

[E1] + [E2] =
[(
∇H(E1 × E2)

)
∆G

]
=
[
∇H
(
(E1 × E2)∆G

)]
. (E20)

The second identity is a consequence of (2.2.9). This operation is called
the Baer sum and although it is defined between equivalence classes, some-
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times we will write E1 + E2 = ∇H(E1 × E2)∆G as a way to shorten the
expressions.

(i) Ext(G,H) endowed with the Baer sum (E20) is an abelian group. Fur-
thermore,

k(E1 + E2) ≡ kE1 + kE2, (E1 + E2)t ≡ E2t+ E2t, (E21)

(k1 + k2)E ≡ k1E + k2E, E(t1 + t2) ≡ Et1 + Et2, (E22)

for every [E], [E1], [E2] ∈ Ext(G,H) and continuous homomorphisms t, t1, t2
from a topological abelian group Y1 to G and continuous homomorphisms
k, k1, k2 from H to another topological abelian group Y2.

Proof. The proof given by Mac Lane in [ML95, Th. 2.1 of Ch. III] for
extensions of modules is valid in this context with the obvious replacements.
Nevertheless, we will include the proof for the sake of completeness.

We will start proving (E21) and (E22). The following identities are
immediate from the definitions of ∆G and ∇H ,

k ◦ ∇H = ∇Y2 ◦ (k × k), (E23)

∆G ◦ t = (t× t) ◦∆Y1 . (E24)

In view of (E23),

k(E1 + E2) ≡ k(∇H(E1 × E2)∆G) ≡ (k ◦ ∇H)(E1 × E2)∆G

≡
(
∇Y2 ◦ (k × k)

)
(E1 × E2)∆G ≡ ∇Y2(kE1 × kE2)∆G

≡ kE1 + kE2.

Notice that the third and fourth equivalences are consequences of the unique-
ness of the pull-back and push-out extensions ((2.2.7) and (2.2.3)). The sec-
ond part of (E21) can be proven with an analogous argument using (E24)
instead of (E23). To check (E22) notice that

E∇G ≡ ∇H(E × E), (E25)

∆HE ≡ (E × E)∆G. (E26)

Using (E25),

Et1 + Et2 ≡ ∇H(Et1 × Et2)∆Y1 ≡ ∇H(E × E)
(

(t1 × t2) ◦∆Y1

)
≡ E

(
∇H ◦ (t1 × t2) ◦∆Y1

)
≡ E(t1 + t2).

The same argument (using (E26)) proves the second part of (E22).
From the identities

∇H ◦ (∇H × IdH) = ∇H ◦ (IdH ×∇H),

(∆G × IdG) ◦∆G = (IdG ×∆G) ◦∆G,
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we deduce that

E1 + (E2 + E3) ≡ ∇H
(
E1 ×

(
∇H(E2 × E3)∆G

))
∆G

≡ ∇H
(
E1 ×∇H(E2 × E3)

)
(IdG ×∆G) ◦∆G

≡ ∇H ◦ (IdH ×∇H)
(
E1 × E2 × E3

)
(IdG ×∆G) ◦∆G

≡ ∇H ◦ (∇H × IdH)
(
E1 × E2 × E3

)
(∆G × IdG) ◦∆G

≡ ∇H
(
∇H(E1 × E2)× E3

)
(∆G × IdG) ◦∆G

≡ ∇H
((
∇H(E1 × E2)∆G

)
× E3

)
∆G

≡ (E1 + E2) + E3.

which gives us the associative law.
Consider now the natural isomorphisms

φH : H ×H −→ H ×H φG : G×G −→ G×G
(h1, h2) 7−→ (h2, h1) (g1, g2) 7−→ (g2, g1)

An easy verification shows that ∇H ◦φH = ∇H , φG◦∆G = ∆G and φH(E1×
E2) ≡ (E2 ×E1)φG. The following equivalences prove the commutative law

E1 + E2 ≡ ∇H(E1 × E2)∆G ≡ ∇H ◦ φH(E1 × E2)∆G

≡ ∇H(E2 × E1)φG ◦∆G ≡ ∇H(E2 × E1)∆G

≡ E2 + E1.

To show that the trivial extension E0 : 0 → H
ıH→ H ×G πG→ G → 0 acts as

the zero for the Baer sum, first observe that given an extension of topological
abelian groups E : 0 → H

ı→ X
π→ G → 0, we can always construct the

commutative diagram

E : : 0 // H

0H
��

ı // X
π //

v
��

G // 0

E0 : : 0 // H ıH
// H ×G πG

// G // 0

taking v(x) = (0, π(x)). According to (2.2.3) E0 is equivalent to 0HE. In
virtue of (E22)

E + E0 ≡ E + 0HE ≡ (IdH + 0H)E ≡ E.

Similarly,

E + (−IdH)E ≡ (IdH)E + (−IdH)E ≡ (IdH − IdH)E ≡ 0HE ≡ E0,

hence (−IdH)E acts as the additive inverse of E under the Baer sum. This
completes the proof of (i). �
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From (E21) one easily obtains the following result:

(ii) Let G, H, G′ and H ′ be topological abelian groups. Suppose that t : G′ →
G and k : H → H ′ are continuous homomorphisms; then the following maps
are homomorphisms of abelian groups:

Ext(G,H) −→ Ext(G′, H) Ext(G,H) −→ Ext(G,H ′)
[E] 7−→ [Et] [E] 7−→ [kE]

(3.1.2) Ext in L. Fulp and Griffith defined in [FG71a] the group Ext in the
class L using the Baer sum as in (3.1.1). Notice that since local compactness
is a three space property, by (2.1.4) both definitions of Ext coincide when
we take groups in L.

§3.2 Ext and dense subgroups

(3.2.1) Lemma. If G is a Răıkov-complete topological abelian group and
H ≤ G is a closed Čech-complete subgroup of G then G/H is also Răıkov-
complete.

Proof. This is [RD81b, 11.18]. �

(3.2.2) Proposition. Let G be a topological abelian group and H ≤ G a
closed subgroup of G. If the Răıkov completion of H is Čech-complete, then
the canonical map ϕ : G/H → %G/%H is a dense embedding which extends
to a topological isomorphism of %(G/H) onto %G/%H.

Proof. Let πH : G→ G/H and π%H : %G→ %G/%H be the canonical projec-
tions. Note that ϕ(πH(g)) = π%H(g) for every g ∈ G. It is clear that ϕ is
a continuous monomorphism. That ϕ(G/H) = π%H(G) is dense in %G/%H
follows from the fact that G is dense in %G and π%H is a quotient map.

Let us see that ϕ is relatively open. Fix a closed neighborhood U of
e in G. Let us show that for every symmetric neighborhood V of e in G
with V + V ⊆ U , we have ϕ(πH(U)) ⊃ ϕ(G/H) ∩ π%H(V ) or, equivalently,
π%H(U) ⊃ π%H(G) ∩ π%H(V ) where the closure is taken in %G. Fix z ∈ V
and g ∈ G with z − g ∈ %H. Fix h ∈ H ∩ (z − g + V ). Then u = h + g
satisfies u ∈ (V + V ) ∩G ⊆ U ∩G = U and z − u ∈ %H.

The group %G/%H is complete by (3.2.1). Hence %ϕ : %(G/H)→ %G/%H
is a topological isomorphism. �

(3.2.3) Proposition. Let E : 0 → H
ı→ X

π→ G → 0 be an extension of
topological abelian groups. Suppose that the Răıkov completion of H is a
Čech-complete group. Then the sequence %E : 0→ %H

%ı→ %X
%π→ %G→ 0 is

an extension of topological abelian groups.



49 §3.2. Ext and dense subgroups

Proof. Consider the topological isomorphism α : G → X/ı(H) defined by
α(g) = π(g) + ı(H). Note that the completion %α : %G→ %(X/ı(H)) of α is
a topological isomorphism, too.

Regarded as a subgroup of %X, %(ı(H)) coincides with %ı(%H). Let
ϕ : %(X/ı(H)) → %X/%ı(%H) be the topological isomorphism of (3.2.2). It
is easy to check that the diagram

%E : 0 // %H

%̃ı
��

%ı // %X
%π // %G

ϕ◦%α
��

// 0

E′ : 0 // %ı(%H) // %X // %X/%ı(%H) // 0

is commutative, where E′ is the canonical extension and %̃ı is the corestric-
tion of %ı. Since the downward maps are topological isomorphisms and E′

is an extension of topological abelian groups, %E is an extension too. �

(3.2.4) Theorem. Let G,H be topological abelian groups. If H is Čech-
complete then Ext(G,H) ∼= Ext(%G,H).

Proof. Let I : G ↪→ %G be the canonical inclusion. According to (3.1.1)
the map φ : Ext(%G,H) → Ext(G,H); [E] 7→ [EI] is a homomorphism of
abelian groups. Let us see that φ is an isomorphism.

To prove that φ is one-to-one, pick an extension of topological abelian
groups E : 0 → H

ı→ X
π→ %G → 0 and suppose that EI splits. The

sequence E′ : 0→ H
ı→ π−1(G)

π|π−1(G)−→ G→ 0 is also an extension of topo-
logical abelian groups. Furthermore, the following diagram is commutative:

E : 0 // H
ı // X

π // %G // 0

E′ : 0 // H
ı // π−1(G)π|π−1(G)

//
?�

OO

G
?�

I

OO

// 0

According to (2.2.7), E′ must be equivalent to EI. Then E′ splits and
applying (2.1.7) we find a continuous homomorphism P : π−1(G)→ H such
that P ◦ ı = IdH . Since G is dense in %G, it is clear that π−1(G) is dense
in X. Let R : X → H be an extension of P to X defined canonically. R
is a continuous homomorphism satisfying R ◦ ı = IdH , hence by (2.1.7), E
splits.

To check that φ is onto, choose an extension of topological abelian groups

E : 0 → H
I→ Y

p→ G → 0. By (3.2.3) the sequence %E : 0 → H
%I→ %Y

%p→
%G → 0 is an extension of topological abelian groups, which gives us the
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following commutative diagram:

%E : 0 // H
%I // %Y

%p // %G // 0

E : 0 // H
I // Y

p //?�

OO

G
?�
I

OO

// 0

In virtue of (2.2.7), E must be equivalent to (%E)I i.e. φ([%E ]) = [E ] . �

(3.2.5) Theorem. Let G be a topological abelian group and let H be a Čech-
complete topological abelian group. Suppose that D is a dense subgroup of
G. Then Ext(G,H) ∼= Ext(D,H).

Proof. If D is dense in G, then %D = %G and by (3.2.4)

Ext(D,H) ∼= Ext(%D,H) = Ext(%G,H) ∼= Ext(G,H).

�

(3.2.6) Applications to L. In theorems 3.5 and 3.6 of [FG71b] the authors
study situations in which Ext(G,X) = 0 for a fixed G ∈ L and X varying
in a subclass of L.

They prove that for every group G ∈ L:

(a) Ext(G,X) = 0 for all totally disconnected X ∈ L if and only if G ∼=
(Z(k))d × Rn where n < ω, k is an ordinal number and (Z(k))d stands for
the direct sum Z(k) endowed with the discrete topology [FG71b, Th. 3.5].

(b) Ext(G,C) = 0 for all connected C ∈ L if and only if G ∼= Rn × M
where n < ω and M contains a compact open subgroup having a co-torsion
Pontryagin dual [FG71b, Th. 3.6].

Applying (3.2.4) we have:

(a’) If G is locally precompact, Ext(G,X) = 0 for all totally disconnected
X ∈ L if and only if %G = (Z(k))d × Rn for some n < ω and an arbitrary
ordinal number κ.

Proof. Suppose that a locally precompact abelian group G has the property
that Ext(G,X) = 0 for all totally disconnected X ∈ L. Since every group
in L is Čech-complete, by (3.2.4), Ext(%G,X) = Ext(G,X) = 0 for all
totally disconnected X ∈ L. By (a), %G = (Z(k))d × Rn for some n < ω
and α an ordinal number. Conversely if %G = (Z(k))d × Rn, again by (a),
Ext(%G,X) = 0 for all totally disconnected X ∈ L. Invoking (3.2.4) we
obtain that Ext(G,X) = Ext(%G,X) = 0 for all totally disconnected X ∈ L.
�

Using the same argument with (b) we obtain:
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(b’) If G is locally precompact, Ext(G,X) = 0 for all connected X ∈ L if
and only if %G = Rn × G′ where n < ω and G′ contains a compact open
subgroup having a co-torsion dual.

§3.3 Ext and open subgroups

(3.3.1) Lemma. Let A be an open subgroup of a topological group G and
suppose that an extension of topological abelian groups E : 0 → H

ı→ X
π→

A → 0 splits algebraically. Then there exists a group topology τ on H × G
and an embedding f : X → (H ×G, τ) making commutative the diagram

E : 0 // H
ıτ// (H ×G, τ)

πτ // G // 0

E 0 // H
ı // X

f

OO

π // A
?�

OO

// 0

where ıτ and πτ are the canonical mappings and E is an extension of topo-
logical abelian groups.

Proof. Since E splits algebraically there exists a group topology τ ′ on H×A
such that E is equivalent to the extension of topological abelian groups

E : 0 → H
ıτ ′→ (H × A, τ ′)

πτ ′→ A → 0 where ıτ ′ and πτ ′ are respectively
the canonical inclusion and the canonical projection (2.1.5.ii). Let T be the
topological isomorphism that makes (E27) commutative.

E : 0 // H
ıτ ′ // (H ×A, τ ′) πτ ′ // A // 0

E : 0 // H
ı // X

π //

T

OO

A // 0

(E27)

Now, consider the group topology τ on H × G obtained by declaring
(H × A, τ ′) an open subgroup. An easy verification shows that ıτ : H →
(H × G, τ); h 7→ (h, 0) and πτ : (H × G, τ) → G; (h, g) 7→ g give us an
extension of topological abelian groups E : 0→ H

ıτ→ (H ×G, τ)
πτ→ G→ 0.

Combining the commutative diagram:

E : 0 // H
ıτ // (H ×G, τ)

πτ // G // 0

E 0 // H
ıτ ′ // (H ×A, τ ′) πτ ′ //

?�

OO

A
?�

OO

// 0

with (E27) and defining f as the composition of T and the inclusion (H ×
A, τ ′) ↪→ (H ×G, τ), we complete the proof. �
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(3.3.2) Theorem. Let G,H be topological abelian groups. Suppose that
H is divisible and that A is an open subgroup of G, then Ext(G,H) ∼=
Ext(A,H).

Proof. We will use the same strategy as in (3.2.4). Consider the canonical
inclusion I : A → G. According to (3.1.1.ii) the map φ : Ext(G,H) 7→
Ext(A,H); [E] 7→ [EI] is a homomorphism of abelian groups. Let us see
that φ is an isomorphism.

We will start proving that φ is one-to-one. Pick an extension E : 0 →
H

ı→ X
π→ G → 0 and suppose that EI splits. Since ı(H) = π−1(0) ≤

π−1(G), the sequence E′ : 0 → H
ı→ π−1(A)

π|π−1(A)→ G → 0 is exact. The
mapping π|π−1(A) is open, hence E′ is an extension of topological abelian
groups. Furthermore the following diagram is commutative:

E : 0 // H
ı // X

π // G // 0

E′ : 0 // H
ı // π−1(A)π|π−1(A)

//
?�

OO

A
?�

I

OO

// 0

According to (2.2.7), E′ must be equivalent to EI. Then E′ splits and
applying (2.1.7) we find a continuous homomorphism P : π−1(A)→ H such
that P ◦ı = IdH . Since H is divisible we can extend the homomorphism P to
a homomorphism R : X → H. Since π−1(A) is open in X and R|π−1(A) = P ,
R is a continuous homomorphism. As ı(H) ≤ π−1(A), R satisfies R ◦ ı =
P ◦ ı = IdH and by (2.1.7), E splits.

To check that φ is onto, choose an extension of topological abelian groups

E : 0→ H
I→ Y

p→ A→ 0. Since E splits algebraically, invoking (3.3.1) we
obtain that there exists a group topology τ on H × G and a commutative
diagram

E : 0 // H
ıτ// (H ×G, τ)

πτ // G // 0

E 0 // H
I // Y

OO

p // A
?�

I

OO

// 0

where ıτ and πτ are the canonical mappings and E is an extension of topolog-
ical abelian groups. In virtue of (2.2.7), E is equivalent to (E)I, concluding
that φ(

[
E
]
) =

[
(E)I

]
= [E]. �

(3.3.3) Remark on (3.3.2). Theorem (3.3.2) is not true in general if we
do not suppose that H is divisible. Indeed, take Qd the group of rational
numbers endowed with the discrete topology, according to [FG71a, Exercise
51.7] Ext(Qd,Z) ∼= Qω. {0} is trivially an open subgroup of Qd but

Ext({0},Z) ∼= 0 6∼= Qω ∼= Ext(Qd,Z).
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§3.4 Ext, products and coproducts

(3.4.1) Theorem. Let G be a topological abelian group and let {Hα :
α < κ} be a family of topological abelian groups. Then Ext(G,

∏
α<κHα) ∼=∏

α<κ Ext(G,Hα).

Proof. Consider for every β < κ the canonical projection pβ :
∏
α<κHα →

Hβ.

Given an extension of topological abelian groups E : 0 → ∏
α<κHα

ı→
X

π→ G → 0, take the push-out extension pβE : 0 → Hβ
rβ→ POβ

Pβ→ G → 0
and consider the commutative diagram (E28) as in (2.2.2).

E : 0 //
∏
α<κHα

ı //

pβ

��

X
π //

sβ

��

G // 0

pβE : 0 // Hβ

rβ // POβ
Pβ // G // 0

(E28)

In virtue of (3.1.1) the map

φ : Ext(G,
∏
α<κHα) −→ ∏

α<κ Ext(G,Hα)
[E] 7−→ ([pαE])α<κ

is a homomorphism of abelian groups.
Let us check that φ is one-to-one. Take an extension of topological groups

E : 0 → ∏
α<κHα

ı→ X
π→ G → 0, and suppose that pβE : 0 → Hβ

rβ→
POβ

pβ→ G→ 0 splits for every β < κ. By (2.1.7) for every α < κ there exists
a continuous homomorphism tα : POα → Hα with tα ◦ rα = IdHα . Define
the continuous homomorphism T = (tα ◦ sα)α<κ : X → ∏

α<κHα; x 7→
(tα ◦ sα(x))α<κ. By the commutativity of (E28), T ◦ ı = Id∏

Hα , hence E
splits.

To see that φ is onto pick a family of extensions {Eα : 0→ Hα
ıα→ Xα

πα→
G → 0 : α < κ}. Consider the extension E : 0 → ∏

α<κHα
I→ B P→ G → 0,

where

B =
{(

(xα)α<κ, g
)
∈
∏
α<κ

Xα ×G : πα(xα) = g ∀α < κ
}
,

I((hα)α<κ) = ((ıα(hα))α<κ, 0) and P((xα)α<κ, g) = g. It is easy to check
that E is an extension of topological abelian groups. For each β < κ the
continuous homomorphism Pβ : B → Xβ; ((xα)α<κ, g) 7→ xβ gives us the
commutative diagram:

E : 0 //
∏
α<κHα

I //

pβ

��

B P //

Pβ
��

G // 0

Eβ : 0 // Hβ

ıβ // Xβ

πβ // G // 0
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Consequently, by (2.2.3), Eβ is equivalent to the push-out sequence pβE .
Therefore ϕ([E ]) = ([Eα])α<κ, which concludes the proof. �

(3.4.2) Applications to L. In [SA14a] and [SA14b] the authors prove that
for every G ∈ L:

(a) Ext(G,Qp) divisible and torsion-free ([SA14a, Cor. 1.5]).

(b) Ext(G,X) = 0 for all divisible σ-compact X ∈ L if and only if G ∼=
Rn×G′ with G′ containing an open compact subgroup K ∼=

∏
α<α0

Z/prαα Z×∏
β<β0

Zγβpβ where α0, β0 ∈ ω, {γβ : β < β0} is a family of arbitrary ordinal
numbers and pα, pβ ∈ P ([SA14b, Th. 2.7]).

(c) if G is compact and torsion then Ext(G,X) = 0 for every X ∈ L divisible
and torsion-free ([SA14a, Th. 1.6]).

Let us see how we can improve these results by making use of (3.2.4),
(3.3.2) and (3.4.1).

(a’) Given a locally precompact abelian group G, Ext(G,
∏
p∈PQ

αp
p ) is a

divisible, torsion-free group for every collection of ordinal numbers {αp : p ∈
P}.
Proof. According to (3.4.1)

Ext(G,
∏
p∈PQ

αp
p ) ∼=

∏
p∈P Ext(G,Qαp

p ) ∼=
∏
p∈P Ext(G,Qp)

αp .

Since Qp is Čech-complete, by (3.2.4) Ext(G,Qp) ∼= Ext(%G,Qp) for every
p ∈ P and

Ext(G,
∏
p∈PQ

αp
p ) ∼=

∏
p∈P Ext(%G,Qp)

αp .

Ext(%G,Qp) is divisible and torsion-free by (a), then Ext(G,
∏
p∈PQ

αp
p ) is

also divisible and torsion-free. �

(b’) Let be G a locally precompact abelian group and let D be the class of
all groups of the form X =

∏
α<κXα where Xα is a divisible σ-compact

locally compact abelian group ∀α < κ. Ext(G,X) = 0 for all X ∈ D if and
only if %G = Rn × G′ where n is a non-negative integer and G′ contains a
compact open subgroup K such that K ∼=

∏
α<α0

Z/prαα Z×∏β<β0
Zγβpβ where

α0, β0 ∈ ω, {γβ : β < β0} is a family of arbitrary ordinal numbers and
pα, pβ ∈ P.

Proof. Suppose that a locally precompact abelian group G has the property
that Ext(G,X) = 0 for all X ∈ D. In particular for every divisible σ-
compact X ∈ L, we have that Ext(G,X) = 0. Since every group in L is
Čech-complete, by (3.2.4), Ext(%G,X) = Ext(G,X) = 0, for all divisible
σ-compact X ∈ L. According to (b), %G has the desired structure.

Conversely if %G has the properties described in the statement, in virtue
of (b), for every for allX ∈ L divisible σ-compact we have that Ext(%G,X) =
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0. By (3.2.4), Ext(G,X) = 0 for every X divisible σ-compact in L. Finally,
from (3.4.1) we conclude that the same is true for every X ∈ D. �

(c’) Let G be a torsion group in L and let H be product of divisible torsion-
free groups in L. Then Ext(G,H) = 0.

Proof. Suppose that H =
∏
α<κHα with Hα divisible, torsion-free and

Hα ∈ L for every α < κ. Since G is locally compact abelian and torsion we
know by [HR62, 24.18] that G contains an open compact subgroup K. It is
clear that K will be a torsion group too. Applying (3.4.1) and (3.3.2)

Ext(G,H) ∼= Ext(G,
∏
α<κHα) ∼=

∏
α<κ Ext(G,Hα) ∼=

∏
α<κ Ext(K,Hα).

Invoking (c), we conclude that Ext(K,Hα) = 0 for every α < κ. �

(3.4.3) Lemma. Let {Eα : 0 → Hα
ıα→ Xα

πα→ Gα → 0 : α < ω} be
a countable family of extensions of topological abelian groups. Consider
the coproducts

⊕
α<ωHα,

⊕
α<ωXα,

⊕
α<ω Gα and the natural mappings⊕

α<ω ıα :
⊕

α<ωHα →
⊕

α<ωXα and
⊕

α<ω πα :
⊕

α<ωXα →
⊕

α<ω Gα.
The sequence⊕

α<ω Eα : 0 −→⊕
α<ωHα

⊕
α<ω ıα−→ ⊕

α<ωXα

⊕
α<ω πα−→ ⊕

α<ω Gα −→ 0

is an extension of topological abelian groups.

Proof. The exactness of
⊕

α<ω Eα follows trivially from the exactness of
each Eα.

Let Iβ : Hβ ↪→
⊕

α<ωHα and Jβ : Xβ ↪→
⊕

α<ωXα be the canonical
inclusions for every β < ω. By definition of final group topology, since
(
⊕

α<ω ıα) ◦ Iβ and (
⊕

α<ω πα) ◦ Jβ are continuous for every β < ω, we
deduce that

⊕
α<ω ıα and

⊕
α<ω πα are continuous.

The topology on each of the coproducts
⊕

α<ωHα,
⊕

α<ωXα and
⊕

α<ω Gα
coincides with the respective box topology (see (1.3.4.ii)). Thus, fix (

∏
α<ω Uα)∩⊕

α<ωHα ∈ N0(
⊕

α<ωHα) with Uα ∈ N0(Hα) ∀α < ω. Since⊕
α<ω

ıα

(( ∏
α<ω

Uα

)
∩
⊕
α<ω

Hα

)
=
( ∏
α<ω

ıα(Uα)
)
∩
⊕
α<ω

Xα

and ıα is relatively open for every α < ω,
⊕

α<ω ıα((
∏
α<ω Uα)∩⊕α<ωHα)

is a neighborhood of 0 in
⊕

α<ω ıα(
⊕

α<ωHα). This proves that
⊕

α<ω ıα is
relatively open. Analogously we prove that

⊕
α<ω πα is open. �

(3.4.4) Theorem. Let H be a topological abelian group and let
⊕

α<ω Gα a
countable coproduct of topological abelian groups. Then Ext(

⊕
α<ω Gα, H) ∼=∏

α<ω Ext(Gα, H).
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Proof. For each α < ω consider the canonical inclusion Iα : Gα →
⊕

β<ω Gβ
and define

φ : Ext(
⊕

α<ω Gα, H) −→ ∏
α<ω Ext(Gα, H)

[E] 7−→
(

[EIα]
)
α<ω

According to (2.2.6), φ is a homomorphism of abelian groups. Let us see
that φ is an isomorphism.

To see that φ is one-to-one pick an extension E : 0 → H
ı→ X

π→⊕
α<ω Gα → 0 and suppose that EIβ splits for every β < ω. Pick β < ω.

Take the sequence Eβ : 0 → H
ı→ π−1(Gβ)

π|π−1(Gβ)

→ Gβ → 0. Since ı(H) ⊂
π−1(Gβ), Eβ is an exact sequence. Since π|π−1(Gβ) is open (see [Bou66, Prop
2, Chapter 5.1]) it follows that Eβ is an extension of topological abelian
groups. For every β < ω the following diagram is commutative:

E : 0 // H
ı // X

π //
⊕

α<ω Gα
// 0

Eβ : 0 // H
ı // π−1(Gβ)

π|π−1(Gβ)
//

?�

OO

Gβ
?�

Iβ

OO

// 0

Applying (2.2.6) we deduce that Eβ is equivalent to the pull-back extension
EIβ. Then Eβ splits. By (2.1.7) for every α < ω there exist a continuous
homomorphism Rα : Gα → π−1(Gα) with π ◦ Rα = IdGα . Consider the
homomorphism R :

⊕
α<ω Gα → X defined by R((gα)α<ω) =

∑
α<ω Rα(gα).

By de definition of the coproduct topology, R is continuous. Since

π
(
R
(
(gα)α<ω

))
= π

(∑
α<ω

Rα(gα)
)

=
∑
α<ω

π
(
Rα(gα)

)
= (gα)α<ω

we obtain that π ◦R = Id⊕
α<ω Gα

and E splits.
Let us check that φ is onto. Pick a family of extensions of topological

abelian groups {Eα : 0 → H
ıα→ Xα

πα→ Gα → 0 : α < ω}. From (3.4.3) we
deduce that the sequence⊕

α<ω Eα : 0 −→⊕
α<ωH

⊕
α<ω ıα−→ ⊕

α<ωXα

⊕
α<ω πα−→ ⊕

α<ω Gα −→ 0

is an extension of topological abelian groups. Taking P :
⊕

α<ωH →
H; P (hα)α<ω 7→

∑
α<ω hα and the push-out extension P

⊕
α<ω Eα we ob-

tain the commutative diagram:

Eβ : 0 // H
ıβ //� _

��

Xβ

πβ //
� _

��

Gβ� _

��

// 0

⊕
α<ω Eα : 0 //

⊕
α<ωH

P

��

⊕
ıα //
⊕

α<ωXα

��

⊕
πα //
⊕

α<ω Gα
// 0

P
⊕

α<ω Eα : 0 // H // PO //
⊕

α<ω Gα
// 0

(E29)
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From (2.2.6) and the commutativity of (E29) follows that Eβ is equivalent to
(P
⊕

α<ω Eα)Iβ for every β < ω and therefore φ([P
⊕

α<ω Eα]) = ([Eβ])β<ω.
�

(3.4.5) Uncountable coproducts and (3.4.4). It would be interesting
to find out if (3.4.4) is true for uncountable coproducts of topological abelian
groups. In (3.4.3) we used that for every countable family of topological
abelian groups {Gα : α < ω}, the coproduct topology on the direct sum⊕

α<ω Gα coincides with the box topology. The author does not know any
way to avoid the use of this fact and thus generalize (3.4.4).

It is worth mentioning that Fulp and Griffith proved in [FG71a, Th.
2.13] that if {Gα : α < κ} is a family of groups in L such that Gα is discrete
for all but a finite number of α < κ, then

Ext((
⊕
α<κ

Gα, τbox), H) ∼=
∏
α<κ

Ext(Gα, H)

where H ∈ L and τbox is the box topology.

§3.5 Ext and quotients

(3.5.1) Theorem. Let G and H be topological abelian groups and let M be
a closed subgroup of G.

(i) Suppose that Ext(G/M,H) = 0. Then every continuous homomorphism
of M to H extends to a continuous homomorphism of G to H.

(ii) Suppose that every continuous homomorphism of M to H extends to a
continuous homomorphism of G to H. Then Ext(G,H) = 0⇒ Ext(G/M,H) =
0.

Proof. (i). Pick any continuous homomorphism f : M → H and consider
the natural extension E : 0→M ↪→ G→ G/M → 0. Invoking the push-out
extension fE as in (2.2.2) we obtain the following commutative diagram:

E : 0 //M

f

��

� � // G //

s

��

G/M // 0

fE : 0 // H r
// PO // G/M // 0

(E30)

Since Ext(G/M,H) = 0, fE splits and by (2.1.7) there exists a continuous
homomorphism R : PO → H such that R ◦ r = IdH . In view of (E30) the
homomorphism R ◦ s : G→ H is the desired extension of f .
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(ii). Fix an extension E : 0 → H
ı→ X

π→ G/M → 0. Let πM : G →
G/M be the canonical projection and let

PB = {(g, x) ∈ G×X : πM (g) = π(x)} (E31)

be the pull-back of πM and π (see (2.2.5)). Defining r : PB → G; (g, x) 7→ g
and s : PB → X; (g, x) 7→ x,

ker r = {(g, x) ∈ PB : r(g, x) = 0} = {(g, x) ∈ PB : g = 0}
= {(0, x) ∈ G×X : 0 +M = π(x)}
= {0} × ı(H),

ker s = {(g, x) ∈ PB : s(g, x) = 0} = {(g, x) ∈ PB : x = 0}
= {(g, 0) ∈ G×X : 0 +M = πM (g)}
= M × {0},

which gives us the following commutative diagram

0

��
M × {0}� _

��
E : 0 // {0} × ı(H) �

� // PB
r //

s

��

G //

πM
��

0

X π
//

��

G/M

0

Since πM and π are onto, using (E31) one obtains that r((U×X)∩PB) ⊃
U and s((G × V ) ∩ PB) ⊃ V for every U ∈ N0(G) and V ∈ N0(X); hence
r and s are onto and open. Thus both short sequences are extensions of
topological abelian groups.

Consider the continuous homomorphism ϕ : {0} × ı(H) → H defined
by ϕ(0, ı(h)) = h. Since Ext(G,H) = 0 and H ∼= {0} × ı(H), E splits.
Therefore, we can find a continuous homomorphism P : PB → {0} × ı(H)
satisfying P (0, ı(h)) = (0, ı(h)). Define ψ = P ◦ ϕ : PB → H, clearly
ψ(0, x) = ϕ(0, x) for every x ∈ ı(H). Consider, for every m ∈ M , ψ̃(m) =
ψ(m, 0) (note that if m ∈M then (m, 0) ∈ PB).

By assumption there exists σ : G→ H with σ|M = ψ̃ i.e. σ(m) = ψ(m, 0)
for every m ∈ M . Now define the continuous homomorphism γ : PB → H
as follows: γ(g, x) = ψ(g, x)− σ(g). Note that

γ(m, 0) = ψ(m, 0)− σ(m) = ψ(m, 0)− ψ(m, 0) = 0. (E32)



59 §3.5. Ext and quotients

In view of (E32) we can construct a well-defined continuous homomorphism
P : X → H as P(x) = γ(g, x). Finally, since P(ı(h)) = γ(0, ı(h)) =
ψ(0, ı(h))− 0 = ϕ(0, ı(h)) = h we conclude that E splits.

�

(3.5.2) Corollary. A topological abelian group G satisfies that Ext(G,T) =
0 if and only if whenever X is a topological abelian group and H is a closed
subgroup of X with X/H ∼= G, then H is dually embedded.

(3.5.3) Lemma. Let X be and G be topological abelian groups. Suppose that
X is Hausdorff and that π : X → G is a continuous and open epimorphism.

(i) If kerπ is compact then π is perfect.

(ii) If kerπ is locally compact then there exists U ∈ N0(X) such that π(U)
is closed in G and π|U : U → π(U) is perfect.

Proof. This is [AT08, Th. 1.5.7] and [AT08, Th. 3.2.2]. �

(3.5.4) Admissible subgroups. A subgroup N of a topological group G
is called admissible if there exists a sequence {Un : n ∈ ω} of open symmetric
neighborhoods of the neutral element 0 in G such that Un+1+Un+1+Un+1 ⊂
Un, for each n ∈ ω, and N =

⋂
n∈ω Un.

(i) Every neighborhood of the neutral element of a topological group contains
an admissible subgroup.

Proof. Let U be symmetric neighborhood of 0 and call U0 = U . For every
n < ω, consider Un+1 a symmetric neighborhood of 0 such that Un+1 +
Un+1 +Un+1 ⊂ Un. The family {Un : n ∈ ω} defines an admissible subgroup
N =

⋂
n∈ω Un ⊂ U0 = U . �

(ii) Every admissible subgroup is closed.

Proof. Suppose that {Un : n ∈ ω} defines an admissible subgroup N =⋂
n∈ω Un. Pick x ∈ G such that (x + W ) ∩ N 6= ∅ for every W ∈ N0(G).

In particular (x + Un) ∩ N 6= ∅ for every n ∈ ω. Since (x + Un) ∩ N =
(x + Un) ∩⋂n∈ω Un 6= ∅, (x + Un) ∩ Un 6= ∅ and x ∈ Un + Un ⊂ Un−1. We
can repeat this argument for every n, then x ∈ N . �

(iii) The intersection of two admissible subgroups is admissible.

Proof. Let {Un : n < ω} and {Vn : n < ω} be sequences of neighbourhoods
of 0 in G determining admissible subgroups N1 and N2 respectively. It is
clear that

(Un+1 ∩ Vn+1) + (Un+1 ∩ Vn+1) + (Un+1 ∩ Vn+1) ⊂ Un ∩ Vn.

Hence the sequence {Un ∩ Vn : n < ω} determines the admissible subgroup⋂
n∈ω(Un ∩ Vn) =

⋂
n∈ω Un ∩

⋂
n∈ω Vn = N1 ∩N2. �
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(iv) If f : G → H is a continuous homomorphism of topological abelian
groups and N is an admissible subgroup of H then f−1(N) is an admissible
subgroup of G.

Proof. Suppose that {Un : n < ω} determines the admissible subgroup
N ≤ H. Since Un+1 + Un+1 + Un+1 ⊂ Un for every n ∈ ω,

f−1(Un+1)+f−1(Un+1)+f−1(Un+1) = f−1(Un+1 +Un+1 +Un+1) ⊂ f−1(Un)

and it follows that the sequence {f−1(Un) : n < ω} defines the admissible
subgroup ⋂

n∈ω
f−1(Un) = f−1

( ⋂
n∈ω

Un

)
= f−1(N)

�

(3.5.5) Lemma. Let π : X → G be continuous and open epimorphism of
topological abelian groups, where kerπ is a locally compact subgroup of X.
There exists an admissible subgroup N0 of X such that for every closed
subgroup N of X contained in N0, the image π(N) is closed in G and there
exists a continuous and open epimorphism ϕN : X/N → G/π(N) such that
the diagram

X

πN
��

π // G

ππ(N)

��
X/N

ϕN // G/π(N)

commutes and kerϕN = πN (kerπ), where πN : X → X/N and ππ(N) : G →
G/π(N) are the canonical projections.

Proof. Since kerπ is a locally compact subgroup of X, (3.5.3) implies that
there exists a closed neighborhood W of 0 in X such that π |W is a perfect
map. Use (3.5.4.i) to construct an admissible subgroup N0 of X with N0 ⊆
W .

Let N be a closed subgroup of X contained in N0. Since the map π |W
is closed and N ⊂ N0 ⊂ W , we see that the subgroup π(N) is closed in G.
Let f = ππ(N) ◦ π : X → G/π(N),

ker f = {x : ππ(N)(π(x)) = 0 + π(N)} = {x : π(x) ∈ π(N)} = N + kerπ.

Since kerπN = N ⊂ N + kerπ = ker f , the homomorphism ϕN : X/N →
G/π(N) defined by ϕN (x + N) = f(x) is well-defined. Notice that f is
open as a composition of two open homomorphisms, so ϕN is continuous
and open. Finally, it is clear that ϕN is onto and kerϕN = πN (N + kerπ) =
πN (kerπ). �

(3.5.6) Lemma. Let π : X → G be a continuous open homomorphism of
topological abelian groups. If the kernel of π is locally compact, then
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(i) There exists an admissible subgroup N0 of X such that π(N) is an ad-
missible subgroup of G, for each admissible subgroup N of X contained in
N0.

(ii) Let F be a cofinal subfamily of the family of admissible subgroups of G
ordered by inverse inclusion1. For every admissible subgroup N of X, there
exists an admissible N ′ ⊂ N with π(N ′) ∈ F .

Proof. We can assume without loss of generality that π(X) = G, otherwise
we replace G with its open subgroup π(X).

(i). Since kerπ is a locally compact subgroup of X, it follows from (3.5.3)
that there exists U0 ∈ N0(X) in X such that the restriction of π to U0 is a
perfect map. Let {Un : n ∈ ω} be a family of symmetric neighborhoods such
that Un+1 +Un+1 +Un+1 ⊂ Un for each n ∈ ω. Let us see N0 =

⋂
n∈ω Un is

the required admissible subgroup of X.

Indeed, let N be an arbitrary admissible subgroup of X contained in
N0. Take {Vn : n ∈ ω} a sequence of symmetric neighborhoods of 0 such
that Vn+1 + Vn+1 + Vn+1 ⊂ Vn for each n ∈ ω and N =

⋂
n∈ω Vn. The

neighborhoods On = Vn∩Un, with n ∈ ω, satisfy On+1 +On+1 +On+1 ⊂ On
and N = N0 ∩ N =

⋂
n∈ω On. Then Wn = π(On) is an open symmetric

neighborhood of the neutral element in G and Wn+1 +Wn+1 +Wn+1 ⊂Wn,
for each n ∈ ω. It is clear that P =

⋂
n∈ωWn is an admissible subgroup of

G. To finish the proof of (i) it suffices to verify that π(N) = P .

It follows from the choice of the sets On that On+1 ⊂ On, for each n ∈ ω.
In particular N =

⋂
n∈ω On. Take any point y ∈ P . Then π−1(y) ∩ On 6= ∅

for each n ∈ ω. As O0 ⊂ U0 and the map π|U0
is perfect, the set O0∩π−1(y)

is compact. The family of closed sets {π−1(y) ∩ On : n < ω} has the finite
intersection property, therefore ∅ 6= π−1(y) ∩⋂n∈ω On = π−1(y) ∩N . This
proves the equality π(N) = P .

(ii). Fix an admissible subgroup N ≤ X. Take an admissible subgroup
N0 of X as in (i). Then π(N0 ∩ N) is an admissible subgroup of G. Since
F is cofinal, there exists P ∈ F such that P ⊂ π(N0 ∩ N). Put N ′ =
N0 ∩ N ∩ π−1(P ). Then N ′ ⊂ N is an admissible subgroup of X and
π(N ′) = π(N0 ∩N) ∩ P = P . �

(3.5.7) Theorem. Let M be a metrizable, locally compact abelian group.
Let G be a topological abelian group and F a cofinal subfamily of the family of
admissible subgroups of G, ordered by inverse inclusion. If Ext(G/P,M) = 0
for each P ∈ F , then Ext(G,M) = 0.

1i.e. F satisfies that for every admissible N ≤ G there exists N ′ ∈ F such that N ′ ⊂ N .
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Proof. Suppose that E : 0→M
ı→ X

π→ G→ 0 is a extension of topological
abelian groups. Since kerπ = ı(M) is locally compact, we can find an ad-
missible subgroup N2 of X as in (3.5.5). We will start proving the following
fact:

(∗)There exists an admissible subgroup N1 of X such that N1 ∩ ı(M) = {0}
and N1 ⊂ N2.

Indeed, since ı(M) is metrizable, we can construct a decreasing fam-
ily {On : n < ω} of open symmetric neighborhoods of 0 in X such that⋂
n<ω(On ∩ ı(M)) = {0}. Take for every n < ω, Vn ∈ N0(X) open, sym-

metric and such that Vn+1 + Vn+1 + Vn+1 ⊂ Vn. Define Wn = Vn ∩ On.
Considering the admissible subgroup N ′1 =

⋂
n<ωWn one easily sees that

N1 = N ′1 ∩ N2 is an admissible subgroup (3.5.4.iii) which satisfies the de-
sired properties. �

By (3.5.6.ii), we can find an admissible subgroup N0 of X such that
N0 ⊂ N1 and π(N0) ∈ F . Let us take the sequence {Un : n ∈ ω} of open
symmetric neighborhoods of 0 in X that witnesses the fact that N0 is an
admissible subgroup of X. Clearly Un+1 ⊂ Un for each n ∈ ω. Since the
group ı(M) is locally compact and N0∩ ı(M) ⊂ N1∩ ı(M) = {0}, the family
{Un ∩ ı(M) : n < ω} forms a local base at 0 in ı(M) (see [Eng89, 3.1.5]).

Let p : X → X/N0 and f : G → G/π(N0) be the canonical projections.
As N0 ⊂ N1 ⊂ N2, by (3.5.5) there exists a continuous open epimomorphism
ϕ : X/N0 → G/π(N0) such that f ◦π = ϕ◦p and kerϕ = p(ı(M)). Consider
the commutative diagram

E : 0 //M
ı //

P
��

X

p

��

π // G

f
��

// 0

E′ : 0 // p(ı(M))
I // X/N0

ϕ // G/π(N0) // 0

where I is the canonical inclusion and P(x) = p(ı(x)) for every x ∈M. The
sequence E′ is also an extension of topological abelian groups. Notice also
that since N1 ∩ ı(M) = {0} (see (∗)), P is one-to-one. Pick U ∈ N0(M),
since {ı−1(Un) : n < ω} is a local base at 0 of M , there exists n < ω such
that ı−1(Un) ⊂ U . Since N0 + Un+1 ⊂ Un ∀n < ω,

P−1
(
p
(
ı(M)

)
∩ p(Un+1)

)
= i−1 ◦ p−1

(
p
(
ı(M)

)
∩ p(Un+1)

)
⊂ ı−1(Un)

then
p
(
ı(M)

)
∩ p(Un+1) ⊂ P(ı−1(Un)) ⊂ P(U).

Therefore P is open, hence a topological isomorphism.
Since π(N0) ∈ F , by hypothesis the extension E′ splits. (2.1.7) implies

that there exists a continuous homomorphism R : X/N0 → p(ı(M)) such
that R◦I = Idp(ı(M)). It is clear that the continuous homomorphism S : X →
M defined by S = P−1 ◦R ◦ p satisfies S ◦ ı = IdM . Hence the extension E
splits. �
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(3.5.8) Notes. (3.2.2) and (3.2.3) are [BCDT16, Prop. 3.9] and [BCDT16,
Prop. 3.10] respectively. The results (3.2.4),(3.2.6), (3.3.2), (3.4.1), (3.4.2),
(3.4.4) can be found in [Bel]. (3.4.4) is an improvement of [BCD13, Th.
24]. (3.5.1) was proven for M = T in [BCD13, Th. 21], furthermore, an
analogous version of this result for completely metrizable topological vector
spaces appears in [KPR84, Th. 5.2] and [Dom85, Lemma 4.1]. (3.5.2) is
[BCD13, Cor. 23], (3.5.5) is [BCDT16, Lemma 3.3] and (3.5.6) is [BCDT16,
Lemma 3.4]. (3.5.7) was proven in [BCDT16, Th. 3.5].
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Chapter 4

The Ext group in the
category of topological
vector spaces

In this chapter we will focus on the extensions of topological vector spaces.
We will use the techniques of the previous chapter to study the analogous
object to Ext group in this class, which will be a vector space that we will
denote by ExtTVS. Finally, in §4.2 we will apply our knowledge of Ext
and ExtTVS to Problem 4, continuing the work of Cattaneo ([Cat80]) and
Cabello ([Cab04]).

§4.1 The ExtTVS group

(4.1.1) Extensions of topological vector spaces. IfX,Y and Z are topo-
logical vector spaces, a sequence E : 0 → Y

ı→ X
π→ Z → 0 is called an

extension of topological vector spaces1 if it is an extension of topological
abelian groups and the maps ı and π are also linear.

Two extensions of topological vector spaces E : 0 → Y → X → Z → 0
and E′ : 0 → Y → X ′ → Z → 0 are said to be equivalent if there exists
a continuous linear mapping T : X → X ′ making commutative a diagram
analogous to (E1).

(i) Every continuous homomorphism T : X → X ′ between topological vector
spaces is linear.

Proof. Pick x ∈ X and λ ∈ R. Take {an/bn} ∈ Qω such that an, bn ∈ Z and
limn∈ω an/bn = λ. Since limn∈ω(an/bn)x = λx, it suffices to show that for
all n < ω

T
(an
bn
x
)

=
an
bn
T (x). (E33)

1Some authors prefer the notation twisted sum of topological vector spaces, especially
in the context of F -spaces.

65
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Since T is a homomorphism

bnT
(an
bn
x
)

= T
(
bn
an
bn
x
)

= T (anx) = anT (x). (E34)

Using the scalar multiplication in X ′ and (E34) we obtain (E33). �

(ii) Two extensions of topological vector spaces are equivalent if and only if
they are equivalent when regarded as extensions of topological abelian groups
(in the sense of (2.1.1)).

Proof. This is a consequence of (i). �

(iii) Let G and H be topological abelian groups. If H is a topological vector
space then Ext(G,H) has a natural structure of vector space.

Proof. Since Ext(G,H) is an abelian group we only need to construct a
multiplication by scalars. Suppose that H is a topological vector space.
Consider for every r ∈ R the topological isomorphism

φr : H −→ H
h 7−→ rh

and define
ϕ : R× Ext(G,H) −→ Ext(G,H)

(r, [E]) 7−→ [φrE]

By (E21)

ϕ(r, [E] + [E′]) = [φr(E + E′)] = [φr(E) + φr(E
′)]

= ϕ(r, [E]) + ϕ(r, [E′])

ϕ(r + r′, [E]) = [φr+r′E] = [(φr + φr′)E] = [φrE + φr′E]

= ϕ(r, [E]) + ϕ(r′, [E]).

Using the uniqueness of the push-out sequence (1.1.4)

ϕ(rr′, [E]) = [φrr′E] = [φr ◦ φr′E] = [φr(φr′E)] = ϕ(r, ϕ(r′, [E])).

Since φ1 = IdH , ϕ(1, [E]) = [IdHE] = [E]. Consequently, ϕ is a product by
scalars on the abelian group Ext(G,H). �

We will define ExtTVS(Z, Y ) as the set of equivalence classes of extensions
of topological vector spaces of the form 0→ Y

ı→ X
π→ Z → 0. Considering

the Baer sum as in (3.1.1), we can endow ExtTVS(Z, Y ) with the structure
of abelian group.

(iv) For every topological vector spaces Y and Z, ExtTVS(Z, Y ) has a natural
structure of vector space.

Proof. Just notice that in this setting the map φr : Y → Y ; y 7→ ry
is a continuous linear mapping. It is easy to see that the push-out of an
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extension of topological vector spaces by a continuous linear mapping gives
us an extension of topological vector spaces. Thus given [E] ∈ ExtTVS(Z, Y ),
it is clear that [φrE] ∈ ExtTVS(Z, Y ). Therefore, we can use the scalar
multiplication ϕ defined in (iii) to endow ExtTVS(Z, Y ) with a vector space
structure. �

Note that the topological vector structure on Z gives ExtTVS(Z, Y ) an-
other vector space structure via the corresponding pull-backs (instead of
push-outs). We will not consider this structure here.

(4.1.2) Theorem. Let Y, Z be topological vector spaces. Suppose that Y is
complete and metrizable; then

(i) ExtTVS(Z, Y ) ∼= ExtTVS(%Z, Y ).

(ii) if D is a dense subspace of Z then ExtTVS(Z, Y ) ∼= ExtTVS(D,Y )

Proof. (i) Since Y is complete and metrizable, it is Čech-complete and we
are in the conditions of (3.2.3). Notice that if we use (3.2.3) to complete an
extension of topological vector spaces we obtain an extension of topological
vector spaces. Having this in mind we can repeat the proof of (3.2.4) in this
context.

(ii) Proceed as in (3.2.5) using (i) instead of (3.2.4). �

(4.1.3) Theorem. Let Z be a topological vector space and let {Yα : α <
κ} be a family of topological vector spaces. Then ExtTVS(Z,

∏
α<κ Yα) ∼=∏

α<κ ExtTVS(Z, Yα).

Proof. All the steps in the proof of (3.4.1) are applicable in the category of
topological vector spaces so we can proceed in the same way. �

§4.2 “ Being a topological vector space” as a three
space property

We will turn our attention to applying the techniques developed in the
previous chapter to Problem 4 of Chapter 1, which we recall here:

Problem 4. If Y,Z are topological vector spaces and E : 0 → Y → X →
Z → 0 is an extension of topological abelian groups, what properties of Y and
Z do we need in order that X admits a compatible topological vector space
structure that transforms E into an extension of topological vector spaces?

(4.2.1) Compatible topological vector space structures. Let X be a
topological abelian group. Suppose that ? : R×X → X is a multiplication
by scalars in X such that (X, ?) is a topological vector space that has the
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same underlying topological abelian group structure of X (i.e. such that it
has the same addition and the same topology). Then (X, ?) is said to be a
compatible topological vector space structure for X.

Fact 1. Let Y, Z be topological vector spaces and let X be a topological abelian
group. Suppose that E : 0→ Y

ı→ X
π→ Z → 0 is an extension of topological

abelian groups. The following are equivalent:

(i) There exists a compatible topological vector space structure (X, ?) for X
making ı : Y → (X, ?) and π : (X, ?)→ Z linear maps (i.e. one that makes
E an extension of topological vector spaces).

(ii) E is equivalent to an extension of topological vector spaces E : 0→ Y
I→

X P→ Z → 0.

Proof. (i) ⇒ (ii). Consider the sequence E : 0 → Y
ı→ (X, ?)

π→ Z → 0.
Since by assumption E is an extension of topological abelian groups and
ı : Y → (X, ?) and π : (X, ?) → Z are linear mappings, it follows that E is
an extension of topological vector spaces. The identity X → (X, ?); x 7→ x
witnesses the equivalence of E and E .

(ii) ⇒ (i). Suppose that T : X → X is a topological isomorphism that
makes the diagram

E : 0 // Y
I // X P // Z // 0

E : 0 // Y
ı // X

π //

T

OO

Z // 0

(E35)

commutative. Define

? : R×X −→ X
(r, x) 7−→ T−1

(
r · T (x)

)
Using that T is an isomorphism one easily proves that ? is a multiplication
by scalars. By the commutativity of (E35),

r ? ı(x) = T−1
(
rT
(
ı(x)

))
= T−1

(
rI(x)

)
= T−1

(
I(rx)

)
= ı(rx),

π(r ? x) = π
(
T−1

(
rT (x)

))
= P

(
rT (x)

)
= rP

(
T (x)

)
= rπ(x),

hence under multiplication by scalars ?, ı and π are linear. The continuity
of ? follows from the continuity of T and T−1. �

The following Fact, due to Cattaneo and Cabello, connects with Problem
4.

Fact 2. Let Y,Z be topological vector spaces and let E : 0 → Y
ı→ X

π→
Z → 0 be an extension of topological abelian groups. X admits a compati-
ble topological vector space structure, making E an extension of topological
vector spaces, if any of the following conditions is satisfied:
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(a) Y is a Fréchet topological vector space and Z is any metrizable complete
topological vector space [Cat80, Prop. 2].

(b) Y and Z are a complete locally bounded topological vector spaces [Cab04,
Th. 4].

In (4.2.2) and (4.2.3) we will show that the completeness of Z in (a) and
(b) can be dropped.

(4.2.2) Theorem. Let E : 0 → Y
ı→ X

π→ Z → 0 be an extension of
topological abelian groups. Suppose that Y is a Fréchet topological vector
space and Z is a metrizable topological vector space. Then X admits a
compatible topological vector space structure in such a way that E becomes
an extension of (metrizable) topological vector spaces.

Proof. Metrizability is a three space property (see [HR62, 5.38(e)]) hence X
is metrizable.

Since Y is metrizable and complete, it is Čech-complete (see (1.3.12)) and

we can apply (3.2.3) to deduce that the completed sequence %E : 0→ Y
%ı→

%X
%π→ %Z → 0 is an extension of topological abelian groups. According to

(4.2.1.a) there exists a compatible topological vector space structure in %X
and we can regard %E as an extension of topological vector spaces. Consider
the canonical inclusion I : Z → %Z. The following diagram is commutative:

%E : 0 // Y
%ı // %X

%π // %Z // 0

E : 0 // Y
ı // X

π //?�

OO

Z
?�
I

OO

// 0

Notice that since %E is now an extension of topological vector spaces
and I is a linear mapping, when we construct the pull-back sequence (%E)I
we obtain an extension of topological vector spaces. In virtue of (2.2.7), E
is equivalent to (%E)I : 0→ Y → PB → Z → 0. Applying Fact 1 of (4.2.1)
we complete the proof.

�

(4.2.3) Theorem. Let E : 0 → Y
ı→ X

π→ Z → 0 be an extension of
topological abelian groups. Suppose that Y is a complete locally bounded
topological vector space and Z is a locally bounded topological vector space.
Then X admits a topological vector space structure such that E becomes an
extension of (locally bounded) topological vector spaces.

Proof. X is locally bounded because local boundedness is a three space
property (see [RD81a, Th. 3.2]). Y is metrizable because every locally
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bounded Hausdorff topological vector space is metrizable. Hence Y is Čech-
complete and by (1.3.12) we can apply (3.2.3) to deduce that the completion

%E : 0→ Y
%ı→ %X

%π→ %Z → 0 is an extension of topological abelian groups.
Since Z is locally bounded, its completion %Z is also locally bounded and we
are in the conditions of (4.2.1.b). So %E can be regarded as an extension of
topological vector spaces. From here proceed as in the proof of (4.2.2). �

(4.2.4) Corollary. Let Y and Z be topological vector spaces.

(i) If Y is Fréchet and Z is metrizable then Ext(Z, Y ) ∼= ExtTVS(Z, Y ).

(ii) If Y is complete locally bounded and Z is locally bounded then Ext(Z, Y ) ∼=
ExtTVS(Z, Y )

(4.2.5) Corollary. Let X be an abelian topological group and let π : X → Z
be an open continuous homomorphism of X onto a topological vector space
Z. Then X admits a compatible topological vector space structure such that
π becomes a linear mapping in any of the following situations:

(i) kerπ is a Fréchet space and Z is metrizable.

(ii) kerπ is a complete locally bounded topological vector space and Z is
locally bounded.

(4.2.6) K-spaces. Kalton, Peck and Roberts studied in [KPR84] the ex-
tensions of topological vector spaces of the form 0 → R → X → Z → 0
where Z is complete and metrizable (F-space). They introduced and stud-
ied the K-spaces which are complete metrizable topological vector spaces Z
satisfying ExtTVS(Z,R) = 0. From (4.2.4.i) follows that:

• A metrizable vector space Z satisfies that Ext(Z,R) = 0 if and only if %Z
is a K-space.

In this line of thinking, Domański investigated in [Dom85] a more gen-
eral form of this problem. For a given topological vector space Y , he stud-
ied what he called the class S(Y ) of topological vector spaces Z such that
ExtTVS(Z, Y ) = 0.

In view of (4.2.4.i) and (4.2.4.ii) and using Domański’s terminology we
obtain:

• Let Y be a Fréchet space and Z be any metrizable topological vector space.
Then Z ∈ S(Y ) if and only if Ext(Z, Y ) = 0.

• Let Y and Z be locally bounded topological vector spaces. If Y is complete
then Z ∈ S(Y ) if and only if Ext(Z, Y ) = 0.

(4.2.7) Notes. The results (4.1.2), (4.1.3), (4.2.2) and (4.2.3) can be found
in [Bel].



Chapter 5

Cross-sections

The notion of cross-section has been considered in many different contexts
across topological and abstract algebra. Most authors define cross-sections
simply as right inverses of epimorphisms. The study of cross-sections in
topological groups started with the work of Comfort, Hernández and Trigos-
Arrieta [CHTA01], where they use the notion of continuous cross-section as
a way to approach several problems related with the Bohr topology on an
abelian group (see [CHTA01, def. 4]).

This chapter is devoted to the study of cross-sections the context of
topological abelian groups. We will be interested in those cross-sections
that are continuous at the identity or globally continuous.

We will start §5.1 introducing this notion and its basic properties, spe-
cially in regard to extensions of topological abelian groups. We will use
Michael’s selection theorem to find conditions under which an extension ad-
mits a continuous cross-section. In §5.2 we will study situations in which an
extension of vector spaces admits a continuous cross-section.

§5.1 Topological abelian groups and cross-sections

(5.1.1) Definition. Let π : X → G be a continuous and open epimorphism
of topological abelian groups. A map s : G→ X is called a cross-section of
π if it satisfies that π ◦ s = IdG.

(5.1.2) Definition. A subgroup H of a topological abelian group G is called
a ccs-subgroup if the natural projection G → G/H admits a continuous
cross-section.

(5.1.3) Examples. (i) Let G# denote an abelian group G endowed with its
Bohr topology i.e. the topology induced by Hom(G,T). Z# is a ccs-subgroup
of Q# (see [CHTA01, Th. 24]). Dikranjan proved in [Dik02, Example 3.9]

71
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that Z#
p is a ccs-subgroup of every topological abelian group of the form G#

containing Z#
p .

(ii) Let H be an open subgroup of a topological group G, then H is a ccs-
subgroup of G. Indeed consider the natural projection π : G → G/H and
take any map s : G/H → G satisfying s(g + H) = π−1(g) ∀g ∈ G. Since
H is open, G/H is discrete and consequently s is continuous, thus it is a
continuous cross-section. In particular Zp is a ccs-subgroup of Qp.

(iii) Let G be a locally compact separable metric abelian group and H any
closed subgroup of G. Suppose that G is has finite dimension ([Str06, §33]).
Then the natural projection π : G→ G/H admits a cross-section continuous
on a neighborhood of the neutral element. This result was proven by Mostert
in [Mos53, Th. 3].

(5.1.4) Extensions and cross-sections. Given an extension of topologi-
cal abelian groups E : 0 → H → X

π→ G → 0, we will say that E admits a
cross-section continuous at 0 (resp. continuous) if so does π. It is clear that
if E admits a cross-section s : G → X (either continuous or continuous at
0) we can always suppose without loss of generality that s(0) = 0.

The aim of this chapter can be expressed as follows:

Problem. Find conditions on topological abelian groups H and G which
guarantee that every extension of the form 0→ H → X → G→ 0 admits a
continuous cross-section (or at least continuous at 0).

Results (5.1.9), (5.1.16) and (5.2.2) are partial answers to the previous
problem.

(5.1.5) Lemma. Let E : 0 → H
ı→ X

π→ G → 0 be an extension of
topological groups. The following are equivalent

(i) There exists a map r : X → H continuous at the origin (respectively
continuous) satisfying r(ı(h)) = h and r(x + ı(h)) = r(x) + h for every
h ∈ H,x ∈ X.

(ii) E admits a cross-section continuous at 0 (continuous).

(iii) There exists a bijection φ : H × G → X continuous at the origin with
inverse continuous at the origin (homeomorphism) and such that φ(h, 0) =
ı(h), π(φ(h, g)) = g for all h ∈ H, g ∈ G.

Proof. We will present the proof for the case in which E admits a cross-
section continuous at 0, if it admits a globally continuous one the argument
is analogous.

(i)⇒(ii). Consider the map s : G → X; π(x) 7→ x − ı(r(x)). s is
well-defined because taking π(x) = π(x+ ı(h)), we obtain:

s(π(x+ ı(h))) = x+ ı(h)− ı(r(x+ ı(h))) = x− ı(r(x)) = s(π(x)).
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To check that s is continuous at 0, notice that since G has the quotient
topology induced by π, it suffices to show that s ◦ π is continuous at 0,
which is trivial. From the definition of s follows that it is a cross-section.

(ii)⇒(iii). Since s is continuous at 0, the map φ : H ×G→ X; (h, g) 7→
s(g)+ ı(h) is continuous at 0. Notice that for all g ∈ G, h ∈ H, we have that
φ(h, 0) = s(0) + ı(h) = ı(h) and π(φ(h, g)) = π(s(g)) + π(ı(h)) = g + 0 = g.
For every x ∈ X, since π(x−s(π(x))) = 0, we deduce that x−s(π(x)) ∈ ı(H).
The inverse of φ is the map x 7→ (ı−1(x − s(π(x))), π(x)), which is well-
defined and continuous at 0.

(iii)⇒(i). Define r : X → H as r(x) = ı−1(x−φ(0, π(x))). r is continuous
at 0 because ı is an embedding and φ is continuous at 0. Since r(ı(h)) =
ı−1(ı(h)− φ(0, 0)) = h and

r(x+ ı(h)) = ı−1
(
x+ ı(h)− φ

(
0, π(x+ ı(h))

))
= ı−1

(
x− φ(0, π(x)) + ı(h)

)
= r(x) + h,

we conclude that r is the desired map. �

(5.1.6) Proposition. Let π : X → G be a continuous open epimorphism of
topological abelian groups. If X is metrizable then π admits a cross-section
continuous at 0. In particular every extension of the form 0 → H → X →
G→ 0 where H and G are metrizable admits cross-section continuous at 0.

Proof. Note that in order to define s with π◦s = idG, we simply must choose
for every g ∈ G an element x ∈ π−1(g), which is a nonempty set since π
is onto. Let us see that it can be done in such a way that the map thus
obtained is continuous at zero.

Let {Un : n < ω} be a decreasing basic sequence of neighborhoods of zero
in X, where U1 = X. Due to the continuity of π, we have

⋂
n∈N π(Un) = {0}.

Let s take the value 0 on g = 0. For any g 6= 0, by the previous paragraph
we can choose n and x with π(x) = g, x ∈ Un, g 6∈ π(Un+1), and define
s(g) = x. Now fix m < ω, we must find V ∈ N0(G) with s(V ) ⊂ Um. Since
π is open there exists V ∈ N0(G) with π(Um) ⊇ V. Fix g ∈ V and let us
show that s(g) ∈ Um. If s(g) = 0 this is trivial. Otherwise s(g) = x with
π(x) = g, x ∈ Un, g 6∈ π(Un+1) for some n. Then g ∈ V ⊂ π(Um), hence
m ≤ n and x ∈ Un ⊂ Um. �

(5.1.7) Lower semicontinuous maps. Let Z, M be topological spaces.
exp(M) stands for the set of all closed non-empty subsets of M . A mapping
q : Z → exp(M) is called lower semicontinuous if for every V open subset
of M , the set

Vq = {z ∈ Z : q(z) ∩ V 6= ∅}
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is open in Z. A map S : Z → M such that S(z) ∈ q(z) ∀z ∈ Z is called a
selection of q.

The next fact will be useful in the following constructions:

(∗) Suppose that f : M → Z is a continuous onto and open map and that
Z is Hausdorff. Then the map q : Z → exp(M) defined by q(z) = f−1(z) is
lower semicontinuous.

Proof. Pick W open in M , let us show that Wq = {z ∈ Z : f−1(z)∩W 6= ∅}
is open in Z. Choose z ∈ Wq, since f is open, f(W ) is open in Z. Since
f−1(z)∩W 6= ∅, z ∈ f(W ) and f(W ) is a neighborhood of z. Since f(W ) ⊂
Wq, Wq is open in Z. �

We proceed to invoke the version of Michael’s Selection Theorem that
we will need (for more detail see [Mic56, Th. 1.2] and [Mic56, Cor. 1.4]).

(5.1.8) Theorem. (Michael) Let M be a space metrizable by a complete
metric, let Z be a paracompact Hausdorff zero-dimensional space and let
q : Z → exp(M) be a lower semicontinuous map. Then there exists a
continuous selection for q.

(5.1.9) Corollary. Let M be a complete metric space, Z a zero-dimensional
paracompact Hausdorff space and p : M → Z a continuous open and onto
map. Then there exists a continuous map s : Z →M satisfying p ◦ s = IdZ .

In particular, if H is a complete metrizable topological abelian group and
G is a complete metrizable zero-dimensional topological abelian group then
every extension of the form 0 → H → X → G → 0 admits a continuous
cross-section.

Proof. For the first part consider the map q : Z → exp(M) defined by
q(x) = p−1(x). In view of (5.1.7.∗) q is lower semicontinuous and by (5.1.8)
there exists a continuous selection for q which will be the desired continuous
map s : Z →M .

For the second part, just notice that since completeness and metrizability
are three space properties, X is complete and metrizable. Metrizable spaces
are paracompact, hence in virtue of the first part of the proof π admits a
continuous cross-section.

�

(5.1.10) Corollary. Let X be a closed subspace of the product Z×M where
M is a space metrizable by a complete metric and Z is a paracompact Haus-
dorff zero-dimensional space. Assume also that the canonical projection
πZ : X → Z; (z,m) 7→ z is open and onto and that A ⊂ Z is closed.
Then every continuous function t : A → X such that πZ ◦ t = IdA can be
extended to a continuous function t : Z → X also satisfying π ◦ t = IdZ , in
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other words there exists a commutative diagram:

Z
t

  

Z

A
?�

OO

t // X

πZ

OO

Proof. Let us start with the following claim:

(∗) Consider the projection πM : X →M ; (z,m) 7→ m. Then the following
map is lower semicontinuous:

p : Z −→ exp(M)

z 7−→
{
πM (π−1

Z (z)) if z /∈ A
{πM ◦ t(z)} if z ∈ A

We need to verify that for every V open in M the set Vp = {z ∈ Z :
p(z)∩V 6= ∅} ⊂ Z is open. πZ is open and onto, hence according to (5.1.7.∗)
the map q : Z → exp(X); z 7→ π−1

Z (z) is lower semicontinuous. Notice that

Vp = {z /∈ A : πM (π−1
Z (z)) ∩ V 6= ∅} ∪ {z ∈ A : πM (t(z)) ∩ V 6= ∅}

= {z /∈ A : π−1
Z (z) ∩ π−1

M (V ) 6= ∅} ∪ (πM ◦ t)−1(V )

=
({
z ∈ Z : q(z) ∩ π−1

M (V ) 6= ∅
}
∩ (Z\A)

)
∪ (πM ◦ t)−1(V )

=
((
π−1
M (V )

)
q
∩ (Z\A)

)
∪ (πM ◦ t)−1(V ).

Since πM , t are continuous, Z\A, V are open and q is lower semicontinuous
we deduce that, being the union of two open sets, Vp is open. �

In view of (∗), we deduce, using (5.1.8) that p admits a continuous
selection S : Z → M . Notice that if z /∈ A, S(z) ∈ πM (π−1

Z (z)) and
S(z) = πM (x0) for some x0 ∈ π−1

Z (z) which means that x0 = (z, S(z)) ∈ X.
Otherwise if z ∈ A (z, S(z)) = (z, πM ◦ t(z)) = t(z) ∈ X, therefore the map
t : Z → X; z 7→ (z, S(z)) is well-defined. Since πZ(t(z)) = πZ(z, S(z)) = z,
and t|A = t, t is the desired map. �

(5.1.11) Lemma. If a topological abelian group G has countable pseudochar-
acter then it admits a coarser metrizable group topology.

Proof. Say that {0} =
⋂
n<ω On with On open for all n < ω, by [AT08,

3.4.18] we can consider for each On a metrizable topological abelian group
Hn and a continuous epimorphism πn : G→ Hn with

π−1
n (Vn) ⊂ On (E36)

for some Vn ∈ N0(Hn). The diagonal product π = 4n∈ωπn : G→∏
n∈ωHn

is, in virtue of (E36), a continuous monomorphism. Since π(G) is metrizable,
we can consider in G the metrizable group topology induced by π, which
will be coarser than the original topology. �
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(5.1.12) Lemma. If N is an admissible subgroup of a topological abelian
group X, then X/N admits a coarser metrizable group topology.

Proof. Consider a sequence {Un : n ∈ ω} of open symmetric neighborhoods
0 in X such that Un+1 +Un+1 +Un+1 ⊂ Un for each n ∈ ω and N =

⋂
n∈ω Un

(see (3.5.4)). Taking π : X → X/N ; x 7→ x+N , π−1π(Un+1) = Un+1 +N ⊂
Un+1 + Un+1 ⊂ Un, for each n ∈ ω. Using this,

π−1

(⋂
n∈ω

π(Un+1)

)
⊂
⋂
n∈ω

Un = N,

i.e. the set
⋂
n∈ω π(Un+1) contains only the neutral element 0 + N and

X/N has countable pseudocharacter. According to (5.1.11), X/N admits a
coarser metrizable group topology. �

The second part of the following lemma will be generalized in (5.1.14)
where we will drop the metrizability restriction on the group K.

(5.1.13) Lemma. Let G,X be topological abelian groups and let π : X → G
be an open continuous epimorphism. Suppose that kerπ = K is compact and
metrizable and that Y ⊂ G is a zero-dimensional kω-space, then there exists
a continuous map s : Y → X satisfying π ◦ s = IdY .

Proof. Let us start proving the following claim:

Claim 1. There exists a metrizable abelian group M and an isomorphic
topological embedding j : X → G ×M making the following diagram com-
mutative,

X
π //

j

((

G

G×M
πG

OO (E37)

where πG : G×M → G is the natural projection.

Since the group K is metrizable, it has a countable local base at 0, say,
{Vn : n ∈ ω}. Then there exists a sequence {Un : n ∈ ω} of open symmetric
neighborhoods of the neutral element 0 in X such that Un+1+Un+1+Un+1 ⊂
Un and Un∩K ⊂ Vn, for each n ∈ ω. Clearly N =

⋂
n∈ω Un is an admissible

subgroup of X and N∩K =
⋂
n∈ω Un∩K ⊂

⋂
n<ω Vn = {0}. By (5.1.12), the

quotient group X/N admits a coarser metrizable topological group topology
T . We denote the topological group (X/N, T ) by M . Clearly, the quotient
map p : X → M defined by p(x) = x + M is continuous since T is coarser
than the original topology. Consider the diagonal product j = π4p : X →
G×M .

Since K is compact, π is perfect and according to (1.2.4.ii) j is perfect. It
is easy to see that j is one-to-one. Indeed, take an arbitrary element x ∈ X
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distinct from 0. If x /∈ K, then π(x) 6= 0 and hence j(x) 6= 0. If x ∈ K,
then x /∈ N , whence it follows that p(x) 6= 0 and j(x) 6= 0. Thus j is a
perfect one-to-one homomorphism of X onto j(X), and so j is a topological
isomorphism of X onto the subgroup j(X) of G ×M . The commutativity
of (E37) follows from the construction of j. �

As Y is a kω-space there exists an increasing sequence {Yn : n ∈ ω} of
compact subspaces that determines its topology (1.2.6). Let Xn = π−1(Yn)
for all n < ω.

Claim 2. There exist a family of continuous mappings {tn : Yn → j(Xn) :
n < ω} such that tn+1|Yn = tn and πG ◦ tn = IdYn.

We construct the required family {tn : Yn → j(Xn) : n < ω} by induc-
tion. Clearly Y0 is a compact zero-dimensional subspace of Y . Since p is
perfect, X0 = p−1(Y0) is a compact subspace of X and K0 = pM (j(X0)) is
a compact subspace of M . Thus j(X0) is a compact subspace of Y0 ×K0,
where K0 is a compact metrizable space.

The restriction of π to X0 is a continuous open map of X0 onto Y0 and,
therefore, the restriction of πG to j(X0) is a continuous open map of j(X0)
onto Y0. We obtain the following commutative diagram:

X0

j|X0 ''

π|X0 // Y0

j(X0)

πG|j(X0)

OO (E38)

By (5.1.10) (with A = ∅, Z = Y0) there exists a continuous map t0 : Y0 →
j(X0) such that πG ◦ t0 = IdY0 .

Suppose that for some n ∈ ω, we have defined a continuous map tn : Yn →
j(Xn) satisfying πG ◦ tn = IdYn . Note that Xn+1 = π−1(Yn+1) and j(Xn+1)
are compact subspaces of X and G × M , respectively. Hence Kn+1 =
pM (j(Xn+1)) is a compact subspace of M and j(Xn+1) ⊂ Yn+1 × Kn+1.
We obtain the following commutative diagram

Yn+1 Yn+1

Yn
?�

OO

tn // j(Xn+1)

πG|j(Xn+1)

OO
(E39)

By (5.1.10) (this time with A = Yn and t = tn), there exists a continuous
map tn+1 of Yn+1 to j(Xn+1) which extends tn and satisfies πG ◦ tn+1 =
IdYn+1 . This proves Claim 2. �

Consider now for each n < ω the map sn = j−1 ◦ tn : Yn → Xn. Because
of the way in which the family {tn : n < ω} was constructed and the
commutativity of (E37), for every n < ω sn+1|Yn = sn and π ◦ sn = IdYn .
Let s be the continuous map of Y to X which coincides with sn on Yn for
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each n ∈ ω (see (1.2.6))). It is clear from the construction that π ◦ s = IdY ,
and the proof is complete. �

(5.1.14) Theorem. Let G,X be topological abelian groups and let π : X →
G be an open continuous epimorphism. Suppose that kerπ = K is compact
and that Y ⊂ G is a zero-dimensional and kω-space; then there exists a
continuous map s : Y → X satisfying π ◦ s = IdY . In particular, if G is a
zero-dimensional kω-space, there exists a continuous cross-section for π.

Proof. Let τ be the character of X, i.e. the minimum cardinality of a local
base at the identity element of X. Using (3.5.4.i) we can construct a family
{Nα : α < τ} of admissible subgroups of X such that:

(∗) every neighborhood of the neutral element 0 in X contains Nα, for some
α < τ .

For every α < τ , take ϕα : X → X/Nα; x 7→ x + Nα. Put π0 = π, and
for any 0 < α ≤ τ define the diagonal product

πα = π4
(
4γ<αϕγ

)
: X −→ X/K ×

(∏
γ<αX/Nγ

)
x 7−→

(
π(x),

(
ϕγ(x)

)
γ<α

)
Call Xα the subgroup πα(X) of X/K × (

∏
γ<αX/Nγ). Given ordinals

α, β with β < α < τ , consider

πα,β : Xα −→ Xβ

πα(x) =
(
π(x),

(
ϕγ(x)

)
γ<α

)
7−→ πβ(x) =

(
π(x),

(
ϕγ(x)

)
γ<β

)
It is clear that πα,β is continuous and satisfies πβ = πα,β ◦ πα. Then

P = {Xα, πα,β : β < α < τ} is an inverse system of topological abelian
groups.

Claim. For each limit ordinal α < τ , consider the inverse system Pα =
{Xγ , πγ,β : β < γ < α}. The following maps are topological isomorphisms

Φ : X −→ lim← P Φα : Xα −→ lim← Pα
x −→

(
πγ(x)

)
γ<τ

πα(x) −→
(
πγ(x)

)
γ<α

Indeed, since π0 = π, Φ is a perfect map (1.2.4.ii). By (∗), Φ is one-to-
one. So to prove that Φ is a homeomorphism it suffices to check that it is
onto. Pick a basic open set W = (Vβ ×

∏
γ 6=β Xγ) ∩ lim← P of lim← P with

Vβ open in Xβ (see ( 1.2.5)). Taking y ∈ π−1
β (Vβ) we obtain that Φ(y) ∈W

and therefore Φ(X) is dense in lim← P. Since Φ is perfect, Φ(X) is closed
in lim← P and consequently Φ is onto.

The same argument can be used for Φα once we show that πα,0 : Xα →
X0 = X/K is a perfect map. It is clear that πα,0 is onto and continuous.
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Let us see that it is open: Fix an open set V in Xα. We have πα,0(V ) =
πα,0(πα(π−1

α (V ))) = π0(π−1
α (V )) which is open since π0 is open and πα

is continuous. We deduce that πα,0 is a quotient map. Using a similar
argument we prove that kerπα,0 = πα(K). As a quotient map with compact
kernel, πα,0 is a perfect map. �

We are going to define a system of continuous maps sα : Y → Xα satis-
fying the following condition for all α, β with 0 ≤ β < α < τ :

(∗∗) πα,β ◦ sα = sβ.

We start letting s0 = IdY . Suppose that the system {sβ : β < α}
satisfying (∗∗) is defined for some ordinal α with 0 < α < τ . If α is limit,
consider Φα the topological isomorphism constructed in the Claim and define
sα as

Y

sα=Φ−1
α ◦Sα

''Sα // lim← Pα
Φ−1
α // Xα

y � // (sβ(y))β<α

(πβ(x))β<α
� // πα(x)

Notice that Sα : Y → lim← Pα; y 7→ (sβ(y))β<α is a well-defined continuous
map because of (∗∗) (see (1.2.5)). An easy verification shows that πα,β ◦sα =
sβ ∀β < α.

Suppose now that α is a successor ordinal, say, α = ν + 1. Notice that
kerπα = K ∩ (

⋂
β<αNβ) is a compact group and

kerπα+1,α =
{(
πα(x), ϕα(x)

)
: πα(x) = 0} ∼= {ϕα(x) : x ∈ kerπα

}
= ϕα(kerπα) ∼= kerπα/(kerπα ∩Nα)

The group kerπα/(kerπα∩Nα) is also metrizable because it is a compact
space with countable pseudocharacter. Hence the homomorphism πα+1,α

satisfies the hypothesis of (5.1.13) . It follows from πν,0 ◦ sν = IdY that sν
is a homeomorphism of Y onto a subspace of Xν . In particular, Yν = sν(Y )
is a zero-dimensional kω-subspace of Xν . Applying (5.1.13) to the open
homomorphism πν+1,ν = πα,ν , we deduce that there exists a continuous
map tν : Yν → Xα such that πα,ν ◦ tν = IdYν . Let us put sα = tν ◦ sν . It
is clear that the system {sβ : 0 ≤ β ≤ α} satisfies (∗∗). This finishes our
recursive construction.

To conclude the proof, consider the continuous map

s = Φ−1 ◦
(
4α<τsα

)
: Y −→ X

y 7−→ Φ−1
((
sα(y)

)
α<τ

)
Since π◦Φ−1

((
πα(x)

)
α<τ

)
= π◦Φ−1

((
π(x), (φα(x))α<τ

))
= π(x), it follows
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that

π ◦ s(y) = π ◦ Φ−1
((
sα(y)

)
α<τ

)
= s0(y) = idY (y).

�

(5.1.15) Corollary. Let K be a compact abelian group and A(Y ) the free
abelian topological group on a zero-dimensional kω-space Y . Then Ext(A(Y ),K) =
0.

Proof. Let E : 0 → K
ı→ X

p→ A(Y ) → 0 be an extension of topological
groups. By (5.1.14), there exists a continuous map s : Y → X satisfying
p ◦ s = IdY . Since A(Y ) is the free abelian topological group over Y , the
map s extends to a continuous homomorphism S : A(Y )→ X;

∑
i≤k niyi 7→∑

i≤k nis(yi) (see (1.3.14)). For every
∑

i≤k niyi ∈ A(Y ),

p ◦ S
(∑
i≤k

niyi

)
=
∑
i≤k

nip(s(yi)) =
∑
i≤k

niyi.

Hence (2.1.7) implies that E splits. �

(5.1.16) Corollary. Let H and G be topological abelian groups. If H is
compact and G is a zero-dimensional kω-space, then every extension of the
form 0→ H → X → G→ 0 admits a continuous cross-section.

§5.2 Topological vector spaces and continuous cross-
sections

We proceed now to prove (5.2.2), in which we will obtain continuous cross-
sections for extensions of topological abelian groups of the form 0 → Y →
X → Z → 0 where Y is a Fréchet topological vector space and Z is a
metrizable topological vector space. The key part of the proof of (5.2.2) lies
in (5.2.1) which is due to Michael and whose proof can be found in [BP75,
Prop. 7.1 of Chap. II].

(5.2.1) Proposition. Let X and Z be complete metrizable topological vector
spaces and let π : X → Z be an onto continuous linear mapping such that
kerπ is a Fréchet topological vector space. Then π admits a continuous
cross-section.

(5.2.2) Theorem. If Y is a Fréchet topological vector space and Z is a
metrizable topological vector space then every extension of topological abelian
groups of the form E : 0 → Y

ı→ X
π→ Z → 0 admits a continuous cross-

section.
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Proof. By (3.2.3) we can consider the completed extension %E : 0 → Y
%ı→

%X
%π→ %Z → 0 obtaining the following commutative diagram:

%E : 0 // Y
%ı // %X

%π // %Z // 0

E : 0 // Y
ı // X

π //?�

OO

Z
?�

OO

// 0

Applying (4.2.2) we deduce that X admits a compatible topological vec-
tor space structure such that E can be regarded as an extension of topo-
logical vector spaces. By (5.2.1) there exists a continuous cross-section
S : %Z → %X for %π. Using (5.1.5) we obtain a continuous map R : %X → Y
such that R(ı(y)+x) = R(x)+y and R(ı(y)) = y ∀y ∈ Y, x ∈ X. The restric-
tion r = R|X : X → H is a continuous map that has the same properties,
hence (5.1.5) guarantees the existence of the desired cross-section for π. �

(5.2.3) Notes. (5.1.6) is [Cab03, Lemma 11], the proof is taken from [BCD13,
Prop. 31]. The proof of (5.1.10) uses the same argument as [AT08, Lemma
4.1.4]. (5.1.11) is [AT08, Coro. 3.4.26]. (5.1.13) and (5.1.14) are [BCDT16,
Lemma 2.5] and [BCDT16, Th. 2.8] respectively.
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Chapter 6

Quasi-homomorphisms

Our aim in this chapter is to develop the theory of quasi-homomorphisms,
which were defined by Cabello in [Cab03]. We will start with §6.1 and
§6.2, where we will study the main properties of quasi-homomorphisms.
In §6.3 we will show how to construct extensions of topological abelian
groups from quasi-homomorphisms and we will find situations in which
quasi-homomorphisms characterize the Ext group.

We will finish the chapter with §6.4 where we will focus on the quasi-
homomorphisms from a topological abelian group to R or T. This final
section will lead us to the following chapter, in which we will combine the
techniques developed here with the ones in the previous chapters to study
the extensions of the form 0→ R→ X → G→ 0 and 0→ T→ X → G→ 0.

§6.1 Quasi-homomorphisms and
pseudo-homomorphisms

(6.1.1) Definition. Let G and H be topological abelian groups. A map
q : G→ H that has the properties:

(a) q(0) = 0,

(b) ∆q : G×G→ H; (x, y) 7→ q(x+y)− q(x)− q(y) is continuous at (0, 0)

is called a quasi-homomorphism. If the quasi-homomorphism q also satisfies
that ∆q is continuous then we will say that it is a pseudo-homomorphism.

(6.1.2) Lemma. Let G and H be topological groups and let q : G → H be
a quasi-homomorphism. Then the following are equivalent

(i) q is a pseudo-homomorphism.

(ii) For every net {xσ : σ ∈ Σ} ⊂ G with limσ∈Σ xσ = x, one has that
limσ∈Σ(q(x− xσ)− q(x) + q(xσ)) = 0 in H.

83
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Proof. (i)⇒ (ii). Let {xσ : σ ∈ Σ} be a net in G with limσ∈Σ xσ = x. From
the continuity of ∆q it follows that limσ∈Σ ∆q(xσ,−xσ) = ∆q(x,−x), which
means that limσ∈Σ(q(xσ−xσ)− q(xσ)− q(−xσ)) = q(x−x)− q(x)− q(−x).
Consequently,

lim
σ∈Σ

(q(xσ) + q(−xσ)) = q(x) + q(−x). (E40)

Since limσ∈Σ ∆q(x,−xσ) = ∆q(x,−x), we see that limσ∈Σ(q(x−xσ)−q(x)−
q(−xσ)) = q(x− x)− q(x)− q(−x) and

lim
σ∈Σ

(q(x− xσ)− q(−xσ)) = −q(−x). (E41)

Applying (E40) and (E41) we deduce that

lim
σ∈Σ

(q(x− xσ)− q(x) + q(xσ))

= lim
σ∈Σ

((
q(x− xσ)− q(−xσ)

)
+
(
q(−xσ) + q(xσ)

)
− q(x)

)
= −q(−x) +

(
q(x) + q(−x)

)
− q(x) = 0.

(ii)⇒ (i). Pick two nets {xσ : σ ∈ Σ}, {yσ : σ ∈ Σ} ⊂ G with limσ∈Σ xσ =
x and limσ∈Σ yσ = y. Notice that

lim
σ∈Σ

(
q(x+ y − xσ − yσ)− q(x+ y) + q(xσ + yσ)

)
= 0, (E42)

lim
σ∈Σ

(
q(x− xσ)− q(x) + q(xσ)

)
= 0, (E43)

lim
σ∈Σ

(
q(y − yσ)− q(y) + q(yσ)

)
= 0, (E44)

lim
σ∈Σ

(
q(x+ y − xσ − yσ)− q(x− xσ)− q(y − yσ)

)
= 0. (E45)

Combining (E42) and (E45) we obtain that

lim
σ∈Σ

(
q(x+ y)− q(xσ + yσ)− q(x− xσ)− q(y − yσ)

)
= 0. (E46)

Adding (E46), (E43) and (E44) we deduce that:

lim
σ∈Σ

(
− q(xσ + yσ) + q(xσ) + q(yσ) +

(
q(x+ y)− q(x)− q(y)

))
= 0, (E47)

and this implies the continuity of ∆q. �

§6.2 The group topology defined by
a quasi-homomorphism

(6.2.1) Proposition-definition. Given a quasi-homomorphism q : G →
H, for every V and U open neighborhoods of 0 in H and G respectively,
consider the subset

W (V,U) = {(h, g) ∈ H ×G : g ∈ U, h ∈ q(g) + V } ⊂ H ×G.
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a quasi-homomorphism

The family N of all sets of the form W (V,U) is a system of open neigh-
borhoods of zero in H × G for a group topology. The abelian group H × G
endowed with the group topology defined by N is denoted by H ⊕q G.

Proof. We need to prove thatN satisfies the following properties (see (1.3.1)):

(a) For every W (V,U),W (V ′, U ′) ∈ N there exists another W (V ′′, U ′′) ∈
N with W (V ′′, U ′′) ⊂W (V,U) ∩W (V ′, U ′).

(b) For everyW (V,U) ∈ N , there existsW (V ′, U ′) ∈ N with−W (V ′, U ′) ⊂
W (V,U).

(c) For every W (V,U) ∈ N , there exists W (V ′, U ′) ∈ N with W (V ′, U ′) +
W (V ′, U ′) ⊂W (V,U).

(d) For every W (V,U) ∈ N and (h, g) ∈W (V,U), there exists W (V ′, U ′) ∈
N with (h, g) +W (V ′, U ′) ⊂W (V,U).

(a). For every W (V,U),W (V ′, U ′) ∈ N , W (V ∩V ′, U ∩U ′) ⊂W (V,U)∩
W (V ′, U ′).

(b). Fix an open neighborhood V ′ of 0 in H with V ′ − V ′ ⊂ V . Choose
also an open neighborhood U ′ of 0 in G with −U ′ ⊂ U and ∆q(U

′×−U ′) ⊂
V ′. Note that

g ∈ U ′ ⇒ (g,−g) ∈ U ′ ×−U ′
⇒ q(g − g)− q(g)− q(−g) ∈ ∆q(U

′ ×−U ′) ⊂ V ′
⇒ −q(g) ∈ q(−g) + V ′

(E48)

Pick (h, g) ∈W (V ′, U ′) and let us check that (−h,−g) ∈W (V,U). In view
of (E48), since h ∈ q(g) + V ′,

−h ∈ −q(g)− V ′ ⊂ q(−g) + V ′ − V ′ ⊂ q(−g) + V.

(c). Let U ′ and V ′ be open neighborhoods of 0 in G and H respectively
with the following properties:

U ′ + U ′ ⊂ U
V ′ + V ′ + V ′ ⊂ V
∆q(U

′ × U ′) ⊂ V ′

For every (g1, h1), (g2, h2) ∈W (V ′, U ′), g1 +g2 ∈ U ′+U ′ ⊂ U and h1 +h2 ∈
q(g1) + q(g2) + V ′ + V ′ ⊂ q(g1 + g2) + V ′ + V ′ + V ′ ⊂ q(g1 + g2) + V .

(d). Choose an open neighborhood V ′ of 0 in H with h + V ′ ⊂ V and
U ′ an open neighborhood of 0 in G with g+U ′ ⊂ U . If (h′, g′) ∈W (V ′, U ′),
g+g′ ∈ g+U ′ ⊂ U and h+h′ ∈ h+V ′ ⊂ V thereby (h+h′, g+g′) ∈W (V,U).

�
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(6.2.2) Proposition. Let H, G be topological abelian groups and let q :
G → H be a quasi-homomorphism. For every net {(hσ, xσ) : σ ∈ Σ} ⊂
H ⊕q G,

lim
σ∈Σ

(hσ, xσ) = 0⇐⇒
{

lim
σ∈Σ

xσ = 0

lim
σ∈Σ

(hσ − q(xσ)) = 0

Proof. Suppose that limσ∈Σ(hσ, xσ) = 0. To prove that limσ∈Σ xσ = 0, fix U
an arbitrary neighborhood of 0 in G. Pick any N ∈ N0(H), by assumption
there exists σ0 ∈ Σ with (xσ, hσ) ∈ W (N,U) ∀σ ≥ σ0 which implies that
xσ ∈ U ∀σ ≥ σ0. To check that limσ∈Σ(hσ − q(xσ)) = 0, fix an arbitrary
neighborhood V of 0 in H and choose any M ∈ N0(G). Taking σ1 ∈ Σ such
that (hσ, xσ) ∈W (V,M) ∀σ ≥ σ1 one finds that (hσ − q(xσ)) ∈ V ∀σ ≥ σ1.

Conversely, suppose that limσ∈Σ xσ = 0 and limσ∈Σ(hσ − q(xσ)) = 0.
Let W (V,U) be an arbitrary neighborhood of 0 in H ⊕q G. By definition
of a convergent net, there exist σ′0, σ0 ∈ Σ such that xσ ∈ U ∀σ ≥ σ0 and
(hσ − q(xσ)) ∈ V ∀σ ≥ σ′0. Finally, choosing σ′′0 ∈ Σ such that σ′′0 ≥ σ0 and
σ′′0 ≥ σ′0, (hσ, xσ) ∈W (V,U) ∀σ ≥ σ′′0 . �

§6.3 Quasi-homomorphisms and the Ext group

(6.3.1) Extensions defined by quasi-homomorphisms. Given a quasi-
homomorphism q : G → H between topological abelian groups, consider
ıH : H → H ⊕q G; h 7→ (h, 0) and πG : H ⊕q G→ G; (h, g) 7→ g.

(i) The sequence Eq : 0 → H
ıH→ H ⊕q G πG→ G → 0 is an extension of

topological abelian groups.

Proof. The fact that ıH is continuous and open onto its image follows from
the identity W (V,U) ∩ ıH(H) = ıH(V ), which is true for every U ∈ N0(G)
and every V ∈ N0(H). πG is continuous and open because πG(W (V,U)) = U
for every U ∈ N0(G) and every V ∈ N0(H) (“⊂” is trivial; for “⊃”, note
that g = πG((q(g), g)) where q(g) ∈ q(g) + V for every g ∈ U). �

The sequence Eq is called the extension defined by the quasi-homomorphism
q : G→ H.

Notice that the composition of a quasi-homomorphism with a continuous
homomorphism is a quasi-homomorphism.

(ii) For every continuous homomorphism γ : G′ → G, Eqγ is equivalent to

Eq◦γ : 0 → H
ıH→ H ⊕q◦γ G′

πG′→ G′ → 0 Analogously, for every continuous

homomorphism δ : H → H ′, δEq is equivalent to Eδ◦q : 0 → H ′
ıH′→ H ′ ⊕δ◦q

G
πG→ G→ 0

Proof. Consider the homomorphism

IdH × γ : H ⊕q◦γ G′ −→ H ⊕q G
(h, x) 7−→ (h, γ(x))
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If {(hσ, xσ), σ ∈ Σ} ⊂ H ⊕q◦γ G′ is a net convergent to 0, by (6.2.2),
limσ∈Σ xσ = 0 in G and limσ∈Σ(hσ − q(γ(xσ))) = 0 in H which, again
by (6.2.2) implies that {(hσ, γ(xσ)), σ ∈ Σ} ⊂ H⊕qG converges to 0. Hence
IdH × γ is continuous.

IdH × γ makes the diagram

Eq : 0 // H
iH // H ⊕q G

πG // G // 0

Eq◦γ : 0 // H
iH // H ⊕q◦γ G′

πG′ //

IdH×γ
OO

G′ //

γ

OO

0

(E49)

commutative. Hence, according to (2.2.6), Eq◦γ is equivalent to Eqγ.

For the other case proceed analogously using δ×IdG : H⊕qG→ H ′⊕δ◦qG
instead of IdH × γ. �

(6.3.2) Lemma. Let E : 0 → H
ı→ X

π→ G → 0 be an extension of
topological groups that splits algebraically. The following are equivalent:

(i) E is equivalent to an extension Eq : 0→ H
ıH→ H⊕qG πG→ G→ 0 induced

by a quasi-homomorphism (resp. pseudo-homomorphism) q : G→ H.

(ii) There exists a map r : X → H continuous at the origin (respectively
continuous) satisfying r(ı(h)) = h and r(x + ı(h)) = r(x) + h for every
h ∈ H,x ∈ X.

(iii) E admits a cross-section continuous at 0 (continuous).

(iv) There exists a bijection φ : H × G → X continuous at the origin with
inverse continuous at the origin (homeomorphism) and such that φ(h, 0) =
ı(h), π(φ(h, g)) = g for every h ∈ H, g ∈ G.

Proof. We will only give the details of the proof for the case in which q is a
quasi-homomorphism, if q is a pseudo-homomorphism the proof is analogous.
By (5.1.5), (ii), (iii) and (iv) are equivalent, it suffices to show that (i) is
equivalent to (iii).

(i)⇒(iii). Suppose that E is equivalent to an extension Eq : 0 → H
ıH→

H ⊕q G πG→ G→ 0 induced by a quasi-homomorphism q. Consider T : X →
H ⊕q G the topological isomorphism witnessing the equivalence between E
and Eq. Define the map s : G → X as s(g) = T−1(q(g), g). Using (6.2.2),
one can easily show that the map g 7→ (q(g), g) ∈ H ⊕q G is continuous at
0. As π ◦ s(g) = π ◦ T−1(q(g), g) = πG(g) = g, s is the desired map.

(iii)⇒(i). Consider the trivial extension E0 : 0→ H
ıH→ H×G πG→ G→ 0.

Since E splits algebraically there exists a homomorphism S : X −→ H ×G
making commutative the diagram
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H ×G
πG

##
0 // H

ıH
;;

ı
##

G // 0

X

π

;;S

OO (E50)

Let πH : H × G → H be the canonical projection and write P = πH ◦ S.
By the commutativity of (E50), P ◦ ı = IdH . Let s : G → X be the cross-
section continuous at 0 for π. We can suppose without loss of generality
that s(0) = 0. Taking q = P ◦ s, let us see that ∆q is continuous at (0, 0).
For every g1, g2 ∈ G, we have that s(g1 +g2)− s(g1)− s(g2) ∈ ı(H) (because
ı(H) = kerπ, and π◦s = IdG). This means that P (s(g1+g2)−s(g1)−s(g2)) =
ı−1(s(g1+g2)−s(g1)−s(g2)) and hence, ∆q = ı−1◦∆s. Since ∆s is continuous
at (0, 0) and ı−1 is continuous, ∆q is continuous at (0, 0).

Let us see that the diagonal product S = P4π : X → H ⊕q G; x 7→
(P (x), π(x)) witnesses the equivalence between E and Eq. Since S triv-
ially witnesses the algebraic equivalence, we only need to check that it is
a continuous map. Take {xσ : σ ∈ Σ} a net convergent to 0 in X, since
x− s ◦ π(x) ∈ ı(H) ∀x ∈ X,

P (xσ)− q ◦ π(xσ) = P (xσ − s ◦ π(xσ)) = ı−1(xσ − s ◦ π(xσ)).

Then limσ∈Σ(P (xσ) − q ◦ π(xσ)) = 0 because ı−1 is continuous and s is
continuous at 0. In view of (6.2.2), limσ∈Σ S(xσ) = 0 and S is continuous.

�

(6.3.3) Approximable quasi-homomorphisms. A quasi-homomorphism
q : G → H is said to be approximable if there exists a homomorphism
a : G→ H such that q − a is continuous at 0. In these conditions it is said
that a approximates q.

Fact 1. A quasi-homomorphism q : G → H is approximable if and only if
its associated extension Eq : 0→ H

ıH→ H ⊕q G πG→ G→ 0 splits.

Proof. Suppose that Eq splits. In view of (2.1.7), there exists a continuous
homomorphism P : H ⊕q G → H such that P ◦ ıH = IdH . Define the
homomorphism a : G → H as a(x) = −P (0, x) and let us see that q − a is
continuous at zero. Making use of (6.2.2) one can show easily that the map
f : G → H ⊕q G defined by f(x) = (q(x), g) is continuous at 0, hence the
composition P ◦ f is also continuous at 0. Notice that

P ◦ f(x) = P (q(x), x) = P (q(x), 0) +P (0, x) = q(x) +P (0, x) = q(x)− a(x).

Therefore, q − a is continuous at 0,



89 §6.3. Quasi-homomorphisms and the Ext group

Conversely, assume that there exists a homomorphism a : G → H that
approximates q. Define the homomorphism P : H ⊕q G → G as P (h, x) =
h− a(x). P clearly satisfies P ◦ ı = idH , let us see that it is continuous at 0.
Let {(hσ, xσ) : σ ∈ Σ} ⊂ H ⊕q G a net such that limσ∈Σ(hσ, xσ) = 0.

P (hσ, xσ) = hσ − a(xσ) =
(
hσ − q(xσ)

)
+
(
q(xσ)− a(xσ)

)
.

Using (6.2.2), since limσ∈Σ(q(xσ)− a(xσ)) = 0 and limσ∈Σ(hσ − q(xσ)) = 0,
limσ∈Σ(P (hσ, xσ)) = 0. �

Fact 2. A pseudo-homomorphism q : G→ H is approximable if and only if
there exists a homomorphism a : G→ H such that q − a is continuous (i.e.
pseudo-homomorphisms are approximable if and only if they are ”globally”
approximable).

Proof. Suppose that q − a is continuous at 0. Pick x ∈ G with x 6= 0 and
{xσ : σ ∈ Σ} ⊂ G a net with limσ∈Σ xσ = x. Using (6.1.2)

lim
σ∈Σ

(
q(xσ)− a(xσ)− q(x)− a(x)

)
= lim

σ∈Σ

((
q(xσ)− a(xσ)− q(x)− a(x)

)
−
(
q(x− xσ) + q(x)− q(xσ)

))
= − lim

σ∈Σ

(
q(x− xσ)− a(x− xσ)

)
= 0.

Conversely, if q − a is continuous, then ∆q is also continuous because ∆q =
∆q−a. �

(6.3.4) Examples. (i) Cabello showed in [Cab03, Th. 1] that a quasi-
homomorphism q : G→ H is approximable in any of the following cases:

(a) G is a product of locally compact abelian groups and H is either R or
T.

(b) G is either R or T and H is a Banach space.

(ii) Let A(X) be the free abelian topological group on a Tychonoff topolog-
ical space X and let H any topological abelian group. Then every pseudo-
homomorphism q : A(X) → H is approximable. Indeed, consider Eq : 0 →
H

ıH→ H ⊕q A(X)
πA(X)→ A(X)→ 0 the extension generated by q. According

to (6.3.2), Eq admits a continuous cross-section s : A(X)→ H⊕qA(X). The
restriction s|X : X → H ⊕q A(X) is clearly continuous, hence there exists
a continuous homomorphism S : A(X)→ H ⊕q A(X) such that S|X = s|X .
Accordingly, π ◦ S = IdA(X), which implies that Eq splits and q is approx-
imable.

(iii) There are non-approximable pseudo-homomorphisms. It is well-known
that there exists a non-splitting extension of topological vector spaces of the
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form E : 0 → R → X → `1 → 0 (see (7.2.1) for more detail). Since `1 is a
complete metrizable topological vector space and R is a Fréchet space, (5.2.1)
tells us that there exists a continuous map s : `1 → X satisfying π ◦ s =
Id`1 . By (6.3.2) E is equivalent to an extension Eq induced by a pseudo-
homomorphism q : `1 → R. Since E does not split q is not approximable.

Since R is divisible it splits algebraically form R⊕q`1 (1.1.5.ii.a). Further-
more, from the fact that Eq is induced by a pseudo-homomorphism follows
that R ⊕q `1 is homeomorphic to R × `1 (6.3.2.iv). Nevertheless, since Eq
does not split, R does not split topologically from R⊕q `1.

(6.3.5) Definition. Given two topological abelian groups G and H we will
denote by Q(G,H) the group of all quasi-homomorphisms from G to H
and by P(G,H) the subgroup of all pseudo-homomorphisms from G to
H. The group of all approximable quasi-homomorphisms from G to H
will be denoted by AQ(G,H) and the group of all approximable pseudo-
homomorphisms from G to H will be denoted by AP(G,H). Notice that
AP(G,H) ≤ P(G,H) and AQ(G,H) ≤ Q(G,H).

(6.3.6) Definition. Given two topological groups G and H, it is easily
seen that the set of all the classes of algebraically splitting extensions of
the form 0 → H → X → G → 0 conforms a subgroup of Ext(G,H). This
subgroup is denoted by Ext0(G,H). One easily sees that (3.1.1.ii) remains
true if we consider Ext0 instead of Ext. Notice that in virtue of (1.1.5) if G
is free or H is divisible, Ext0(G,H) = Ext(G,H).

(6.3.7) Theorem. Let G,H topological abelian groups. The following maps
are monomorphisms of abelian groups

ϕ1 : Q(G,H)/AQ(G,H) −→ Ext0(G,H)

q 7−→ [Eq : 0→ H
ıH→ H ⊕q G πG→ G→ 0]

ϕ2 : P(G,H)/AP(G,H) −→ Ext0(G,H)

q 7−→ [Eq : 0→ H
ıH→ H ⊕q G πG→ G→ 0]

Proof. To check the additivity of ϕ1 notice that if q′, q ∈ Q(G,H), ∇H ◦(q×
q′)◦∆G = q′+q thus by (6.3.1.ii), Eq+q′ ≡ E∇H◦(q×q′)◦∆G

≡ ∇H(Eq×Eq′)∆G

which is a representative of [Eq] + [Eq′ ]. In view of (6.3.3), AQ(G,H) is the
kernel of the map Q(G,H)→ Ext0(G,H); q 7→ [Eq] hence ϕ1 is one-to-one.

The same argument is valid for ϕ2.

�
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(6.3.8) Theorem. Let G,H be topological abelian groups and let ϕ1 and ϕ2

be as in (6.3.7).

(i) If H and G are metrizable then ϕ1 is a group isomorphism.

(ii) If H is compact and G is a zero-dimensional kω-space then ϕ2 is a group
isomorphism.

(iii) If H is complete metrizable and G is complete metrizable and zero-
dimensional then ϕ2 is onto.

(iv) If H is a Fréchet topological vector space and G is a metrizable topolog-
ical vector space then ϕ2 is a linear isomorphism (considering on P(G,H)
its natural vector space structure as a subspace of HG, and on Ext0(G,H)
the one described in (4.1.1.ii)).

Proof. In view of (6.3.7) and (6.3.2) it suffices to prove that every alge-
braically splitting extension of the form E : 0→ H

ı→ X
π→ G→ 0 admits a

cross-section continuous at 0 if we are in the conditions of (i) or a continuous
cross-section if we are in the conditions of (ii)-(iv).

The existence of such cross-section for E in (i)-(iv) was proven in (5.1.6),
(5.1.16), (5.1.9) and (5.2.2) respectively. Notice that in (iv) ϕ2 is linear
because, defining for every λ ∈ R, φλ : H → H; h 7→ λh, by (6.3.1.ii) we
have that Eλq ≡ Eφλ◦q ≡ φλEq = λ · Eq (see (4.1.1.iii)). �

(6.3.9) Corollary. If Y is a Fréchet space and Z is a metrizable topological
vector space then

P(Z, Y )/AP(Z, Y ) ∼= Ext(Z, Y ) ∼= ExtTVS(Z, Y ).

§6.4 Quasi-homomorphisms to R and T

(6.4.1) Hyers’ Lemma. Although much more general than what we need,
Hyers’ Lemma has interesting applications to quasi-homomorphisms. The
following version of this result can be found in [HIR12, Cor. 1.2].

(i) (Hyers) Let G be an abelian group (no topology assumed) and B be a
Banach space. Suppose q : G→ B is a mapping such that

‖∆q(x, y)‖Y = ‖q(x+ y)− q(x)− q(y)‖B ≤ ε ∀x, y ∈ G.

Then there exists an additive mapping a : G→ B such that ‖q(x)−a(x)‖B ≤
ε ∀x ∈ G.
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A version of (i) for maps from an amenable group to the unit circle
was obtained by Cabello in [Cab00, Cor. 1]. The following fact appears as
Lemma 6 in [Cab03] and is an easy consequence of (i).

(ii) (Cabello) Let G be an abelian group (no topology assumed) and let q :
G→ T be any mapping such that for some ε < 1/6

∆q(G×G) = {q(x+ y)− q(x)− q(y) : x, y ∈ G} ⊂ [−ε, ε] + Z

Then there exists a unique homomorphism a : G→ T such that q(x)−a(x) ∈
[−ε, ε] + Z for all x ∈ G.

(6.4.2) Notation. For every abelian group G, every V ⊂ G with 0 ∈ V and
every n < ω we define (1/2n)V = {x ∈ V : 2kx ∈ V ∀k ∈ {0, 1, · · · , n}}.
Notice that if G is a topological abelian group V ∈ N0(G) ⇒ (1/2n)V ∈
N0(G) since the homomorphism hk : x ∈ G 7→ kx ∈ G is continuous and
(1/2n)V =

⋂n
k=0 h

−1
2k

(V ).

(6.4.3) Lemma. Let G and M be topological abelian groups and let q : G→
M be a quasi-homomorphism.

(i) If M = T and there exists U ∈ N0(G) such that q(U) ⊂W = [−β, β]+Z
for some β < 1/6, then q is continuous at 0.

(ii) If M is a Banach space and q maps a neighborhood of zero U to a
bounded subset of M then q is continuous at 0.

Proof. (i). Since q is a quasi-homomorphism,

(∗) for every ρ > 0 there exists Wρ ∈ N0(G) with 2q(u)− q(2u) ∈ [−ρ, ρ] +
Z ∀u ∈Wρ.

Pick any ε > 0. Let us find V ∈ N0(G) with

q(V ) ⊂ [−ε, ε] + Z. (E51)

Let us start taking any β′ ∈ (β, 1/6). Find N < ω with β′/2N ≤ ε. We
will show that the desired neighborhood is

V = (1/2N )U ∩ (1/2N−1)W(β′−β)/(N2N−1).

The following fact is a consequence of [CD03, Cor. 2].

(∗∗) Let ρ ∈ (0, 1/3). 2jx ∈ [−ρ, ρ] + Z ∀j ≤ k ⇒ x ∈ [−ρ/2k, ρ/2k] + Z.

To prove that V satisfies (E51), it suffices to show that

∀v ∈ V ∀n ∈ {0, 1, 2, · · · , N}, 2nq(v) ∈ [−β′, β′] + Z (E52)
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this is because, in view of (∗∗), (E52) will imply q(v) ∈ [−β′/2N , β′/2N ]+Z ⊂
[−ε, ε] + Z. Now, for every n ∈ {0, 1, 2, · · · , N}

2nq(v) = 2nq(v)− 2n−1q(2v) + 2n−1q(2v) = 2n−1
(
2q(v)− q(2v)

)
+ 2n−1q(2v)

= 2n−1
(
2q(v)− q(2v)

)
+ 2n−1q(2v)− 2n−2q(2 · 2v) + 2n−2q(2 · 2v)

= 2n−1
(
2q(v)− q(2v)

)
+ 2n−2

(
2q(2v)− q(2 · 2v)

)
+ 2n−2q(2 · 2v)

= · · ·

=
( n−1∑
j=0

2n−j−1
(
2q(2jv)− q(2 · 2jv)

))
+ q(2nv). (E53)

Since v ∈ (1/2N )U, we have that

q(2nv) ∈ q(U) ∈ [−β, β] + Z. (E54)

Now, for every j ∈ {0, · · · , n − 1} and every n ∈ {0, · · · , N} since 2jv ∈
W(β′−β)/(N2N−1), by (∗)

2q(2jv)− q(2 · 2jv) ∈
[
− β′ − β
N2N−1

,
β′ − β
N2N−1

]
+ Z.

Which implies that

2n−j−1
(

2q(2jv)− q(2 · 2jv)
)
∈ 2n−j−1

([
− β′ − β
N2N−1

,
β′ − β
N2N−1

]
+ Z

)
⊂
[
− β′ − β

N
,
β′ − β
N

]
+ Z.

Thus,

n−1∑
j=0

2n−j−1
(
2q(2jv)− q(2 · 2jv)) ∈ [−β′ + β, β′ − β] + Z. (E55)

Consequently, combining (E54), (E55) and (E53), 2nq(v) ∈ [−β′, β′] + Z.

(ii). This is [Cab03, Lemma 5]. Nevertheless, notice that the argument
used in (i) stands forM Banach if we use balls ofM instead of neighborhoods
of the form [−β, β] + Z. Furthermore, in this case, the analogous version of
(∗∗) is trivial. �

(6.4.4) Proposition. Let M be either a Banach space B or the unit circle
T. Let {Gα : α < κ} be a family of topological abelian groups such that for
every α < κ, every quasi-homomorphism of Gα to M is approximable. Then
every quasi-homomorphism of

∏
α<κGα to M is approximable.
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Proof. We start with the case in which we have the product of just two
groups i.e. assuming that κ = 2. Let G and H be topological abelian groups
with the property specified in the proposition and fix a quasi-homomorphism
q : G×H →M. Making use of ∆q(·, 0, ·, 0) we deduce that q(·, 0) is a quasi-
homomorphism. Similarly, q(0, ·) is a quasi-homomorphism. By hypothesis,
there exist continuous homomorphisms f1 : G → M and f2 : H → M such
that both q(·, 0)− f1(·) and q(0, ·)− f2(·) are continuous at 0. Consider the
homomorphism f : G×H →M ; (g, h) 7→ f1(g) + f2(h). Notice that

q(g, h)− f(g, h) = q(g, h)− f1(g)− f2(h)

=
(
q(g, h)− q(g, 0)− q(0, h)

)
+
(
q(g, 0)− f1(g)

)
+
(
q(0, h)− f2(h)

)
.

(E56)

Using the continuity at 0 of ∆q(·, 0, 0, ·) we obtain that the first summand
is also jointly continuous at 0 which implies that q − f is continuous at 0.

The proof for a finite ordinal κ is an easy induction. We will proceed
now with the proof of the case in which κ is an arbitrary ordinal (notice
that this argument is similar to the last step in the proof of [Cab03, Th. 1]).

Let q :
∏
α<κGα → M be a quasi-homomorphism and let W0 be the

neighborhood [−1/7, 1/7]+Z (in the case M = T) or the unit ball B(0, 1) (in
the case M = B). Let W = (−1/21, 1/21)+Z (if M = T) or W = B(0, 1/3)
(if M = B). Using the continuity of ∆q find an finite subset F ⊂ {α < κ}
and neighborhoods Uα ∈ N0(Gα), for each α ∈ F , such that

∆q

( ∏
α∈F

Uα ×
∏

α<κ,α/∈F

Gα

)
⊂W (E57)

Put J = {α < κ : α /∈ F} and write
∏
α<κGα as G1 × G2, where G1 =∏

α∈F Gα andG2 =
∏
α∈J Gα. By the previous step, the quasi-homomorphism

q(·, 0G2) is approximable and there exists a homomorphism f1 : G1 →M and
Vα ∈ N0(Gα) for each α ∈ F such that(

q(·, 0G2)− f1(·)
)( ∏

α∈F
Vα

)
= q
( ∏
α∈F

Vα × {0G2}
)
− f1

( ∏
α∈F

Vα

)
⊂W

(E58)
We may assume that Vα ⊂ Uα. Further, (6.4.1) implies that there is a
continuous homomorphism f2 : G2 →M such that(

q(0G1 , ·)− f2(·)
)
(G2) = q({0G1} ×G2)− f2(G2) ⊂W (E59)

Using a decomposition as in (E56) and combining (E57), (E58) and (E59)
we can find O1 ∈ N0(G1) and O2 ∈ N0(G1) such that for every g ∈ O1 and
h ∈ O2, we can express q(g, h) − f1(g) − f2(h) as the addition of three
elements in W and so q(g, h)− f1(g)− f2(h) belongs to W +W +W ⊂W0.
It only remains to apply (6.4.3) to deduce that the quasi-homomorphism
(g, h) 7→ q(g, h) − f1(g) − f2(h) is continuous at 0. This completes the
proof. �
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The following immediate consequence of (6.4.4) will be improved in
(7.1.8).

(6.4.5) Corollary. Let M be either a Banach space or T. If {Gn : n < ω} is
a sequence of metrizable abelian groups such that Ext(Gn, H) = 0 for every
n < ω, then Ext(

∏
n<ω Gn, H) = 0.

Proof. Clearly the group G =
∏
n<ω Gn is metrizable. By (6.3.8), it suffices

to show that every quasi-homomorphism q : G→ H is approximable, which
follows from (6.4.4). �

(6.4.6) Theorem. Let M be either a Banach space B or the unit circle T
and let µ be a non-atomic σ-finite measure on a set ∆. Let L0 = L0(µ) be
the space of all measurable functions on ∆ with the norm

‖f‖0 :=

∫
∆

min{1, |f(t)|} dµ(x)

Every quasi-homomorphism q : L0 → M is approximable. Consequently
Ext(L0,M) = 0.

Proof. We can assume, without loss of generality, that µ is a probability
(note that L0(µ) is topologically isomorphic to L0(ν), where ν is a proba-
bility with the same null sets as µ).

Let q : L0 → M be a quasi-homomorphism, pick β < 1/3 and consider
W = [−β, β] + Z if M = T or W = B(0, β) if M = B. Choose δ0 such that
∆q(f, g) ∈W for every f, g with ‖f‖0, ‖g‖0 ≤ δ0.

Let ∆ =
⊕r

n=1 ∆n be a partition of ∆ into measurable sets, with
µ(∆n) ≤ δ0 for all 1 ≤ n ≤ r. Then L0 =

∏r
n=1 L0(∆n) is a topologi-

cal direct product. For all f ∈ L0(∆n) we have that

‖f‖0 =

∫
∆

min{1, |f(t)|} dµ(x) ≤
∫
{t∈∆:f(t)6=0}

1dµ(x)

= µ{t ∈ ∆ : f(t) 6= 0} ≤ µ(∆n) ≤ δ0

Call qn the restriction of q to each L0(∆n). As ∆qn(f, g) ∈ W for every
1 ≤ n ≤ r and f, g ∈ L0(∆n), we can apply (6.4.1) to obtain continuous
homomorphisms an : L0(∆n) → M such that qn(f) − an(f) ∈ W for every
f ∈ L0(∆n). By (6.4.3), we have that each qn − an is continuous at the
origin of L0(∆n) and thus, the continuous homomorphism a : L0 → T given
by a(f) =

∑r
n=1 an(fn) (where f =

∑r
n=1 fn, fn ∈ L0(∆n)) approximates

q. �

(6.4.7) Protodiscrete groups. We say that a topological abelian group
(G, τ) is a protodiscrete group (or that the topology τ is linear) if it has a
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basis of neighborhoods of 0 formed by open subgroups. Note that protodis-
crete Hausdorff groups are exactly the subgroups of products of discrete
groups.

Fact. Let M be either a Banach space B or the unit circle T and let G be a
protodiscrete topological abelian group. Every quasi-homomorphism q : G→
M is approximable.

Proof. Let W = [−1/4, 1/4] + Z if M = T or the unit ball if M = B. There
exists an open subgroup U ≤ G such that ∆q(U×U) ⊂W . Using (6.4.1) we
deduce that there exists an homomorphism a : U →M with q(u)−a(u) ∈W
for every u ∈ U. Now (6.4.3) implies that any algebraic extension of a (which
exists because M is divisible) approximates q. �

(6.4.8) Notes. The definition of N in (6.2.1) appears in [Cab03, Lemma
2]. The equivalence (ii)⇔(iv) in (6.3.2) was proven by Cabello in [Cab03,
Lemma 10] and the argument is based on a similar result in the framework
of topological vector spaces that was developed by Domański in [Dom84,
Lemma 3.2]. The Fact 1 in (6.3.3) is [Cab03, Lemma 3]. (6.4.3.i) is [BCD13,
Lemma 36]. The case M = T in (6.4.4) is [BCDT16, Lemma 1.7]. The case
M = B in (6.4.6) is [Cab04, Th. 2], and the case M = T is [BCD13, Cor.
40]. (6.4.7) was proven in [BCD13, Prop. 42].



Chapter 7

Extensions of topological
abelian groups by T and R

In this final chapter we will focus our attention towards the extensions of
topological abelian groups of the form 0 → M → X → G → 0 where M is
R or T. We will start applying the techniques developed until this point to
find properties on G that force the extensions of the previous form to split.

Most of this dissertation has been focused in finding splitting extensions
and it turns out that finding non-splitting ones can also be a hard problem.
To conclude, in §7.2 we give several examples of non-splitting extensions of
topological abelian groups of the form 0 → M → X → G → 0 where M is
R or T.

§7.1 Splitting extensions by R and T

(7.1.1) R and T in L. The unit circle and the real numbers play a very
important role in the category of locally compact abelian groups. It is known
that both R and T are injective in L which means that every extension of
topological abelian groups of the form 0→M → X → G→ 0 splits if M is
either R or T and G ∈ L. We will include a proof of this fact for the sake of
completeness (for more information on this subject see [Arm81, 9.12, 9.17]):

Fact. Let M be R or T and let G ∈ L. Then Ext(G,M) = 0.

Proof. Pick any extension E : 0 → M
ı→ X → G → 0. Since local com-

pactness is a three space property X ∈ L. It is well known that every group
X ∈ L has the property that for every H ≤ X closed and every continu-
ous homomorphism χ : H → M there exists a continuous homomorphism
χ : X → M such that χ|H = χ (see [HR62, 24.12] if M = T and [HR62,

24.36] if M = R). Thus the continuous homomorphism ı−1 : ı(M) → M
can be extended to a continuous homomorphism P : X → M . Since
P ◦ ı(m) = ı−1(ı(m)) = m ∀m ∈M, by (2.1.7) E splits. �

97
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(7.1.2) Lemma. Let K be a compact subgroup of a topological abelian group
X. X∧ separates points of K if and only if K is dually embedded in X.

Proof. Suppose that X∧ separates points of K. It is known that for any
locally compact abelian group G, a subgroup L ≤ G∧ is dense in G∧ if
and only if it separates points of G. The subgroup L of K∧ formed by all
restrictions of characters of X separates points of K by hypothesis. Hence
L is dense in K∧ and, since K∧ is discrete, L coincides with K∧.

Suppose that K is dually embedded in X. As K is compact, it is a MAP
group. Fix a nonzero x ∈ K. There exists χ ∈ K∧ such that χ(x) 6= 0 + Z.
Since K is dually embedded in X, there exists an extension χ̃ ∈ G∧ of χ
with χ̃(x) = χ(x) 6= 0 + Z. �

(7.1.3) Theorem. Let E : 0 → T ı→ X
π→ G → 0 be an extension of

topological abelian groups. The following are equivalent:

(i) E splits.

(ii) X∧ separates points of ı(T).

(iii) ı(T) is dually embedded in X.

Proof. The equivalence (ii)⇔ (iii) follows from (7.1.2).

(iii) ⇒ (i). Suppose that ı(T) is dually embedded in X. Hence there
exists a continuous character χ : X → T which extends the isomorphism
ϕ : ı(T)→ T defined by ϕ(ı(t)) = t. Since χ ◦ ı = IdT, the assertion follows
from (2.1.7).

(i) ⇒ (ii). Fix x ∈ ı(T), x = ı(z) with z 6= 0 + Z. By (2.1.7) there
exists a continuous homomorphism P : X → T with P ◦ ı = IdT, hence
P (ı(z)) = IdT(z) = z 6= 0 + Z. �

(7.1.4) Theorem. Let E : 0 → T ı→ X
π→ G → 0 be an extension of

topological abelian groups. Suppose that G is locally quasi-convex. Then
conditions (i), (ii), (iii) of (7.1.3) are equivalent to

(iv) X is locally quasi-convex.

Proof. (i)⇒ (iv). If E splits, X is topologically isomorphic to the product
of two locally quasi-convex groups, hence it is locally quasi-convex.

(iv)⇒ (iii). Given an extension of topological abelian groups 0→ T ı→
X

π→ G → 0 with X and G locally quasi-convex, since X is locally quasi-
convex, in particular it is MAP, hence its compact subgroup ı(H) is dually
embedded (see (1.3.9.ii)). �
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(7.1.5) Lemma. Let G be a topological group and let F be a compact subset
of G containing 0 and having a countable base {Un : n < ω} in G. Suppose
that a sequence γ = {Vn : n < ω} ⊂ N0(G) satisfies Vn+1 + Vn+1 ⊂ Vn ∩ Un
for each n < ω. Then K =

⋂
n∈ω Vn is a compact subgroup of G, K ⊂ F

and γ is a base for G at K. In particular G/K is metrizable.

Proof. This is [AT08, Lemma 4.3.10]. �

(7.1.6) Lemma. Let G be an almost-metrizable topological abelian group.
Every admissible subgroup N of G contains an admissible, compact subgroup
K such that G/K is metrizable.

Proof. Let N be an admissible subgroup of G and {Wn : n < ω} be a
sequence of open, symmetric neighborhoods of 0 in G such that Wn+1 +
Wn+1+Wn+1 ⊂Wn for each n and

⋂
n∈ωWn = N. Take a compact subgroup

H of G of countable character in G and let {Un : n < ω} be a basis of open
neighborhoods of H in G. Find a sequence {Vn : n < ω} of open symmetric
neighborhoods of 0 in G such that Vn+1 + Vn+1 + Vn+1 ⊂ Wn ∩ Un and
Vn ⊆Wn for every n ∈ ω. Put K =

⋂
n∈ω Vn. It is clear that K is admissible

and K ⊂ N. By (7.1.5), K is a compact subgroup of G and {Vn : n < ω} is
a base for K in G. Hence the quotient group G/K is metrizable. �

(7.1.7) Lemma. Let {Gα : α < κ} be a family of almost-metrizable abelian
groups and G =

∏
α<κGα. Let F be the family of subgroups of G of the form∏

α∈I Nα ×
∏
α/∈I Gα where I is a countable subset of {α < κ} and Nα is a

compact admissible subgroup of Gα such that Gα/Nα is metrizable. Then F
is a cofinal family of admissible subgroups of G.

Proof. It is easy to see that every N ∈ F is admissible. Conversely, let
N be an admissible subgroup of G. Take {Un : n ∈ ω} the family of open
symmetric neighborhoods of 0 in G that define N . By definition of product
topology, we know that for every Un, there exists a family {Vn,α : α < κ}
and a finite subset Jn ⊂ {α < κ} with

Vn,α =

{
Vn,α is an open symmetric neighborhood of 0 in Gα if α ∈ Jn
Vn,α = Gα if α /∈ Jn

(E60)
satisfying that Un ⊃

∏
n<ω Vn,α. This implies that

N =
⋂
n∈ω

Un ⊃
⋂
n∈ω

∏
α<κ

Vn,α =
∏
α<κ

⋂
n∈ω

Vn,α (E61)

It is clear that we may assume that Vn+1,α +Vn+1,α +Vn+1,α ⊂ Vn,α. Define
N ′α =

⋂
n∈ω Vn,α. By construction N ′α is an admissible subgroup of Gα and
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by (E60), N ′α = Gα for all but countably many α < κ. Now put Nα = Gα
if N ′α = Gα, and for those α with N ′α 6= Gα take (using (7.1.6)) a subgroup
Nα ⊂ N ′α such that Nα is admissible, compact and Gα/Nα is metrizable.
Then, in view of (E61), N ⊃∏α<κNα ∈ F .

�

The following result is the key part of the proof of (7.1.9).

(7.1.8) Theorem. Let {Gα : α < κ} be a family of almost-metrizable
abelian groups.

(i) If Gα is a MAP group and Ext(Gα,T) = 0 for every α < κ, then
Ext(

∏
α<κGα,T) = 0.

(ii) If Ext(Gα,R) = 0 for every α < κ, then Ext(
∏
α<κGα,R) = 0.

Proof. Let G =
∏
α<κGα and let M be either T or R. Consider the family

F defined in (7.1.7). By (3.5.7), it suffices to prove that for each N ∈
F , every extension 0 → M → Y → G/N → 0 splits. If N ∈ F , then
N =

∏
α<κNα, where Nα is either a compact, admissible subgroup of Gα

or the whole Gα, the quotients Gα/Nα are metrizable for every α, and
Nα 6= Gα for at most countably many α < κ. Clearly G/N ∼=

∏
α<κGα/Nα.

Note that because Nα is compact every continuous homomorphism from
Nα to M can be continuously extended to Gα (indeed, if M = R there
are not any non-trivial continuous homomorphism from Nα to R and if
M = T it is (1.3.9.ii)). Hence by (3.5.1.ii), Ext(Gα/Nα,M) = 0 for every
α < κ. Therefore G/N is topologically isomorphic to a countable product
of metrizable topological groups Gα/Nα such that Ext(Gα/Nα,M) = 0.
Finally by (6.4.5), Ext(G/N,M) = 0. �

(7.1.9) Theorem. Let G =
∏
α<κGα be the product of a family of topo-

logical abelian groups such that each factor Gα is a dense subgroup of a
MAP and Čech-complete group. Assume that 0 = Ext(Gα,R) = Ext(Gα,T)
for each α < κ. If H is an arbitrary product of copies of R and T, then
Ext(G,H) = 0.

Proof. According to (3.4.1), it suffices to show that Ext(G,M) = 0 when
M is either R or T. Since Gα is a dense subgroup of a MAP and Čech-
complete group Lα, the group %G ∼=

∏
α<κ %Gα

∼=
∏
α<κ Lα is a product of

Čech-complete groups (and therefore almost-metrizable groups (1.3.12.i)).
By (7.1.8), we have Ext(%G,M) = 0. It now follows from (3.2.4) that
Ext(G,M) = 0. �
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(7.1.10) Consequences on locally precompact groups. Locally precom-
pact groups are by definition dense subgroups of locally compact groups
which are MAP and Čech-complete. By (7.1.1), both Ext(G,T) and Ext(G,R)
are trivial for each G ∈ L. Hence the next corollary follows from (7.1.9).

Corollary. Let G =
∏
α<κGα be the product of a family of locally precompact

abelian groups. If H is an arbitrary product of copies of R and T, then
Ext(G,H) = 0.

Notice that this generalizes (6.3.4.i), which is Th. 1(a) in [Cab03].

§7.2 Examples of non-splitting extensions

(7.2.1) Extensions of `1. Kalton ([Kal78]) Ribe ([Rib79]) and Roberts
([Rob77]) proved independently that there exists a non-splitting extension
of topological vector spaces of the form 0 → R → X → `1 → 0. A proof of
this result is included here for the sake of completeness. We will need first
the following two technical facts.

Fact 1. Let f : X → Y be an homogeneous map between normed spaces
(not necessarily a homomorphism). f is continuous at 0 if and only if it is
bounded i.e. if there exists M ∈ R such that

‖f(x)‖ ≤ M‖x‖ ∀x ∈ X.

Proof. Suppose that f is continuous at 0. There exists δ > 0 such that
‖f(x)‖ ≤ 1 ∀x : ‖x‖ ≤ δ. Consequently, taking M = 1/δ, for every x ∈ X
we have

‖f(x)‖ =

∥∥∥∥f(‖x‖δ · δx‖x‖)
∥∥∥∥ =

(‖x‖
δ

)∥∥∥∥f( δx‖x‖)
∥∥∥∥

≤ ‖x‖
δ
· 1 = M‖x‖.

The converse implication is immediate. �

Fact 2. For every s, t ∈ R, (using the convention 0 log 0 = 0)∣∣s log |s|+ t log |t| − (s+ t) log |s+ t|
∣∣ ≤ |s|+ |t|. (E62)

Proof. Assume first that s, t > 0, then∣∣− s log|s| − t log |t|+ (s+ t) log |s+ t|
∣∣

=
∣∣s( log(s+ t)− log s

)
+ t
(

log(s+ t)− log t
)∣∣

=
∣∣∣− s log

( s

s+ t

)
− t log

( t

s+ t

)∣∣∣ = −s log
( s

s+ t

)
− t log

( t

s+ t

)∣∣∣
= (s+ t)

(
− s

s+ t
log
( s

s+ t

)
− t

s+ t
log
( t

s+ t

))
(E63)

≤ (s+ t)(2/e) ≤ s+ t. (E64)
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In (E63) we have used that if 0 ≤ x ≤ 1, |x log x| ≤ 1/e. If s, t < 0, apply
(E64) to −s and −t.

It suffices to show (E62) for the case in which s+ t > 0, t > 0 and s < 0.
If we apply the known case of (E62) replacing s by −s and t by s + t we
obtain ∣∣t log |t|+ s log |s| − (s+ t) log |s+ t|

∣∣ ≤ −s+ s+ t ≤ |s|+ |t|,

which completes the proof. �

(i) Ext(`1,R) 6= 0.

Proof. Consider the following dense subspace of `1:

D =
{
x = {xn : n < ω} ∈ `1 : ∃N < ω such that xn = 0 ∀n ≥ N

}
.

By (3.2.5), since R is Čech-complete, it suffices to show that Ext(D,R) 6=
0. According to (6.3.8.i) it is sufficient to find a non-approximable quasi-
homomorphism from D to R. Define for every x ∈ D

q(x) =
∑
n∈ω

(
xn log |xn|

)
−
(∑
n∈ω

xn

)
log

∣∣∣∣(∑
n∈ω

xn

)∣∣∣∣ (E65)

and let us see that q : D → R is a non-approximable quasi-homomorphism.
Pick x = {xn}, y = {yn} ∈ D. Using (E62) (with s = xn, t = yn)∣∣(xn + yn) log |xn + yn| − xn log |xn| − yn log |yn|

∣∣ ≤ |xn|+ |yn|. (E66)

Notice that if two sequences {an}, {bn} ∈ D satisfy that |an| ≤ |bn|, then
|∑n∈ω an| ≤

∑
n∈ω |bn|. Having this in mind, summing over n in (E66) we

obtain∣∣∣∣∑
n∈ω

(xn + yn) log |xn + yn| −
∑
n∈ω

xn log |xn| −
∑
n∈ω

yn log |yn|
∣∣∣∣ ≤ ‖x‖+ ‖y‖.

(E67)
On the other hand, invoking again (E62) (this time with s =

∑
n∈ω xn,

t =
∑

n∈ω yn)∣∣∣∣(∑
n∈ω

(xn + yn)
)

log
∣∣∣∑
n∈ω

(xn + yn)
∣∣∣

−
(∑
n∈ω

xn

)
log
∣∣∣∑
n∈ω

xn

∣∣∣− (∑
n∈ω

yn

)
log
∣∣∣∑
n∈ω

yn

∣∣∣∣∣∣∣ ≤ ‖x‖+ ‖y‖. (E68)

Using (E67) and (E68) we obtain that |q(x + y) − q(x) − q(y)| ≤ 2(‖x‖ +
‖y‖), which implies that ∆q is continuous and consequently q is a quasi-
homomorphism.

Suppose now that q is approximable. Then there exists a homomorphism
a : D → R such that q − a is continuous at 0. Notice that it follows easily
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from (E65) that q is homogeneous. Consider for each m ∈ ω the canonical
vector em ∈ D such that emn = 0 if n 6= m and emm = 1. Since q − a is
continuous at 0 and q(λem) = λq(em) = 0 ∀λ ∈ R, the restriction a to
the line generated by em is a continuous homomorphism. Every continuous
homomorphism from R to R is homogeneous, therefore the restriction of a
to the line {λem : λ ∈ R} is homogeneous. Since the vectors em generate D,
a is homogeneous. We have proven that the map q − a is homogeneous and
therefore it is bounded (see Fact 1). Thus there exists M ∈ R with

|q(x)− a(x)| ≤M‖x‖, ∀x ∈ D. (E69)

Using that q(em) = 0, |a(em)| ≤ M for all m < ω, consequenly |a(x)| ≤
M‖x‖ ∀x ∈ D and by (E69)

|q(x)| ≤ 2M‖x‖, ∀x ∈ D. (E70)

However

q(1/m(e1 + · · ·+ em)) = −(1/m)m logm = − logm,

which contradicts (E70). �

(ii) ExtTVS(`1,R) 6= 0.

Proof. Since `1 is a Banach space, in particular it is locally bounded, then
by (4.2.4) ExtTVS(`1,R) ∼= Ext(`1,R), which according to (i) is non-trivial.
�

(7.2.2) Theorem. Let Y be a topological vector space and let ρ : R→ T be
the canonical projection. The map ϕ : ExtTVS(Y,R)→ Ext(Y,T) defined by
ϕ([E]) = [ρE] is a monomorphism.

Proof. By (3.1.1.ii) ϕ is a homomorphism of abelian groups. To see that it is
one-to-one, pick an extension of topological vector spaces E : 0→ R ı→ X

π→
G → 0 and assume that ρE splits. Using (2.2.2) we obtain the following
commutative diagram

E : 0 // R ı //

ρ

��

X
π //

s
��

G // 0

ρE : 0 // T r
// PO // G // 0

As ρE splits there exists a continuous homomorphism P : PO → T for such
that P ◦r = IdT and consequently P ◦s◦ı = ρ. Since X is a topological vector
space, P ◦s is of the form x 7→ ρ(f(x)) = f(x)+Z for some continuous linear
mapping f : X → R (see [HR62, 23.32]). This clearly implies f ◦ ı = idR,
hence E splits. �
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(7.2.3) Corollary. Ext(`1,T) 6= 0.

Proof. By (7.2.2) Ext(`1,T) contains an isomorphic copy of ExtTVS(`1,R)
which is non-trivial in view of (7.2.1.ii). �

(7.2.4) Stevens’ group topologies on Rn. Let {vj} be a sequence in Rn
and {pj} be a sequence in R. ‖·‖ will represent the Euclidean norm. The pair
({vj}, {pj}) is called a sequential norming pair (shortly SNP) if it satisfies
the following properties:

(a) 0 < pj+1 ≤ pj ∀j < ω and limj→∞ pj = 0.

(b) 0 < ‖vj‖ ≤ ‖vj+1‖.
(c) inf{pj+1‖vj+1‖/‖vj‖ : j < ω} > 0.

The following result provides a way to define group topologies on Rn
using sequential norming pairs:

(i) Let ({vj}, {pj}) be a SNP. The map

ν : Rn −→ R+

x 7−→ inf

{∑
j<ω

|cj |pj +
∥∥x−∑

j<ω

cjvj
∥∥ : {cj} ∈ Z(ω)

}
(E71)

is a group-norm on Rn such that ν(x) ≤ ‖x‖ ∀x ∈ Rn and ν(vj) ≤ pj ∀j < ω.
ν induces a metrizable group topology τν on Rn, weaker that the usual, in
which limj→∞ vj = 0 ([Ste82, Proposition 4.1]).

If ν is the group-norm associated to the SNP ({vj}, {pj}), we say that
({vj}, {pj}, ν) is a sequential norming triple (SNT) for Rn.

(ii) Let ({vj}, {pj}, ν) SNT for Rn, and let {yj} any sequence in Rm. The
map

µ : Rn+m −→ R+

x 7−→ inf

{∑
j<ω

|cj |pj +
∥∥x−∑

j<ω

cj(vj , yj)
∥∥ : {cj} ∈ Z(ω)

}

satisfies that µ(x) ≤ ‖x‖ and induces a metrizable group topology τµ on
Rn+m in which limj∈ω(vj , yj) = 0. Furthermore the subgroup {0}n × Rm ≤
(Rn+m, τµ) is closed and inherits the usual topology (see [SS04, Prop. 5 and
7]).

Suppose that ({vj}, {pj}) is a SNP for Rn and {yj} is any sequence in
Rm. We will call ({(vj , yj)}, {pj}) an extended norming pair (shortly ENP).
({(vj , yj)}, {pj}, µ) will be called an extended norming triple and denoted
ENT.
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(7.2.5) Lemma. Let ({vj}, {pj}, ν) be a SNT for R and let ({(vj , yj)}, {pj}, µ)
be an ENT for R2. Consider τν , τµ the group topologies induced by ν, µ and
the maps

π : (R2, τµ) −→ (R, τν) ı : R −→ (R2, τµ)
(x, y) 7−→ x y 7−→ (0, y)

Then the short exact sequence Eµν : 0→ R ı→ (R2, τµ)
π→ (R, τν)→ 0 is an

extension of topological abelian groups.

Proof. (7.2.4.ii) tells us that ı is an embedding. π is continuous because
ν(π(x)) = ν(x) ≤ µ(x, y). Let Bµ(0, δ), Bν(0, δ) be balls of radius δ centered
at zero for µ and ν respectively. Suppose that x ∈ Bν(0; δ). In view of (E71),
x can be written as x =

∑
cjvj + z, where

∑
pj |cj | + |z| < δ. Notice that

x = π(
∑
cj(vj , yj) + (z, 0)) and

µ

(∑
cj(vj , yj) + (z, 0)

)
≤ µ

(∑
cj(vj , yj)

)
+ µ(z, 0)

≤
∑
|cj |pj + ‖(z, 0)‖ < δ

therefore x ∈ π(Bµ(0, δ)) and π is open. �

(7.2.6) Proposition. Let ({vj}, {pj}, ν) be a SNT for R. Choose a sequence
{yj} in R such that it does not converges to 0 in the usual topology and
limj∈ω yj/vj = 0 in the usual topology [For instance take vj = j!, yj = j and
pj = 1/j]. Take the ENT ({(vj , yj)}, {pj}, µ) in R2 and τµ, τν the group
topologies induced by µ and ν.

(i) There is not any non-trivial continuous homomorphism form (R2, τµ) to
R.

(ii) The extension Eµν : 0→ R ı→ (R2, τµ)
π→ (R, τν)→ 0 constructed as in

(7.2.5) does not split.

Proof. (i) Let f : (R2, τµ)→ R be a non-trivial continuous homomorphism.
f must also be continuous as a map from R2 to R with the usual topolo-
gies because the topology τµ is weaker than the usual. Then there exist
a, b ∈ R such that f(x, y) = ax + by. By definition of norming triple, the
sequence {(vj , yj)} converges to 0 in (R2, τµ) and using the continuity of f
we deduce that the sequence {avj + byj} converges to 0 in R with the usual
topology. Since {vj} is increasing and non-zero, the sequence {a + byj/vj}
also converges to 0 in R and therefore a = 0. This implies that the se-
quence {f(vj , yj)} = {byj} must converge to 0 in the usual topology which
contradicts the assumption.

(ii) This is a trivial consequence of (i) and (2.1.7). �
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(7.2.7) Definition. If k is a real number, bke is the greatest integer less
than or equal to k − 1.

(7.2.8) Lemma. Let {vj} be a sequence in Rn such that 0 < ‖vj‖ < ‖vj+1‖
and limj→∞ ‖vj‖ = ∞. Let {qj} be a sequence in Rm. Create {wj} a
sequence in Rn+m by defining wj = (vj , qj). Let k < ω, aj , bj and cj be
integers, and suppose that

max{|aj |, |bj |, |cj |} <
⌊‖vj+1‖
‖vj‖

⌉
· 1

3

for 1 ≤ j ≤ k and that

k∑
j=1

ajwj +
k∑
j=1

bjwj =
k∑
j=1

cjwj .

Then aj + bj = cj for every 1 ≤ j ≤ k.

Proof. This is [SS04, Lemma 10]. �

(7.2.9) Lemma. Let ({vj}, {pj}, ν) be a SNT for R. Suppose that {vj}
generates a discrete subgroup in R and that pjb|vj+1|/|vj |e ≥ 1 ∀j < ω.

(i) There exists η > 0 such that for every x with ν(x) < η, there exists a
unique z ∈ R and a unique sequence {cj} ∈ Z(ω) such that x =

∑
cjvj + z

and ν(x) =
∑ |cj |pj + |z|.

(ii) Let ({(vj , yj)}, {pj}, µ) be an ENT for R2 and let π : R2 → R; (x, y) 7→
x. The map s : (R, τν)→ (R2, τµ) defined as

s(x) =

{ ∑
cj(vj , yj) + (z, 0) if ν(x) < η

(x, 0) if ν(x) ≥ η

(where η, {cj} and z are as in (i)) is a cross-section for π continuous at 0.

Proof. (i). Suppose that the discrete subgroup of R generated by {vj} is
rZ where r > 0. Define η = min{r/3, 1/3}. Since ν(x) < η, in view of
(E71) we can always write x =

∑
cjvj + z with

∑ |cj |pj + |z| < η. We need
to show that ν(x) =

∑ |cj |pj + |z| and that x =
∑
cjvj + z is the unique

decomposition which attains the norm. Both statement are consequences of
the following claim:

(∗) If z′ ∈ R, {c′j} ∈ Z(ω) are such that x =
∑
c′jvj +z′ and

∑ |c′j |pj + |z′| ≤∑ |cj |pj + |z|, then z = z′ and cj = c′j ∀j < ω.

From
∑
cjvj + z =

∑
c′jvj + z′ it follows that z − z′ ∈ rZ. Since

|z − z′| ≤ |z|+ |z′| ≤ 2η < r we deduce that z = z′.
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Since
∑ |cj |pj < η, |cj |pj < η ≤ 1/3 ∀j < ω. Using that pjb|vj+1|/|vj |e ≥

1, we obtain

|cj | <
1

3
· 1

pj
≤ 1

3
b|vj+1|/|vj |e ∀j < ω.

Analogously |c′j | ≤ b|vj+1|/|vj |e/3 ∀j < ω. Applying (7.2.8) (taking qj =
0 ∀j < ω), we obtain cj = c′j , ∀j < ω. �

(ii). To check that s is continuous at 0, fix ε > 0, and take δ < min{η, ε}.
Suppose that x ∈ Bν(0; δ). In view of (E71), x can be written as x =∑
cjvj + z, where

∑
pj |cj | + |z| < δ. Since δ < η, by (∗) the previous

decomposition of x coincides with the one obtained in (i). Hence

µ(s(x)) = µ

(∑
cj(vj , yj) + (z, 0)

)
≤ µ

(∑
cj(vj , yj)

)
+ µ(z, 0)

≤
∑
|cj |pj + ‖(z, 0)‖ < δ < ε.

Let us see that π ◦ s = IdR. If ν(x) ≥ η, π(s(x)) = π(x, 0) = x. If
ν(x) < η write x = cjvj + z, and π ◦ s(x) = π(

∑
cj(vj , yj) + (z, 0)) =∑

cjvj + z = x. �

(7.2.10) Theorem. Let ({vj}, {pj}, µ) be in the conditions of (7.2.9). Let
{yj} be a sequence in R that does not converge to 0 in the usual topology
and such that {yj/vj} converges to 0 in the usual topology [For instance take
vj = j!, yj = j and pj = 1/j].

Consider η > 0 as in (7.2.9.i) and the unique decomposition x =
∑
cjvj+

z for every x ∈ R with ν(x) =
∑ |cj |pj + |z|. Define

q : (R, τν) −→ R

x 7−→
{ ∑

cjyj if ν(x) < η
0 if ν(x) ≥ η

Then q : (R, τν)→ R is a non-approximable quasi-homomorphism.

Proof. Consider the ENT ({(xj , yj)}, {pj}, µ). Since we are in the conditions

of (7.2.6) the extension Eµν : 0 → R ı→ (R2, τµ)
π→ (R, τν) → 0 does not

split.
Define S : (R2, τµ) → R2; (x, y) 7→ (y, x) and π1 : R2 → R; (x, y) 7→ x.

Consider s : (R, ν)→ (R2, τµ) as in (7.2.9.ii). Pick x ∈ R, if ν(x) < η

π1(S(s(x))) = π1

(
S
(
s
(∑

cjvj + z
)))

= π1

(
S
(∑

cj(vj , yj) + (z, 0)
))

= π1

(∑
cj(yj , vj) + (0, z)

)
=
∑

cjyj + 0 = q(x).

If ν(x) ≥ η

π1(S(s(x))) = π1(S(x, 0)) = π1(0, x) = 0 = q(x).



Chapter 7. Extensions of top. ab. groups by T and R 108

Thus q = π1 ◦ S ◦ s.
Notice that S witnesses the algebraic equivalence of E and the trivial

extension E0 : R → R × (R, τν) → (R, τν) → 0. Accordingly, in view
of the implication (ii)⇒(iv) of (6.3.2), Eµν is equivalent to the extension
Eq : 0→ R→ R⊕q (R, τν)→ (R, τν)→ 0 given by the quasi-homomorphism
q = π1 ◦ S ◦ s. Finally, by (6.3.3), q is not approximable. �

(7.2.11) Theorem. Let ({vj}, {pj}, ν) be a SNT in the conditions of (7.2.9)
and let τν be the group topology in R generated by the group-norm ν. Then
Ext(R, (R, ν)) is an infinite dimensional vector space.

Proof. Notice first that in virtue of (4.1.1.iii) Ext(R, (R, ν)) is a vector space.
Let {yj} be any increasing sequence satisfying that limj∈ω yj/vj = 0 in the
usual topology of R (take for instance yj =

√
|vj |). Consider P = {rn : n <

ω} an enumeration of the set of prime numbers and define

z
(n)
j =

{
yj if j = (rn)k for some k < ω

0 otherwise
(E72)

For every n < ω, the extending norming triple ({(vj , z(n)
j )}, {pj}, µn)

satisfies the hypothesis of (7.2.10).
Construct for every n < ω the extension Eµnν : 0 → R → (R2, τµn) →

(R, ν) → 0 as in (7.2.5). Let us check that E = {[Eµnν ] : n < ω} is linearly
independent in Ext(R, (R, ν)) with respect to the vector space structure
defined in (4.1.1.ii).

Fix n < ω. Use (7.2.9) to obtain η > 0 and the unique decomposition
x =

∑
cjvj + z for every x ∈ R where ν(x) =

∑ |cj |pj + |z|. Define the map
qn : (R, ν)→ R as

qn(x) =

{ ∑
cjz

(n)
j if ν(x) < η

0 if ν(x) ≥ η

According to (7.2.10), qn is a non-approximable quasi-homomorphism. By
the proof of (7.2.10) Eµnν is equivalent to an extension of the form Eqn :

0→ H
ıH→ H ⊕qn G

πG→ G→ 0.
Suppose that there exist λ1, . . . , λk ∈ R\{0} such that λ1Eµn1ν + · · · +

λkEµnkν ≡ E0. By (6.3.8.iv)

E0 ≡ λ1Eµn1ν + · · ·+ λkEµnkν ≡ λ1Eqn1 + · · ·+ λkEqn1 ≡ E(λ1qn1+···λkqnk )

hence the quasi-homomorphism q = λ1qn1 + · · ·+ λkqnk is approximable.

Consider the sequence {tj = λ1z
(n1)
j + · · ·+λkz

(nk)
j }. Since the supports

of the sequences {z(nl)
j } are disjoint for all l ≤ k, and they do not converge

to 0, {tj} does not converge to 0 in the usual topology of R. In view of (E72)



109 §7.2. Examples of non-splitting extensions

the quotients tj/vj are either yj/vj or 0, therefore limj→∞ tj/vj = 0 in the
usual topology. Then the ENT ({(vj , tj)}, {pj}, µt) satisfies the hypothesis
of (7.2.10). An easy verification shows that q is the non-approximable quasi-
homomorphism that we obtain when we apply the construction of (7.2.10)
to the triple ({(vj , tj)}, {pj}, µt), which gives us a contradiction. �

(7.2.12) Notes. (7.1.2), (7.1.3) and (7.1.4) are Lemma 3, Th. 5 and Th.
7 of [BCD13] respectively. (7.1.7) is [BCDT16, Lemma 3.7] and (7.1.8.i)
is [BCDT16, Prop. 1.8]. (7.1.9) is [BCDT16, Th. 3.13]. Results (7.2.5),
(7.2.6), (7.2.9), (7.2.10) and (7.2.11) are part of an unpublished joint work
with M. J. Chasco, X. E. Domı́nguez and C. Stevens.
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Index of symbols

A [Adherence of a set A]
A(X) [Free topological abelian group] (1.3.14)
CHom(G,H) [Group of continuous homomorphisms of the form G→ H]
∆G,∇H (1.1.5)
E [Extension of topological abelian groups]
f4g [Diagonal product of f and g, x 7→ (f(x), g(x))] (1.2.4.ii)
4α<κfα [Diagonal product of the family {fα}] (1.2.4.ii)
E0 [Trivial extension 0→ H → H ×G→ G→ 0] (2.1.1)

Eτ [Canonical extension 0→ H
ıτ→ (H ×G, τ)

πτ→ G→ 0] (2.1.5)
tE [Push-out extension of E and t] (2.2.2)
Et [Pull-back extension of E and t ] (2.2.6)
E1 × E2 [Cartesian product of extensions] 23
E ≡ E′ [Equivalence of extensions] (2.1.1)
exp(M) [Set of all closed non-empty subsets of M ] (5.1.7)
Ext(G,H) [Group of all extensions of topological

abelian groups of G by H] (3.1.1)
Ext0(G,H) [Group of all algebraically splitting extensions

of topological abelian groups of G by H] (6.3.6)
ExtTVS(Z, Y ) [Group of all extensions of topological

vector spaces of Z by Y ] 45
IdG [Identity map on G]
ıH : H → H ×G, [Canonical inclusion h 7→ (h, 0)] 33, (2.1.5)
ıτ : H → (H ×G, τ), [Canonical inclusion h 7→ (h, 0)] 34
bke (7.2.7)
lim← P [Inverse limit of the system P] (1.2.5)
L0(µ) (6.4.6)
`p (1.4.3)
N0(G) [Set of all neighborhoods of the neutral element of G]
ω [Set of natural numbers, first infinite cardinal]
(PO, r, s) [Push-out triple] (2.2.1)
(PB, r, s) [Pull-back triple] (2.2.5)
πG : H ×G→ G [Canonical projection (h, g) 7→ g] (2.1.1), (2.1.5)
πτ : (H ×G, τ)→ G [Canonical projection (h, g) 7→ g] (2.1.5)
P(G,H) [Group of all pseudo-homomorphisms from G to H] (6.3.5)
Q(G,H) [Group of all quasi-homomorphisms from G to H] (6.3.5)
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AP(G,H) [Group of all aproximable
pseudo-homomorphisms from G to H] (6.3.5)

AQ(G,H) [Group of all aproximable
quasi-homomorphisms from G to H] (6.3.5)

Q [Rational numbers]
Qp [p-adic numbers] (1.3.7)
R [Real numbers]
ρ : R→ R/Z [Canonical projection r 7→ r + Z] (2.1.6)
%G [Răıkov completion of the topological

abelian group G] (3.2.1)
T [Unit circle R/Z]
τν [Group-topology induced by the group-norm ν] (1.3.2)
Hom(G,H) [Homomorphisms (not necessarily continuous) from G to H]
W (V,U) (6.2.1)
Z [Integer numbers]
Zp [p-adic integers] (1.3.7)
0 [Neutral element of an abelian group]
0 +H [Neutral element of the quotient space G/H]
0G : G→ G [Zero map on G]
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`1, 101
K-space, 16, 70
kω-space, 27, 76, 80
p-adic integers, 29
p-adic numbers, 29
Čech-complete, 25

Adherence, 25
Admissible subgroup, 59
Algebraically-splitting, 35, 90
Almost-metrizable, 31, 99

Baer Sum, 23, 45
Base for a topological space, 25
Bohr topology, 71
Box topology, 28

Character, 27
Clopen, 25
Coarser topology, 25
Coaser metrizable group

topology, 76
Cofinal family, 61
Compatible topological vector

space structure, 67
Complex numbers, 21
Coproduct topology, 28
Corestriction, 26
Correstriction, 33
Cotorsion group, 24
Cross-section, 71
Css-subgroup, 71

Diagonal product, 26
Direct limit, 27

Divisible group, 21, 24

Elementary, 16
ENP, 104
ENT, 104
Equivalence of extensions of

topological groups, 33
Exact sequence, 22
Ext group, 45
Extended norming pair, 104
Extended norming triple, 104

Final group topology, 28
Final topology, 25
Finer topology, 25
Five-lemma, 22
Free abelian group, 21, 22, 24
Free abelian topological group,

31, 80

Group-norm, 28
Group-topology, 27

Hyer’s Lemma, 91

Initial group topology, 28
Initial topology, 26
Integer numbers, 21
Interior, 25
Inverse inclusion, 61
Inverse limit, 26
Inverse system, 26

Locally compact abelian group,
29

Locally finite, 25
Locally precompact, 29, 31
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Locally quasi-convex topological
abelian groups, 30

Lower semicontinuous map, 73

MAP, 30
Maximally almost periodic, 30
Metrizable topological abelian

group, 28
Michael’s selection Theorem, 74

Neighborhood, 25
Non-splitting extensions, 101

Open homomorphism, 26

Paracompact space, 25
Perfect map, 26
Protodiscrete groups, 95
Pseudchoaracter, 27
Pseudo-homomorphism, 83
Pull-back construction, 40
Pull-back extension, 41
Push-out construction, 36
Push-out extension, 38, 41

Quasi-homomorphism, 17, 83
Quasi-linear mapping, 17

Răıkov-complete, 30
Rational numbers, 21
Real numbers, 21
Relatively open, 33

Relatively open homomorphism,
26

Sequential norming pair, 104
Sequential norming triple, 104
Short exact sequence, 22
SNP, 104
SNT, 104
Splitting, 35
Splitting of subgroups, 35
Strong group topology, 28
Strong topology, 26
Stronger topology, 25
Sufficiently many characters, 30
System of neighbourhoods, 25

Three space property, 31, 32
Topological abelian group, 27
Topologies in the direct sum, 28
Torsion free, 21
Torsion group, 21
Totally disconnected space, 25
Trivial extension, 34

Unit circle, 21

Weak group topology, 28
Weak topology, 25
Weaker topology, 25

Zero-dimensional space, 25, 74,
76, 80
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tionalanalysistagung in Oberwolfach, 1972.

[SA14a] H. Sahleh and A. Alijani. Extensions in the category of divisible,
locally compact abelian groups. arXiv preprint arXiv:1401.7083,
2014.

[SA14b] H. Sahleh and A. Alijani. Splitting of extensions in the cate-
gory of locally compact abelian groups. International Journal of
Group Theory, 3(3):39–45, 2014.

[Sch86] H. H. Schaefer. Topological vector spaces. Springer Verlag, 1986.

[SS04] J. W. Short and T. C. Stevens. Weakened lie groups and their
locally isometric completions. Topology and its Applications,
135(1):47–61, 2004.

[Ste82] T. C. Stevens. Decisive subgroups of analytic groups. Trans-
actions of the American Mathematical Society, 274(1):101–108,
1982.

[Str06] M. Stroppel. Locally compact groups. EMS Textbooks in Math-
ematics. European Mathematical Society (EMS), Zürich, 2006.
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