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Abstract: Intervention with Mediterranean diet (MedDiet) has provided a high level of evidence
in primary prevention of cardiovascular events. Besides enhancing protection from classical risk
factors, an improvement has also been described in a number of non-classical ones. Benefits have
been reported on biomarkers of oxidation, inflammation, cellular adhesion, adipokine production,
and pro-thrombotic state. Although the benefits of the MedDiet have been attributed to its richness
in antioxidants, the mechanisms by which it exercises its beneficial effects are not well known.
It is thought that the integration of omics including genomics, transcriptomics, epigenomics, and
metabolomics, into studies analyzing nutrition and cardiovascular diseases will provide new clues
regarding these mechanisms. However, omics integration is still in its infancy. Currently, some
single-omics analyses have provided valuable data, mostly in the field of genomics. Thus, several
gene-diet interactions in determining both intermediate (plasma lipids, etc.) and final cardiovascular
phenotypes (stroke, myocardial infarction, etc.) have been reported. However, few studies have
analyzed changes in gene expression and, moreover very few have focused on epigenomic or
metabolomic biomarkers related to the MedDiet. Nevertheless, these preliminary results can help
to better understand the inter-individual differences in cardiovascular risk and dietary response for
further applications in personalized nutrition.
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1. Introduction

Every day, the concept of “Precision Medicine” or “Personalized Medicine” is becoming more
widely known and professionals from various fields are working hard to ensure that the promises
that this new vision of medicine, which proposes customizing healthcare, with medical decisions,
practices, and/or products tailored to the individual patient, are fulfilled. To do so, omics are essential.
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Although the concept of precision medicine has been more focused on curing, customizing prevention
is also being proposed, given that it is known that, for the health care system, prevention and health
promotion is far more cost effective than cure. The concept of “Precision Health” is, therefore, emerging
in an attempt to build up a more global vision. Both within Precision Medicine and Precision Health,
nutrition plays an essential role and, therefore, recently work has also started on the concept of
“Precision Nutrition”, which specifically refers to integrating omics in nutrition so as to achieve a
better prevention and/or treatment of disease based on a more customized diet. However, so that
Precision Nutrition can become a reality, much more research into integrating the new omics into
nutritional epidemiology needs to take place. This will allow us to gather new knowledge that we
will gradually be able to apply in this new field. For some diseases, such as cardiovascular diseases
(CVD), some important studies have already been undertaken that have allowed us to advance in
this knowledge [1-5]. Nevertheless, these reports have to be accompanied by more so as to provide a
high level of scientific evidence and to minimize biases. To do so, omics have to be integrated into the
dietary controlled randomized trials that are undertaken in order to contribute new knowledge on the
influence of diet on the risk of CVD.

These trials are relatively simple to undertake for what are called intermediate phenotypes of
cardiovascular risk (plasma lipid concentrations, inflammation markers, blood pressure, etc.). However,
for final phenotypes of CVD (CVD incidence, mortality, etc.), these trials are expensive and complex,
given that they require a long latency period from when the intervention began to when the so-called
hard events (myocardial infarction, stroke, etc.) take place. Fortunately, the results of the PREDIMED
study (PREvencién con Dleta MEDiterranea)—a randomized, controlled nutritional intervention
trial [1]—aimed at assessing the influence of the Mediterranean Diet (MedDiet) on hard cardiovascular
events, has helped not only to provide a higher level of evidence on the effects of the MedDiet on
cardiovascular prevention, but has also encouraged various research groups throughout the world
to begin or plan the design of large nutritional intervention studies focusing on hard cardiovascular
events. Those studies that have been designed within the new omics era are now incorporating all
these new technologies so as to provide better knowledge. The knowledge that omics can provide to
nutritional studies of the MedDiet and CVD is twofold: on the one hand providing more information
on the molecular mechanisms through which the MedDiet exercises its beneficial effects and, on the
other hand providing information on omic biomarkers (genomic, epigenomic, metabolomic, etc.)
for application in Precision Nutrition. In general, in nutritional epidemiology of CVD, three types
of biomarkers are used: (1) Biomarkers of dietary exposure; (2) Biomarkers of nutritional status;
and (3) Biomarkers of health/disease [6,7]. In this work, we will review present knowledge from
randomized trials with the MedDiet, which provide the first scientific level of evidence, as well as
the traditional biomarkers of health/disease status and will go deeper into new omics (genomics,
transcriptomics, epigenomics, metabolomics) as they promise to revolutionize the identification of
new biomarkers (of dietary exposure, of nutrition status, and of health/disease) in nutritional studies
into CVD, to present the advances in integrating traditional and omic biomarkers when analyzing the
effects of the MedDiet in CVD prevention.

2. Advances in Nutrition: Traditional Mediterranean Diet and Cardiovascular Risk

In clinical practice, main efforts are focused on blood pressure and lipid profile check-ups,
management of diabetes and obesity, and promotion of smoking cessation. A healthy diet pattern,
such as the traditional MedDiet, can be a useful and complementary tool, together with undertaking
of physical exercise, to obtain better control of these risk factors. The PREDIMED study was the
first primary prevention, randomized, controlled trial to test the long-term effects of the MedDiet on
CVD incidence [1]. Participants were randomized into one of three diets: (1) MedDiet supplemented
with extra-virgin olive oil (EVOO); (2) MedDiet supplemented with nuts; and (3) control diet (advice
on a low-fat diet). The PREDIMED study (www.predimed.es) has provided evidence, for the first
time, of the primary prevention for cardiovascular events as a hard composite endpoint (myocardial
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infarction, stroke, and cardiovascular mortality) [1,2], stroke [1], atrial fibrillation [3], type-2 diabetes [4],
and peripheral vascular disease [5], in high cardiovascular risk individuals. We will review present
knowledge from randomized trials with the MedDiet, which provide the first scientific level of evidence,
on traditional biomarkers of health/disease status and will go deeper into the new omics—genomics,
transcriptomics, epigenomics, metabolomics, etc.—as they will be crucial in preventing and treating
CVD[7].

3. Effects of the MedDiet on Traditional Biomarkers (Classical and Non-Classical Risk Factors)

A decrease in systolic and diastolic blood pressure in both PREDIMED MedDiet interventions
was observed after a three-month intervention compared to each baseline [8]. Recently, we have
reported that long-term intervention (4.8 years of median follow-up) with a non-energy restricted
MedDiet (observed for both groups: one supplemented with EVOO and the other with nuts) did
not significantly increase body-weight in comparison with the control low-fat group [9]. Moreover,
intervention with MedDiet had a more favorable effect on the slight increase in waist circumference
observed as a trend in the three groups [9]. Glucose-related and lipid profile parameters also improved
after both three-month MedDiet interventions versus their baselines and versus the low fat diet
control group in PREDIMED participants [8,10]. Likewise, lipoprotein subclasses were shifted to a less
atherogenic pattern by both MedDiet consumptions versus their baselines, especially the one enriched
with nuts [11]. Beneficial effects of the intervention with the MedDiet have also been observed in
other populations. Thus, MedDiet intervention, in chronic renal failure patients in Algeria, improved
triglycerides, and total cholesterol concentration versus the control group [12] and an enhancement in
lipid profile and fibrinogen was observed after the MedDiet versus its baseline [12]. Likewise, in and
intervention study carried out in Greece, hypercholesterolaemic an improvement in adherence to the
MedDiet in hypercholesterolaemic subjects, was associated with a reduction low-density lipoprotein
(LDL) cholesterol, triglycerides, systolic and diastolic blood pressure, coagulation markers, as well
as with an increase in high-density lipoprotein (HDL) cholesterol concentration [13]. Accordingly,
a meta-analysis of high quality trials with MedDiet, in metabolic syndrome volunteers, showed
significant effects of the MedDiet in systolic and diastolic blood pressure, homeostasis model
assessment (HOMA), glucose, HDL cholesterol, and triglycerides [14]. Also in Spanish patients
with metabolic syndrome, intensive life-style intervention counseling, including MedDiet, resulted
in improvements in abdominal circumference, blood pressure, and HDL-cholesterol [15]. Similarly,
an updated meta-analysis including 29 intervention trials, found that intervention with MedDiet
significantly decreased waist circumference, triglyceride concentrations, fasting glucose, and blood
pressure (systolic and diastolic). These beneficial effects were higher in studies of longer duration and
carried out in Europe [16]. Although none focused on primary CVD prevention, but on secondary
prevention, the CORDIOPREV Study (CORonary Diet Intervention with Olive oil and cardiovascular
PREVention), is an ongoing intervention trial with MedDiet versus a low-fat diet on coronary patients
from Spain aimed at analyzing the effects of these intervention both on traditional cardiovascular
biomarkers and CVD recurrence [17]. Interesting results will be obtained in the next few years.
Despite their overall value, some classical cardiovascular risk biomarkers tend to lose predictive power
in specific populations such as the elderly [18]. In addition, a percentage of individuals who develop
CVD have only one or none of the classical CVD risk factors [19,20] and might even prove to have a
worse prognosis [21]. There is, therefore, interest in identifying new biomarkers linked to residual risk
for CVD development [22].

Atherosclerosis, which is the major underlying cause of CVD and is associated with many
other chronic degenerative diseases, involves several highly interrelated processes, including lipid
metabolism, platelet activation, and thrombosis, endothelial dysfunction, inflammation, oxidation,
vascular smooth cell activation, matrix metabolism, remodeling, and genetic factors [23]. At present,
research into these processes is leading to the emergence of new non-omics and omics biomarkers
related to CVD.
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LDL cholesterol concentration has long been associated with cardiovascular risk. Moreover,
oxidative modifications of the LDL particle may play a key role in atherosclerosis [24] and have
been associated with the severity of coronary heart disease [25]. Several follow-up studies have
reported that systemic circulating oxidized LDL could be a predictor of acute coronary syndromes in
the general population [26,27]. In PREDIMED decreased oxidized LDL was observed three months
and one year after both MedDiets versus each baseline [28,29]. In addition, NT-proBNP (a) and
Lp (a) plasma concentrations, also presented a one-year reduction compared with participants
assigned to a low-fat diet [29]. Although in all the intervention groups of PREDIMED systemic
F2-isoprostanes and 8-oxo-deoxiguanosine were reduced after a one-year intervention, in women
with metabolic syndrome who improved their diet towards a MedDiet pattern, the decrease in
8-oxo-deoxiguanosine was greater [30]. In addition, both MedDiet interventions increased plasma
non-enzymatic antioxidant capacity after a one-year intervention, within the frame of the same
study [31]. In a longer three-year follow-up, both MedDiets—particularly the EVOO-rich one—were
associated with higher levels of plasma antioxidant capacity [32]. In other studies, it has been reported
that adherence to a MedDiet may protect against artery wall production of inflammatory mediators [33].
In this regard, C reactive protein, interleukin-6, soluble vascular cell adhesion molecule 1 (sVCAM1),
and soluble intercellular cell adhesion molecule 1 (SICAM1) concentrations decreased after both
MedDiets three-month interventions in the PREDIMED study [8]. In addition, T lymphocytes
sVCAMI and C-reactive protein only decreased after the MedDiet supplemented with EVOO, whereas
interleukin-6, sVCAM]1, and sICAM]1, increased in the control group [8]. Similarly, in another study,
a two-month hypocaloric MedDiet resulted in reductions in proinflammatory markers, such as the
adipose tissue derived retinol-binding protein 4, one of the most important adipokines linked with the
metabolic syndrome [34]. Moreover, recent data from the PREDIMED study have demonstrated that
has demonstrated the anti-inflammatory effects short-term anti-inflammatory effects of the MedDiet
also remain significant after a long-term (more than three years) intervention period [35]. Also it has
been reported that, when a habitual diet high in monounsaturated fatty acid, such as the MedDiet, is
consumed, a lower post-prandial increase of coagulation factor VII (FVIIc) has been reported in other
studies [36,37]. Moreover, some genetic polymorphisms have been linked to this observation [38],
showing the interest in the integration of omic data. Although those biomarkers are mainly associated
with CVD, some of them may have an important role in other diseases such. Thus a recent meta-analysis
has investigated the association between the MedDiet and the main chronic diseases and has found a
consistent protection of the MedDiet not only against CVD, but also on cancer [39].

4. Omics Integration and New Omic-Based Biomarkers

Despite the progress in the identification of the associations between diet and classical and
emerging CVD biomarkers, genetic markers are becoming increasingly important as research advances
on inter-individual variability [40,41]. In particular, genetic polymorphisms in relevant genes have
been related with each one of the traditional biomarkers previously mentioned. In addition, the
underlying mechanisms by which the MedDiet exercises its beneficial effects on CVD are not well
known (Table 1) [42—48]. It is thought that omics integration in the studies analyzing nutrition and CVD
will provide new clues regarding these mechanisms [49]. All of this underlines the importance of the
joint integration of the several omics and increases interest in undertaking more integrated studies [50].
A deeper integration of omics technologies along with new high-throughput computational methods
and a systems biology approach will allow us to identify a better list of biomarkers useful for diagnosis
and therapies of cardiovascular diseases and related gene-diet interactions [49,51].

The PREDIMED study provides an ideal framework for obtaining new knowledge on classical
and new omic-based biomarkers not only at a single-omic, but also at an integrative multi-omics level.
Omic-based biomarkers can be classified as detailed in Table 2 [40,52-60].
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Table 1. Underlying mechanisms of the beneficial effects of the Mediterranean diet on cardiovascular
diseases (CVD).

Underlying Mechanisms References
1. Richness in antioxidants

1.1. Protects blood and tissue components from oxidative stress [42]
1.2. Limits the oxidation of unsaturated fatty acids during intestinal transit [42]
2. MUFA ! and PUFA 2 content in membranes preserves membrane fluidity and functionality [43]
3. Richness in nitrates

3.1. Production of nitrolipids by the nitration of unsaturated fatty acids [44]
3.2. Nitric oxide generation from the nitrate-nitrite-nitric oxide pathway [37]
4. Modulation of microbial populations and activities [45,46]
5. Temporal distribution of food consumption throughout the day [47]
6. Synergistic interactions and cumulative effects betwee different foods and nutrients [42]
7. Modulation of gene expression [48]
8. Modulation of metabolite production [48]

1 MUFA, monounsaturated fatty acids; 2 PUFA, polyunsaturated fatty acids.

Table 2. Classification of new omic-based biomarkers.

Omic-Based

. Description References
Biomarkers

Based on changes in DNA, single nucleotide polymorphisms (SNP). Examples:
SNPs in the lactase gene (LCT) as proxies of milk consumption in Mendelian
randomization analyses.

SNPs in the lipoprotein lipase (LPL) gene as biomarkers of genetic risk of stroke. [40]

Genetic biomarkers [52]

Biomarkers based on the main epigenetic regulators: DNA methylation, histone

modification, and non-coding RNAs. Examples:

DNA hypermetylation or hypomethylation of specific genes depending on food

intake; Levels of circulating microRNAs associated with several [53,54]
nutrition-related diseases.

Epigenetic biomarkers

Biomarkers based on RNA expression (whole transcriptome or differences in the

- ; [55]
Transcriptomic expression of selected genes). Example:
biomarkers Differences in the gene expression profile in subjects following a Mediterranean [56]
diet in comparison with control subjects.
Proteomic biomarkers Biomarkers based on the study of the proteome. [57]
Lipidomic biomarkers Biomarkers based on the study of the lipidome (comprehensive analysis of the 58]

molecular lipid species).

Biomarkers based on the study of the metabolome [the entire small molecule

(metabolite) component of a system]. Metabolites (including peptides, lipids,

nucleotides, carbohydrates, amino acids, and many other classes of small [59]
Metabolomic biomarkers ~ molecules) are generally defined as having an atomic mass of less than 1.5 kDa and

can be exogenous, endogenous, or derived from the microbiome. Example:

The 'H NMR urinary profile in subjects following a traditional Mediterranean diet

in comparison with the urinary profile of subject on a low fat diet. (601

Omic biomarkers require the obtaining of different types of biological samples for their
measurements. The most commonly employed are blood, saliva and urine, although other samples are
used such as adipose tissue or other tissues depending on the aims of the study. Although obtaining
DNA for genotyping allows general determinations that are independent of the tissue used. Obtaining
DNA for epigenetic analyses or RNA for transcriptomic analyses implies an additional difficulty,
as methylation and gene expression varies depending on the tissue analyzed. Despite these limitations,
it is suitable to obtain and store biological samples in any new nutritional epidemiology studies that
are started.

5. Omic Biomarkers in the PREDIMED Study and in Other Studies: Gene-MedDiet Interactions

5.1. Genomic Biomarkers

Currently, we have increasingly faster and cheaper technology to analyze genetic variability. Thus,
we have progressed from studies on candidate genes, in which a few genetic polymorphisms, basically
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SNPs, were analyzed to genome-wide association studies (GWAs), in which hundreds of thousands of
SNPs are analyzed [40]. Moreover, next generation sequencing will provide more detailed information.
However, it is still expensive for large samples. Therefore, one of the widely used approaches to
combine genetic information provided by different SNPs is the use of the so-called “genetic risk
scores” (GRS). There are two types of GRS: unweighted and weighted. The unweighted GRS are built
by summing up the number of risk alleles (0 for wild-type, 1 for heterozygous subjects, and 2 for
homozygous) genotypes for the selected SNPs. In the weighted approach, the loci are also corrected
by the strength of the corresponding association, using the regression coefficients previously obtained
for the selected associations.

Genomic biomarkers can be either of intake or of effect or disease risk. Concerning biomarkers
of disease, our results in the PREDIMED study, in agreement with other investigations [40,41], have
shown an important genetic heterogeneity in determining classical cardiovascular risk factors such
as plasma lipid concentrations [61-64], fasting glucose [62,63,65], inflammatory markers [66], blood
pressure [67], and obesity-related measurements [65,68]. Therefore, these results add more evidence
to the idea that both traditional and omic biomarkers should be integrated and analyzed together
in order to provide better information. In addition, in the PREDIMED study we have found several
gene-diet interactions in determining such intermediate cardiovascular risk phenotypes or also called
traditional biomarkers [62-64]. Although several studies in other populations have analyzed gene-diet
interactions focusing on specific foods or macronutrients, very few studies have analyzed gene-diet
interactions focusing on the whole MedDiet pattern. Frequently, in observational studies, adherence
to MedDiet has is measured using several validated questionnaires [69-71] consisting of several
questions related to typical foods of the MedDiet. In the PREDIMED study, adherence to MedDiet
was measured using a validated 14-item questionnaire [71]. A higher score in this questionnaire
indicated greater adherence, 9 points being the mean for the population. In the PREDIMED study,
we focused on two SNPs strongly associated with obesity and type-2 diabetes: the FTO-rs9939609
and the MC4R-rs17782313 polymorphisms. We also calculated their additive GRS (unweighted).
We found statistically significant gene-diet interactions between the FTO-rs9939609 SNP and the
MC4R-rs17782313 SNP, separately, with the MedDiet score in determining type 2 diabetes risk at
baseline. Likewise, we found a statistically significant gene-diet interaction between the GRS of these
polymorphisms and the adherence to MedDiet in determining type 2 diabetes risk [65]. Thus, when
the adherence to MedDiet was low (less than 9 points), these polymorphisms (the minor alleles in a
dominant model) were associated with higher risk of type 2 diabetes, both individually and in the
GRS. However, when adherence to MedDiet was high, these polymorphisms were not associated with
greater type 2 diabetes risk, so reversing genetic susceptibility [65]. Likewise, some other observational
studies in different populations have reported gene-MedDiet interactions on body-weight [72,73] or
oxidation markers [74].

However, these gene-diet interactions were observed cross-sectionally and they could be subject
to bias. The important thing is to discover in the PREDIMED study whether the intervention with the
MedDiet is capable of modulating genetic effects in different cardiovascular phenotypes, so providing
a higher level of scientific evidence. There are very few dietary intervention trials with MedDiet
analyzing gene-diet interactions on cardiovascular phenotypes. We have summarized the current
evidence of reported interactions in Table 3 [63,64,75-78]. Moreover, only the PREDIMED study has
analyzed gene-diet interactions from intervention with MedDiet in determining hard cardiovascular
end points (total CVD incidence, stroke, myocardial infarction, CVD mortality, etc.).
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Table 3. Intervention studies with Mediterranean diet (MedDiet) and modification of the intervention effect by genetic variants on cardiovascular risk factors

and disease.

Reference

Population Analyzed

Phenotype Analyzed

Study Characteristics

Main Results

Corella et al., 2013 [63]

7018 high cardiovascular risk
subjects participating in the
PREDIMED study

Stroke incidence

Randomized controlled trial
with MedDiet (two groups
pooled) versus a control diet
(4.8 years of median follow-up)

The association between the TCF7L2-rs7903146 (C>T) polymorphism
and stroke was modulated by the intervention with MedDiet. TT
subjects had a higher stroke incidence in the control group (p = 0.006
compared with CC), whereas dietary intervention with MedDiet
reduced stroke incidence in TT homozygotes (p = 0.892 compared
with CC).

Ortega Azorin et al., 2014 [64]

7166 high cardiovascular risk
subjects participating in the
PREDIMED study

Myocardial infarction incidence

Randomized controlled trial
with MedDiet (two groups
pooled) versus a control diet
(4.8 years of median follow-up)

The association between the rs3812316 C>G SNP and myocardial
infarction incidence was modulated by the intervention with
MedDiet. Carriers of the G allele had significantly lower incidence of
myocardial infarction only in the MedDiet intervention group.

Gomez-Delgado et al., 2014 [75]

507 metabolic syndrome (MetS)
patients selected from the
CORDIOPREYV clinical trial

Triglycerides and high
sensitivity C-reactive
protein (hsCRP)

Randomized trial: MedDiet,
compared with a low-fat diet
(1 year of follow-up)

The rs1800629 polymorphism at the TNFA gene interacted with
intervention with MedDiet to influence triglyceride metabolism and
inflammation status in MetS subjects. The decrease in triglycerides
and hsCRP was statistically significant in G/G subjects compared
with carriers of the minor A-allele.

Di Daniele et al., 2014 [76]

40 male patients with chronic
kidney disease

Homocysteine levels and other
biochemical parameters

Dietary intervention with an
Italian Mediterranean organic
diet (IMOD) versus low-protein
diet (LPD) for 14 days

They found a significant interaction between MTHFR C667T
polymorphism and the IMOD on homocysteine levels compared to
LPD The IMOD resulted in significant improvement of homocysteine
levelsin TT.

Corella et al., 2014 [77]

7187 high cardiovascular risk
subjects participating in the
PREDIMED study

Fasting triglycerides and
stroke incidence

Randomized controlled trial
with MedDiet (two groups
pooled) versus a control diet
(4.8 years of median follow-up)

The rs13702 T>C in the 3’ untranslated region of the LPL gene
interacted with the intervention with MedDiet in determining
changes in triglycerides and stroke incidence. The decreasing effect
of the C allele on triglycerides and stroke incidence was only
significant in the MedDiet intervention group.

Corella et al., 2016 [78]

3671 non-diabetic subjects
participating in the
PREDIMED study

Type-2 diabetes incidence

Randomized controlled trial
with MedDiet (two groups
pooled) versus a control diet
(4.8 years of median follow-up)

The CLOCK-1s4580704 C>G SNP was associated with incidence of
type-2 diabetes, with variant allele (G) carriers showing decreased
incidence (dominant model) compared with CC homozygotes.
However, this protection was more significant in the MedDiet
intervention group (p < 0.001) than in the control group (p = 0.818).

PREDIMED: PREvencién con Dleta MEDiterranea; CORDIOPREV: CORonary Diet Intervention with Olive oil and cardiovascular PREVention; TNFA: human tumor necrosis factor o.
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When we started to carry out these studies, there was no published study in the field of
nutrigenetics that had analyzed a gene-diet interaction in determining the incidence of CVD using a
randomized and controlled nutrition intervention trial.

In the PREDIMED study, we have found several gene-diet interactions in determining incidence
of CVD. Among them, we would like to underline that found with the TCF7L2-rs7903146 C>T
SNP and the dietary intervention (MedDiet versus control) in determining stroke incidence [63].
The TCF7L2-rs7903146 polymorphism has been associated with a higher risk of type 2 diabetes,
as well as with CVD risk [79,80] in carriers of the variant T-allele. In the PREDIMED trial we
showed that MedDiet intervention modulated the effects of the TCF7L2-rs7903146 C>T SNP on
stroke incidence. Thus, TT subjects had a higher stroke incidence in the control group (compared with
CC individuals), whereas dietary intervention with MedDiet reduced stroke incidence in TT subjects
and no differences with CC subjects were detected. This result represents the first report showing that
a dietary intervention, in this case the MedDiet, counteracts a genetic risk of stroke.

Moreover, focusing on myocardial infarction, although the results of the PREDIMED study did not
show a statistically significant MedDiet protection for myocardial infarction incidence, in a nutrigenetic
study in PREDIMED participants [64], we did show the protective effect of the MedDiet in individuals
with a certain Max-like protein x (MLX) interacting protein like (MLXIPL) variant. In a previous
GWAS [81], we found that the minor allele of the MLXIPL-rs17145738 SNP was associated with
significantly lower triglyceride concentration. This SNP was intergenic and later a functional variant
(rs3812316, C771G: GIn241His), in high LD with rs17145738, was described [82]. In PREDIMED, we
observed a strong association between the rs3812316-MLXIPL and lower triglycerides concentrations
in carriers of the minor allele [64]. Moreover, we found a significant gene-diet interaction for this SNP
in hypertriglyceridemia. When adherence to MedDiet was high, the protective effect of the minor
allele against hypertriglyceridemia was stronger. However, when adherence to MedDiet was low, the
protection did not reach statistical significance. More importantly, the protective effect of the minor
allele against myocardial infarction was only statistically significant in subjects in the intervention
group receiving MedDiet.

In addition to these pioneering studies showing, for the first time, that intervention with MedDiet
can counteract the higher risk of stroke associated with the minor allele for the TCF7L2-rs7903146
SNP [63] as well as to enhance the protective effect of the minor allele for the MLXIPL-rs3812316
SNP [64] against myocardial infarction, we have published other gene-MedDiet intervention
interactions in determining total CVD or stroke [77,78] ,and we are obtaining novel, still unpublished,
gene-MedDiet interactions that provide accumulative evidence of relevant dietary modulations on the
genetic effects in the CVD risk determination.

5.2. Epigenomic Biomarkers

Epigenomics is term is used to describe a diversity of modifications to the genome that do not
involve changes in DNA sequence and can result in alteration of gene expression [53]. It constitutes
the missing link between genetics, the environment and the outcome phenotypes. The epigenetic
marks are reversible, and may allow a quick adaptation to the environment. There are three
categories of epigenetic biomarkers based on the main epigenetic regulators: DNA methylation,
histone modification, and non-coding RNAs.

Most DNA methylation occurs at cytosine-phosphate-guanine (CpG) dinucleotides, providing
marks in the genome by which genes are set to be transcriptionally activated or silenced [83,84]
Although some studies have reported dietary modification in DNA-methylation related to diet in
different studies [84-89], the heterogeneity of the interventions and the small sample size of these
preliminary studies requires further replication to validate the findings. Moreover, although in some
of these studies [85,89], intervention with MedDiet has been evaluated, taking into account that the
main aim of these studies was to test the effect of an energy-restricted MedDiet on weight loss, the
statistically significant changes in DNA methylation reported in these studies may be due both to
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the intervention with MedDiet and to the decrease in weight. Therefore, how the process of DNA
methylation-demethylation is regulated by MedDiet remains unclear and more studies are needed to
establish epigenomic biomarkers for methylation related to MedDiet intervention. In the PREDIMED
study we are currently investigating some of these biomarkers. Similarly, alterations of histone
modification (acetylation, etc.) have still to be explored in human intervention studies with MedDiet,
and, therefore, new research is needed. In animal models, there is emerging evidence that a high fat
diet intervention induces chromatin accessibility changes and that persistent chromatin accessibility
changes are associated with histone post-translational modifications [90]. Likewise, the effect of the
MedDiet intervention on circulating microRNA (miRNA) and their regulation of gene expression have
been largely unexplored. miRNAs have emerged as crucial epigenetic regulators of many process
related to CVD [91-94]. miRNAs are small (18-25 nucleotide) functional non-coding RNAs that
regulate gene expression of their target mRNA in a post-transcriptional manner. miRNAs can be
detected and measured in different tissues and miRNA expression may be cell specific. However, the
discovery that microRNAs circulate in a stable form in plasma, facilitates that circulating microRNAs
can serve as new omics biomarkers for CVD [94]. Currently, distinctive patterns of circulating miRNAs
have been found for several intermediate and final CVD phenotypes including hypertension, diabetes,
stroke, myocardial infarction, etc. [94-96]. Numerous groups of researchers are investigating the effect
of several dietary interventions on the miRNA circulating profile associated with the CVD phenotypes.
However, published results are still scarce and heterogeneous. Among them, it has been reported that
subjects with prediabetes consuming a pistachio-supplemented diet in comparison with an isocaloric
diet in a randomized crossover nutrition intervention trial, had lower circulating levels of miR-192
and miR-375 compared to the isocaloric diet [97]. Both miRNA have been directly correlated with
fasting glucose and insulin. In terms of macronutrients, it has been reported that intervention with a
high protein diet modifies the microRNA circulating profile of miR-223, in comparison with a normal
protein diet [98]. Likewise, it has been shown that an eight-week trial with a normocaloric diet enriched
with PUFAs is associated with changes in the miRNA circulating profile including decreased miR-328,
miR-330-3p, miR-221, and miR-125a-5p; and increased miR-192, miR-486-5p, miR-19b, miR-106a,
miR-769-5p, miR-130b, and miR-18a [99]. Despite these interesting results supporting the hypothesis
that diet can influence the circulating miRNA profile, the influence of a whole dietary intervention
with MedDiet on circulating miRNA remains to be evaluated.

Regarding miRNA expression in different tissues, interesting results have been obtained
when analyzing miRNA expression in white blood cells (WBC) in metabolic syndrome patients
receiving intervention with MedDiet in the RESMENA (The reduction of the metabolyc syndrome in
Navarra-Spain) study. In this dietary intervention, the MedDiet was able to induce changes in the
expression of let-7b and miR-155-3p (both associated with inflammatory parameters) in WBC [100].

On the other hand, the identification of the respective targets of the circulating or of the
tissue-specific miRNAs may provide novel molecular insight. On this regard, SNPs in miRNA target
sites have also been demonstrated to have allele-specific effects [101]. Thus, the minor allele of the
SNP rs13702 T>C in the lipoprotein lipase (LPL) 3’'UTR gene disrupts a miRNA recognition element
seed site for the human miRNA-410, resulting in a gain-of-function and lower plasma triglyceride
concentrations [101]. Regarding epigenetic biomarkers and omics integration, in the PREDIMED study
we have reported a gene-diet interaction involving the mRNA-410 target site polymorphism in the
LPL gene in determining plasma triglyceride concentrations and stroke incidence [77]. We observed a
strong interaction of the rs13702-LPL miRNA target site SNP with monounsaturated fatty acids (MUFA)
intake at baseline in determining fasting triglycerides in such a way that the decreasing triglyceride
effect of the minor C allele was increased with MUFA intake. Accordingly, after a three-year follow-up
period we obtained statistically significant gene-diet interactions with intervention with MedDiet on
triglycerides, as expected. Thus, C-carriers had a greater decrease in triglyceride concentrations when
allocated to the MedDiet group in comparison with the control group. Moreover, when analyzing the
effect of the miRNA-410target site SNP on the incidence of CVD, we observed a significant protection
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of this SNP only in subjects of the MedDiet. These results are the first of further promising research in
this integrative field.

5.3. Transcriptomic Biomarkers

There are very few intervention studies analyzing the effect of the whole MedDiet pattern on gene
expression. Two intervention studies (including the PREDIMED and another study carried out on
subjects with Crohn’s disease) have analyzed gene expression changes in the whole transcriptome using
high density arrays [56,102] in response to the intervention with MedDiet, while others have focused
on selected candidate genes and intervention with MedDiet or even analyzing the response of typical
foods of the MedDiet such as olive oil [103-107]. The results of these studies have been extensively
reviewed in recent work [108,109]. Briefly, despite the great diversity among studies, intervention with
MedDiet or with EVOO has been related to decreased gene expression of several pro-atherosclerotic
genes involved in vascular inflammation, foam cell formation, and oxidative stress [56,100-107]. In the
transcriptomic analysis in the PREDIMED study [56] carried out in a subsample after a three-month
intervention with MedDiets in comparison with the control group, we detected that the key pathways
in the physiopathology of cardiovascular events, such as atherosclerosis, renin-angiotensin, nitric oxide
and angiopoietin signaling, were modulated by MedDiet + EVOO, whereas hypoxia and endothelial
nitric oxide synthases (eNOS) signaling pathways were modified by both MedDiet; while none of the
pathways were modulated by the control group in blood cells. These scarce results are promising, but
much work is needed to discover good transcriptomic biomarkers in response to MedDiet.

5.4. Metabolomic Biomarkers

The emergence of metabolomics is still recent compared to other omics, but its particular
features have contributed greatly to its increasing use [59,110]. Currently, there are a growing
number of metabolomic studies in the MedDiet field including the PREDIMED study as well as
other studies in other populations [60,101-118]. Metabolomics is currently used both to investigate
markers of dietary intake and biomarkers of disease [115,116]. Plasma/serum and urine samples
of participants are being used depending on the aims and technical issues and more work is
needed to standardize the methods and results when comparing different studies on different
samples. In the PREDIMED study, we have characterized the dietary walnut fingerprinting in urine
samples using an high pressure liquid chromatography coupled with quadrupole time-of-flight mass
spectrometry (HPLC-q-ToF-MS) untargeted metabolomics approach [111]. Consumption of walnuts
was characterized by 18 metabolites, including markers of fatty acid metabolism, ellagitannin-derived
microbial compounds, and intermediate metabolites of the tryptophan/serotonin pathway. Likewise,
we characterized the metabolic signature of cocoa consumption in PREDIMED participants [112].
Moreover, we assessed the effect of the MedDiet intervention on the urinary metabolome by
comparing a sub-sample of non-diabetic subjects at one and three years of follow-ups [60]. We used
multivariate data analysis methods (orthogonal signal correction (OSC) of partial least squares
projection to latent structures (PLS) discriminant analysis (DA) (OSC-PLS-DA) and hierarchical
clustering analysis (HCA)) to identify the potential biomarker discriminating groups. Our results
showed that the most relevant hallmarks related to MedDiet intervention were related to the
metabolism of carbohydrates (3-hydroxybutyrate, citrate, and cis-aconitate), creatine, creatinine, amino
acids (proline, N-acetylglutamine, glycine, branched-chain amino acids, and derived metabolites),
lipids (oleic and suberic acids), and microbial cometabolites (phenylacetylglutamine and p-cresol).
Likewise, in the RESMENA study, an intervention study with two energy-restricted diets; a diet
MedDiet and a control diet (low-fat) carried out on 72 subjects with metabolic syndrome features [113],
showed that the MedDiet intervention resulted in significant changes in the plasma metabolic profile
at two months (mainly phospholipids and lysophospholipids). However, differences were attenuated
at six months.
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Overall, our results show that metabolomics may allow the classification of individuals regarding
their specific food consumption or dietary patterns. However, more studies are needed to improve the
validity and precision of this classification.

On the other hand, we are using metabolomics to identify plasma biomarkers of cardiovascular
disease and diabetes in PREDIMED participants. Thus, in a case-cohort study including all the
cardiovascular events in the PREDIMED study that occurred after 4.8 years of median follow-up and a
random sample of the cohort (10% of participants), we have been able to identify that metabolite profiles
characterized by elevated concentrations of plasma acylcarnitines (mainly, short- and medium-chain
acylcarnitines) are associated with higher incidence of cardiovascular diseases [117]. Moreover,
in this study, we detected that MedDiet intervention modulates the association between baseline
plasma acylcarnitines and further cardiovascular risk, mainly for stroke risk, in such a way that
MedDiet interventions may diminish the risk of cardiovascular diseases associated with higher
plasma concentrations of acylcarnitines before nutritional intervention. Similarly, using the same
case-cohort design in the PREDIMED participants, we analyzed the effect of plasma of branched-chain
amino acids (leucine, isoleucine, and valine) at baseline and cardiovascular disease risk in the
follow-up [118]. We observed a higher incidence of stroke associated with higher branched-chain
amino acid concentrations. Moreover, we detected a statistically significant interaction between these
concentrations and intervention with MedDiet, in such a way that such intervention counteracted the
metabolite effects on stroke. In addition to these metabolomics analyses focused on specific metabolites,
a more comprehensive approach analyzing all the metabolites together is needed to better understand
the relationships at the whole metabolome level.

5.5. Lipidomic Biomarkers

Lipidomics is a subfield of metabolomics that focuses on the overall study of molecular
lipids within cells, tissues, and biological fluids. Lipids classification comprises hundreds of
thousands distinct lipid molecules which play a role on cellular membranes, signaling molecules,
and as energy sources [119]. In a recent revision of the new omics in cardiovascular prevention,
lipidomics was included as relevant to evaluate the comprehensive lipid profile beyond the traditional
biomarkers for plasma lipid concentrations, and it is increasingly being applied to the CVD field [120].
Although several studies have examined the influence of the diet on lipidomic biomarkers, the
number of published studies analyzing the change in lipidomic biomarkers in response to the
MedDiet or to its main components, is still very scarce (but the number can be increased if some
metabolomics biomarkers are classified as lipidomic biomarkers instead). Among other human studies
analyzing lipidomic biomarkers in response to diet, we can mention, as an example for the short-term
(postprandial) intervention, the plasma lipidome study carried out to assess the post-prandial effects
of dairy fat and soy oil in 16 men [121]. This study showed increased concentrations of plasmalogens
(with antioxidant properties), after dairy but not soy meals. With regard mid-term assays, in a
two-month trial with fatty fish or lean fish in individuals who had suffered a myocardial infarction
or unstable ischemic attack, a lipidomic study was performed [122]. On one hand, species including
including ceramides, lysophosphatidylcholines, glycerophospholipids, phosphatidylcholines, and
lysophosphatidylethanolamines were decreased in the group on fatty fish diet, and on the other
hand in the lean fish intervention cholesterol esters and specific long-chain triglycerides increased.
In another study [123], the effects of n-3 fatty acid and polyphenol rich two-month diets on plasma and
HDL particle lipidomic patterns, in high cardiovascular risk volunteers, were studied. Associations
among clinical variables and lipid molecular species were described, mainly after the diets high in n-3
fatty acids and polyphenols.

Interestingly, a recent study has reported the effect of intervention with a whole diet (Nordic diet)
versus a control diet on the fasting plasma lipidomic profile in subjects with metabolic syndrome [124].
Statistically significant changes in 21 plasma lipids were observed between the intervention groups
at 12 weeks, including increases in plasmalogens and decreases in ceramides in the healthy Nordic
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diet group. However, at the end of the study, changes in lipidomic profiles did not differ between the
groups. Analyzing the factors contributing to this, including small sample size or other genetic and
environmental factors will help to better understand the results.

5.6. Multi-Omics Integration in the Response to MedDiet and Cardiovascular Risk

Currently, there is a great interest in omics integration in nutritional epidemiology and
cardiovascular prevention [125,126]. Some recent studies in animal models [126] and plants [127]
have provided examples of integrated multi-omic analyses, and there are some observational human
studies integrating two [128-131] or three omics (genomics, epigenomics, and metabolomics) [132].
However, multi-omic integration in large nutritional intervention studies is still extremely scarce.
In addition to the high cost limitation of obtaining omics data from large sample sizes, there are also
important computational limitations to integrating multidimensional omic data coming from GWAs,
epigenome-wide methylation studies, genome-wide-transcriptomics, metabolomics, proteomics, and
even metagenomics [133]. However, important advances are coming [134,135] and the PREDIMED
study provides an ideal framework for multi-omics analyses and for obtaining new knowledge on
Nutritional Genomics and its association with incidence of cardiovascular diseases as well as for better
understanding the contribution of intermediate cardiovascular biomarkers. Currently, we and other
groups are working on such integration in the field of the responses to the MedDiet intervention in
determining cardiovascular biomarkers and disease risk to provide novel and interesting findings.

6. Conclusions

In summary, the protective effect of the MedDiet on CVDcan be explained by the beneficial effect
of this diet on classical risk cardiovascular factors and non-classical ones. Omics integration, both
at a single-omic level or better still at a multi-omics level, will be crucial to better understand the
mechanisms behind the protective effects of the MedDiet as well as the inter-individual differences in
CVD risk and dietary response for further applications in nutritional epidemiology and in personalized
nutrition or precision nutrition.
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