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1. Glioblastoma 

 

Glioblastoma is the most common and aggressive primary malignant brain tumor in 

adults. Approximately 4000 new cases are diagnosed each year with an incidence of 

about 3 to 7/100.000 habitants, although incidence rates vary significantly by histologic 

type, age at diagnosis, gender, race, and country. Glioblastoma constitutes 45,2% of all 

malignant central nervous system (CNS) tumors and 80% of all primary malignant CNS 

tumors (Ostrom et al., 2015) . The median age at diagnosis is 64 years, and it is more 

common in men than woman and two times more common in whites than blacks 

(Dolecek et al., 2012). Despite the advance in multiple treatments, prognosis for 

glioblastoma patients remains very poor, with a median survival of 12 to 15 months 

(Stupp et al., 2009).  

Based on the clinical course of the disease, there are two major forms of 

glioblastoma: primary or de novo, which occurs spontaneously without any previous 

history of lower grade tumor, which represents approximately 90% of all glioblastomas 

and develops preferentially in elderly patients. The other tumor presentation is known as 

secondary glioblastoma and arises as the result of progression of an already diagnosed 

lower grade glioma and occurs in younger patients (Ohgaki and Kleihues, 2013). 

Primary and secondary glioblastomas are indistinguishable at histological level, 

although they harbor differences at the molecular level.  

Primary glioblastomas have often amplified and mutated the epidermal-growth factor 

receptor (EGFR), amplification of mouse double-minute 2 gene (MDM2), mutation of 

phosphatase and tensin homolog gene (PTEN), loss of heterozygosity 10q, p16 

deletions, homozygous deletions of CDKN2A, high frequency of telomerase reverse 

transcriptase (hTERT) promoter mutations and absence of the isocitrate dehydrogenase 

1 gene (IDH1) mutation (Killela et al., 2013; Kleihues and Ohgaki, 1999).  

Secondary glioblastomas are characterized by more prevalent TP53 mutations, IDH1 

mutations, a thalassemia/mental retardation syndrome X-linked (ATRX), MET 

amplification and overexpression of PDGFRA (Ohgaki et al., 2004; Ohgaki and 

Kleihues, 2007; Ohgaki and Kleihues, 2009). Mutations in EGFR and PDGFRA lead to 

increased tyrosine kinase receptor (TKR) activity and consequently to activation of RAS 

and PI3K pathways (Louis, 2006). The inactivation of the retinoblastoma gene (RB1) 

and the increased activity of human double minute 2 (HDM2) is associated with the 
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progression of low-grade to high-grade glioma (Kleihues and Ohgaki, 1999; Louis, 

2006). 

Glioblastoma is commonly located in the supratentorial region (frontal, temporal, 

parietal, and occipital lobes), and is rarely seen in the cerebellum and in the spinal cord, 

with a difference in the behavior at these 2 locations (Adams et al., 2013; Engelhard et 

al., 2010). Cerebellar glioblastoma arising in younger patients, accounts for 0.4% to 

3.4% of all glioblastomas and is less common in whites and smaller in size, compared 

with supratentorial gliomas (Adams et al., 2013; Babu et al., 2013; Jeswani et al., 2013). 

 

1.1 Classification 

The World Health Organization (WHO) classification system categorizes gliomas 

into 4 histological grades based on certain pathological features, such as nuclear atypia, 

mitotic activity, vascular proliferation, necrosis, proliferative potential and features of 

clinical course and treatment outcome (Louis et al., 2007).  This classification system 

was employed for the first time in the 1920s when Bailey and Cushing categorized glial 

tumors by their similarity to known glial cell types: astrocytes, oligodendrocytes 

(Erridge et al., 2011; Pollo, 2011).  

Infiltrating gliomas are graded as WHO II-IV; grade I are typically solid and non-

infiltrative tumors such as pilocytic astrocytomas and subependymal giant cell 

astrocytomas. Astrocytoma (diffusely infiltrated into surrounding neural tissue), 

oligodendroglioma (occurs in the white matter and cortex of the cerebral hemisphere) 

and oligoastrocytoma (diffuse mixed tumor with mix glial background) are classified as 

Grade II and are more differentiated neoplasms that invariably progress to a higher-

grade tumor with time. Anaplastic astrocytoma/oligodendroglioma correspond to Grade 

III and glioblastoma is classified as Grade IV (Louis et al., 2007). Nuclear atypia and 

mitotic activity are required criteria for grade III lesions, and the presence of necrosis or 

microvascular proliferation is required for the diagnosis of grade IV astrocytoma, 

glioblastoma (Miller and Perry, 2007). 

Additionally a rare subtype of glioblastoma was added to the WHO classification, 

termed as “glioblastoma with oligodendroglioma component", defined as glioblastoma 

having areas that resemble anaplastic oligodendroglioma with hallmark features of 

glioblastoma, necrosis with or without microvascular proliferation (Louis et al., 2007). 

At the molecular level several gliomas subtypes can be distinguished according to their 

genomic profile: classical, mesenchymal, proneural and neural type (Cancer Genome 
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Atlas Research Network, 2008; Phillips et al., 2006; Verhaak et al., 2010). These newly 

defined subtypes carry specific genetic abnormalities, including discrete mutations of 

oncogenes or tumor suppressor genes and loss or gain of partial or entire chromosomes.  

The classical subtype accounts for about 21% of all glioblastomas and the 

amplification of EGFR can be considered its hallmark, detected in 97% of tumors. 

Other particularly common alterations in this subtype comprise the loss of 

heterozygosity of 10q23 (that harbor the PTEN locus), amplification of chromosome 7, 

loss of chromosome 10, homozygous deletion at chromosome 9p21.3 (encodes for 

p16INK4A and p14 ARF) and the lack of TP53 mutations. In addition, high expression 

of the NOTCH and Sonic Hedgehog signaling pathways is also detected.  

The expression of mesenchymal histologic markers, like CHI3L1/YKL40, VEGF 

and CD44 are displayed in the mesenchymal subtype (Cancer Genome Atlas Research 

Network, 2008; Phillips et al., 2006; Verhaak et al., 2010). Deletion of 17q11.2, where 

the tumor suppressor gene NF1 is located, commonly occurs in the mesenchymal 

subtype, being NF1 mutation the most frequently detected.  

The proneural subtype has a high expression of oligodendrocytic genes and accounts 

for 31% of all glioblastomas. This subtype is characterized by TP53 mutations and 

TP53 loss of heterozygosity. Approximately a 35% of all proneural types exhibits 

amplification at the locus 4q12, where PDGFRA gene is located, although this 

amplification can be found in all subtypes of glioblastoma. Mutations in IDH1 gene are 

commonly found in this class and serve as diagnostic and prognostic markers (Verhaak 

et al., 2010). The proneural subtype also includes another group of tumors that express 

the glioma-CpG island methylator phenotype associated with younger patients and with 

more favorable outcomes (Noushmehr et al., 2010).  

The neural subtype accounts for 16% of glioblastomas and is characterized by the 

expression of neuron markers. Chromosome 7 amplification associated with loss of 

chromosome 10 is commonly observed in the neural subtype (Verhaak et al., 2010). 

With the advances on the sequence of the complete human genome and the 

availability of high-throughput genomic technologies, has become easier the 

comprehensive molecular characterization of human cancer genomes. Glioblastoma was 

the first tumor type to be analyzed by The Cancer Genome Atlas (TCGA), a 

government-funded project(RW.ERROR - Unable to find reference:742). In 2008 the 

TCGA showed the integrative analysis of DNA copy number, gene expression and 

DNA methylation aberrations of 206 glioblastoma tumor samples. Overall these 
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analyses identified a highly interconnected network of aberrations, including three 

major pathways: receptor tyrosine kinaeses (RTKs) signaling, and the p53/RB tumor 

suppressor pathways (Figure 1) (Cancer Genome Atlas Research Network, 2008; 

Parsons et al., 2008). By copy number data alone 66%, 70% and 59% of the samples 

harbored somatic alterations of the RB, TP53 and RTK pathways, respectively. 

Approximately 86% of the samples harbored at least one genetic event in the core 

RTK/PI3K pathway, 13% for PDGFRA and 4% for MET aberrations. Inactivation of 

the p53 pathway occurred in the form of ARF deletions (55%), amplifications of 

MDM2 (11%) and MDM4 (4%), in addition to mutations of p53 itself. Approximately 

77% of samples harvored RB pathway alterations, being the most common event 

deletion of the CDKN2A/CDKN2B locus. Overall, this integrated analysis suggests a 

series of inter-related events that may impact the clinical response and outcome. 

 

 

 

Figure 1. Frequent genetic alterations in three critical signalling pathways in glioblastoma. Primary 

sequence alterations and significant copy number changes for components of the (a) RTK/RAS/PI(3)K, 

(b) p53, (c) and RB signalling pathways are shown. Red indicates activating genetic alterations, with 

http://www.nature.com/nature/journal/v455/n7216/fig_tab/nature07385_F5.html
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frequently altered genes showing deeper shades of red. Conversely, blue indicates inactivating alt erations, 

with darker shades corresponding to a higher percentage of alteration. For each altered component of a 

particular pathway, the nature of the alteration and the percentage of tumours affected are indicated. 

Boxes contain the final percentages of glioblastomas with alterations in at least one known component 

gene of the designated pathway. Adapted from (Cancer Genome Atlas Research Network, 2008). 

 

Molecular research has led to the elucidation of the underlying genomic changes in 

the many pathological variants of glioblastoma and has shed light into the complex 

subtypes. Nevertheless, since there are not yet specific treatments based on the 

molecular characteristics, the histopathological characteristics of the tumor remain still 

the most recommended system to classify gliomas. 

 

1.2 Clinical Presentation and Early Diagnosis 

The most common sign of glioblastoma is headaches due to the localization and/or 

the increasing intracranial pressure, as the result of the clinical stage of the disease. 

Headaches are relatively frequent, present in about 50% of patients at diagnosis, but 

usually with a nonspecific pain pattern (Forsyth and Posner, 1993). Nevertheless, a 

progressive severity, unilateral localization, and new onset headache in elderly patients 

are some of the features that may distinguish a tumor-associated headache from a 

benign headache. Other common signs include nausea and/or vomiting, wide and/or 

rapid mood swings, memory loss, ataxia, lowered levels of alertness, dizziness,  hearing 

loss, fatigue, weakness in one part of the body, reduced sensitivity to touch, difficulties 

in speech and/or swallowing, decreased levels of coordination, frequent syncope, 

hemiparesis, confusion/disorientation and visual field disturbances (Lakhan and Harle, 

2009; Levine et al., 1987). 

Cognitive difficulties and personality changes may also develop and are often 

mistaken for psychiatric disorders or dementia, particularly in elderly individuals. 

Language difficulties may be mistaken for confusion or delirium. Gait imbalance and 

incontinence may be present, usually in larger tumors with significant mass effect. 

Occasionally, the development of symptoms is rapid, mimicking a stroke. Seizures are 

manifested in about 20% to 40% of patients, and usually a focal onset is reported 

(Glantz et al., 2000). Due to these unspecific symptoms, glioblastoma is often 

misdiagnosed as infection, inflammatory proces or circulatory and immunological 

disease (Lakhan and Harle, 2009). 
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The diagnostic modality of choice is the magnetic resonance imaging (MRI). For 

patients unable to undergo MRI (individuals with pacemakers) a computed tomography 

(CT) scan is reserved (Bradley et al., 1984). Positron emission tomography (PET) 

allows integration of MRI and CT information with metabolic, pharmacokinetics and 

pharmacodynamics data (Demetriades et al., 2014) and is also used as a molecular 

neuroimaging technique, to support diagnosis. 

Glioblastoma typically have central areas of necrosis surrounded by white matter 

edema. Nevertheless different syndromes may mimic malignant gliomas on 

neuroimaging, including brain abscess, sub-acute stroke, multiple sclerosis, and other 

inflammatory diseases (Omuro et al., 2006); so it becomes important to make an 

accurate diagnosis, integrating the patient’s history, a physical exam, a neurological 

exam, the scans of the brain and a biopsy with pathological characterization. 

 

1.3 Treatment of Glioblastoma and Therapeutic Resistance 

The current standard of care for glioblastoma includes maximal surgical resection, 

radiation, and chemotherapy with temozolomide (TMZ) (Figure 2) (Stupp et al., 2009). 

It also includes symptomatic treatment of seizures, cerebral edema, infections, 

depression, cognitive dysfunction, fatigue and venous thromboembolism (Wen et al., 

2006). Despite steady advances in new treatments to improve survival rates while 

preserving acceptable quality of life among patients, the overall survival (OS) of 

patients with glioblastoma has not improved over the last several decades, remaining at  

12 to 18 months from diagnosis with <5 % of patients surviving 5 years after diagnosis 

(Ostrom et al., 2014; Stupp et al., 2005; Wen and Kesari, 2008). 

 

Figure 2. Kaplan–Meier Estimates of Overall Survival for glioblastoma patients . The hazard 

ratio for death among patients treated with radiotherapy plus temozolomide, as compared with those 

who received radiotherapy only, was 0.63  (95 percent confidence interval, 0.52 to 0.75; P<0.001). 

Adapted from (Stupp et al., 2005). 
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Surgical resection provides histological diagnosis, symptomatic relief and a 

reduction in tumor burden. Increase patient survival is associated with the degree of 

resection (Sanai and Berger, 2008), which is possible combining intraoperative 

magnetic resonance imaging with fluorescence-guided surgery with administration of 5-

aminolevulinic acid (5-ALA) (Hauser et al., 2016). However, due to the infiltrative 

nature of glioblastoma and frequent proximity to critical neural structures, complete 

resection is often not feasible.  

Fractionated localized radiation constitute one of the main therapeutic options 

against gliomas, being 60 Gy the standard final dose delivered in hypo fractionated 

regimens (Walker et al., 1979). Defining tumor margins has remained a challenge for 

surgery and radiation therapy, even though new imaging techniques allow a better 

demarcation of tumor borders. Tumor resistance to radiation emerges in part to a small 

subset of tumor cells with stemness properties, known as glioma stem-like cells (GSCs). 

Radiation dramatically increases GSC population in glioblastoma and minimally affects 

GSC tumorigenic potential (Bao et al., 2006a). Furthermore, GSCs are more resistant to 

radiation induced apoptosis via activation of DNA damage repair mechanisms 

throughout the activation of several DNA damage checkpoint proteins (Bao et al., 

2006a).   

The standard chemotherapeutic agent used in patients with glioblastoma is TMZ-, an 

oral cytotoxic DNA-alkylating agent from the imidazotetrazine family (Pletsas et al., 

2013). TMZ was synthesized in the early 1980s (Stevens et al., 1984) and was approved 

in 1999 for recurrent glioblastoma based on the data of 2 phase II trials (Brada et al., 

2001; Yung et al., 2000). 

The mechanism of action of TMZ is based on DNA damage through the methylation 

of DNA. The methylation occurs at the O6 and N7 positions of guanine and the N3 

position of adenine, although the O6 methylation accounts for 5% of the total lesions 

caused by TMZ in DNA, playing a critical role in the antitumor activity of the agent 

(Drablos et al., 2004). The methyl adducts formed causes a continuous cycle of DNA 

base mismatch repair mechanism (MMR) with eventual strand breaks, ultimately 

leading to cellular apoptosis (Fu et al., 2012). 

Acquired chemoresistance to TMZ developed by tumor cells represents a major 

limitation to this therapy, as >90% of recurrent glioblastomas shows no response to a 

second cycle of chemotherapy (Oliva et al., 2010). Several mechanisms play critical 

roles in the chemoresistance to TMZ. The primary mechanism involves MGMT, which 
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is a small DNA enzyme repair protein acting to directly remove O6-meG from the O6-

guanine position (Kitange et al., 2009). It acts as a suicide enzyme removing the alkyl 

group from the lesion in a stoichiometric reaction (Tubbs et al., 2007); and after 

alkylation this protein is degraded by the proteasome (Xu-Welliver and Pegg, 2002).  

MGMT expression is correlated with the methylation profile of the MGMT promoter. 

The density of the methylation in the  CpG islands in the 5` region of MGMT promoter 

causes a lower rate of its mRNA transcription and lower levels of the protein (Bhakat 

and Mitra, 2003). MGMT gene silencing is ensured by hypermethylation of promoter 

CpG islands (Silber et al., 2012). Consequently in glioblastoma patients MGMT 

methylation status emerges as a potentially important molecular test to determine which 

patients will benefit and should receive TMZ (Weller et al., 2010). The MGMT 

promoter is typically reported methylated in 30–60% of glioblastomas (Havik et al., 

2012). MGMT promoter methylation correlates with better outcome of patients 

(Christmann et al., 2010)(Malmstrom et al., 2012). Low MGMT expression and MGMT 

promoter methylation are both predictive markers for slower tumor progression in 

patients with glioblastoma (Hegi et al., 2005; Sonoda et al., 2010).  

Unfortunately glioblastoma is characterized by resistance to all therapies and 

frequently recurs rapidly within months of aggressive treatment. Traditional therapies 

provide only palliative effects, probably because they target proliferating non-

tumorigenic cells. Targeting the GSC compartment could provide therapeutics benefits 

for glioma patients. Understanding the molecular mechanisms governing the function of 

GSCs is crucial to develop targeted therapies against this recalcitrant population.  

 

1.4 Glioblastoma Heterogeneity and Glioma Stem-like Cells 

Heterogeneity defines both the clinical and the pathological features of glioblastoma 

(Aum et al., 2014; Morokoff et al., 2015). At the cellular level glioblastoma is 

composed by heterogeneous cell populations, among which the GSCs exhibits stemness 

properties because they share similarities with normal neural stem cells (NSCs) in terms 

of their gene expression signatures and cellular functions.  

GSCs have been defined as slow-cycling tumor cells with enhanced self-renewal 

potential, ability to differentiate into different lineages, increased resistance to radio- 

and chemotherapy, and the ability to reconstitute the original tumor upon orthotopic 

implantation (Singh et al., 2004; Vescovi et al., 2006). GSCs also have the ability to 
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remain quiescent (Li and Bhatia, 2011); therefore, their persistence results in tumor re-

initiation. 

GSCs are thought to originate from either NSCs or from the de-differentiation of 

normal brain cells, such as astrocytes and oligodendrocytes (Safa et al., 2015; Schneider 

et al., 2016), although this de-differentiation remains controversial (Morokoff et al., 

2015). In 2002, Ignatova and colleagues were the first to describe cells with stem cell 

properties within human cortical glial tumors (Ignatova et al., 2002). Singh and 

colleagues later reported the identification and purification of cells from primary human 

medulloblastoma and glioblastoma that had a marked capacity for proliferation, self-

renewal, and differentiation, represent a minority of tumor cells characterized by 

expression of the cell surface marker CD133 (Singh et al., 2003). 

Due to the lack of consensus criteria, Vescovi and colleagues established guidelines 

to identify the GSCs population (Vescovi et al., 2006): 

 
1. Cancer-initiating ability upon orthotopic implantation (tumors should be a 

phenocopy of the tumor of origin); 

2. Extensive self-renewal ability, demonstrated either ex vivo (by showing both 

sequential-clonogenic and population-kinetic analyses) or in vivo (by serial, 

orthotopic transplantation); 

3. Karyotype or genetic alterations; 

4. Aberrant differentiation properties; 

5. Capacity to generate non-tumourigenic cells; 

6. Multilineage differentiation ability. 

The development of a rigorous definition is important to standardize and guide 

future work. Understanding the intrinsic properties that characterize GSCs and 

distinguish them from their normal counterparts is critical for the development of 

successful and more selective therapies. 

 

1.4.1 Models of the Origin of Cancer  

There has been intense discussion concerning the origin of cancer and cancer stem 

cells (CSCs). The first concept that emerged was the clonal evolution (or stochastic) 
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model, and in the last decades after the demonstration that cancers are heterogeneous 

masses containing a hierarchy of cells, a new hierarchical CSC model replace it (Figure 

3). 

 

 

 

Figure 3. Models of cancer  origin. (A) The clonal evolution model hypothesizes that a normal cell 

(blue) within the organism undergoes a series of mutations to form a cancer cell (o range) that clonally 

expands and form the bulk of the tumor. (B) The CSC hierarchical model proposes that the origin of 

cancer being CSCs (red) that are pluripotent and self-renewing. They are highly tumorigenic with the 

ability to establish new tumors. CSCs divide asymmetrically to form new CSCs and progenitor (dark 

blue) cells that in turn give rise to differentiated cancer cells (light blue) that form the bulk of the tumor. 

These downstream cancer cells are low or non-tumorigenic. Adapted from (Bradshaw et al., 2016). 

 

 

The clonal evolution model of cancer proposes cumulative genetic mutations that 

occur over time in a normal cell, leading to the formation of a cancer cell that clonally 

expands to form identical copies, each with identical tumorigenic potential (Adams and 

Strasser, 2008; Salk et al., 2010), and if such changes confer a selective advantage, then 

this will allow individual clones of cancer cells to out-compete other clones (Shackleton 

et al., 2009). Propagation of this selected clone means that a substantial number of cells 

in the tumor are able to maintain tumor growth, so any effective treatment would 

require the elimination of all clonal cells. 

On the other hand, the new hierarchical CSC theory postulates that tumors 

comprise a cellular hierarchy. From a hierarchical viewpoint, normal embryonic stem 

cells (ESCs) are the most primitive cells within a biological system, and are considered 

pluripotent with the capacity to differentiate into any cell type in a given organism 

(Chen and Zhong, 2011). Downstream from ESCs there are a group that includes NSCs 

(Gage, 2000), mesenchymal stem cells (Billing et al., 2016), endothelial progenitor cells 

(Rafii et al., 2013), and hematopoietic stem cells (Doulatov et al., 2013), with more 
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restricted lineage differentiation capacity (Gage, 2000). The multipotent NSCs further 

differentiate, giving rise to more downstream progenitor cells with reducing 

differentiation, mitotic, and self-renewal potential, ultimately forming the majority of 

the organism (Dietrich et al., 2008).  

The CSC model proposes that the small CSC subpopulation drives tumor 

formation, growth, metastasis and resistance to therapeutic treatments (Clevers, 2011). 

CSCs demonstrate self-renewal ability maintaining the small cohort of these cells into 

the tumor and multilineage capacity, giving rise to the diverse progeny that constitutes 

the bulk of the tumor (Clarke et al., 2006). The hierarchy is dynamic with respect to cell 

type and is maintained by the balance between self-renewal and differentiation (Jackson 

and Alvarez-Buylla, 2008; Yu and Thomson, 2008). There is compelling evidence in 

support of its existence in hematological malignancies and in numerous solid epithelial 

types of cancer including glioblastoma and medulloblastoma (Visvader, 2011). 

The stochastic theory is inconsistent with the identification of GSCs in different 

tumor types (Adams and Strasser, 2008). However the CSCs model and the clonal 

evolution model are not mutually exclusive in cancers that are hierarchically organized 

into epigenetically distinct populations of tumorigenic and non-tumorigenic cancer 

cells, subjected to evolve by clonal evolution (Barabe et al., 2007). 

 
1.4.2. GSC Regulatory Mechanisms 

GSCs are regulated by several mechanisms, which include intrinsic factors such as 

genetics, epigenetics, metabolic and extrinsic cues derived from niche factors, cellular 

microenvironment, and the host immune system (Figure 4). 

Advances in genomic technologies have highlighted the significant degree of inter-

tumoral heterogeneity present in glioblastoma, which is further translated to the 

transcriptional and epigenetic levels (Phillips et al., 2006; Verhaak et al., 2010), 

underscoring the complexity of the clonal evolution, clonal hierarchy and clonal 

diversity during glioblastoma formation. 
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Figure 4. Regulation of CSCs. Cell-autonomous and external cues regulate the CSC state. Key intrinsic 

regulators include genetic, epigenetic, and metabolic factors, while extrinsic regulators include factors of  

the microenvironment, including niche factors and the immune system. Adapted from (Lathia et al., 

2015).  

 

 

 

Epigenetic maintenance of the GSC state is regulated at the level of transcriptional 

and chromatin regulation. Many transcription factors have been identified as important 

for GSCs identity, including c-MYC (Wang et al., 2008), STAT3 (Sherry et al., 2009), 

SOX2 (Gangemi et al., 2009), FOXM1 (Joshi et al., 2013), GLI1 (Clement et al., 2007), 

ASCL1 (Rheinbay et al., 2013), ZFX (Fang et al., 2014) and NANOG (Zbinden et al., 

2010). These studies highlight the importance of understanding the dynamics of core 

transcription factors in maintaining stem cell state and the effect that these factors have 

on shaping the chromatin landscape of cells within the tumor hierarchy. 

Other aberrant epigenetic mechanisms, such as DNA methylation, histone 

modifications, chromatin remodeling through histone methylation, and regulatory non-

coding RNAs are currently recognized as relevant events in tumor formation (Caren et 

al., 2013; Heddleston et al., 2011). The epigenetic state of a cell is critically important 

in determining both the reprogramming and differentiation potential of a cell (Papp and 

Plath, 2013; Singh et al., 2009). DNA methylation involves the addition of methyl 

groups to cytosine residues, throughout DNA methyltransferases, such as Dnmt3a and 
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Dnmt3b (Jurkowska et al., 2011). High expression of Dnmt1 and Dnmt3b in 

glioblastoma has been associated with the hyper-methylation of tumor suppressor genes, 

regulating genomic stability and cell cycle progression and therefore influencing cell 

tumorigenicity (Rajendran et al., 2011). Moreover, deregulation of DNA 

methyltransferases has been associated with the tumor cell phenotype and stem cell 

compartment (Fanelli et al., 2008). The inhibition of these enzymes can induce 

differentiation of stem cells (Banerjee and Bacanamwo, 2010; Tsai et al., 2012).  

Other studies have revealed that mutations in the IDH1 gene, which are associated 

with a proneural glioblastoma subgroup, are sufficient to establish the glioma-CpG 

island methylator phenotype (G-CIMP), leading to changes at the transcriptional profile 

and altering the differentiation state (Noushmehr et al., 2010; Turcan et al., 2012).  

The polycomb family represents other epigenetic effectors involved in CNS 

development and cancer progression. In glioblastoma, the aberrant expression of 

polycomb genes inhibits differentiation, activates transformation, invasion-related genes 

and sustains GSCs self-renewal (Abdouh et al., 2009; Bruggeman et al., 2007; Suva et 

al., 2009). In conclusion, multiple changes in the DNA methylation pattern of gene 

promoters involved in cell cycle regulation, tumor suppression, DNA repair and genome 

integrity, as well as genes associated with regulation of tumor invasion and inhibition of 

apoptosis have been reported in glioblastoma (Horiguchi et al., 2003; Martinez et al., 

2007; Mellai et al., 2013; Nakamura et al., 2001; Stone et al., 2004). 

Hypoxia is a hallmark of glioblastoma microenvironment and plays an important 

role in maintaining stem-like phenotype and tumor growth and progression (Yang et al., 

2012). GSCs are present in tumor microenvironments that limit nutrients, such as 

glucose and oxygen. Under such conditions, GSCs demonstrate plasticity in the 

metabolic pathways used in response to metabolic restrictions and may predominantly 

utilize aerobic glycolysis for energy production (Kathagen et al., 2013). Under hypoxic 

and acidic conditions, GSCs preferentially use the HIF-2α signaling, promoting the 

activation of stemness genes that contribute to maintenance of self-renewal, 

proliferation, and survival (Li et al., 2009c). In conditions of nutrient deprivation such 

as low glucose, GSCs out-compete neighboring non-stem tumor cells for glucose uptake 

through preferential up-regulation of the high-affinity GLUT3 transporter (Flavahan et 

al., 2013). 

In the adult brain NSCs were shown to be concentrated around blood vessels prone 

to signaling cues, nutrients and evasion using nascent vasculature (Palmer et al., 2000). 
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Similar to NSCs, GSCs resides in specific anatomical and functional locations or niches 

(e.g. subventricular zone in the brain, perivascular niche, hypoxic niche) in direct 

contact with several cell types and with access to extracellular matrix, secreting factors 

that play a role in maintaining properties of stem cell self-renewal and proliferation and 

regulating supply of oxygen and nutrients (Gilbertson and Rich, 2007; Jandial et al., 

2008). GSCs are located in areas of increased microvessels density, distributed along 

endothelial vascular tubes, suggesting that tumor vasculature generates specific niche 

microenvironment that promote formation and maintenance of GSCs (Calabrese et al., 

2007; Tavazoie et al., 2008). Moreover GSCs can stimulate angiogenesis through 

secretion of pro-angiogenic growth factors and physical contributions to the vasculature 

(Bao et al., 2006b; Ricci-Vitiani et al., 2010). This is an evidence of the reciprocal 

relationship between GSCs and their micro-environmental niche, where GSCs not only 

receive signals from surrounding area but are also capable to stimulate signals that 

contributed to support and replenish the pool of GSCs. Furthermore, increasing number 

of endothelial cells or blood vessels promotes the expansion of GSC population and 

accelerates growth of the tumor (Calabrese et al., 2007). Indeed recent studies have 

identified that about 20-90% of endothelial cells in glioblastoma have the same genomic 

alteration often present in tumors cells (Wang et al., 2010b), supporting the idea that 

vascular endothelium may have a neoplastic origin (Ricci-Vitiani et al., 2010). 

Endothelial cells can also protect GSCs from radiation damage (Garcia-Barros et al., 

2003; Paris et al., 2001), highlighting the protective role play by the micro-

environmental niche. Therefore understanding the relationship between GSCs and their 

microenvironment is crucial for developing novel therapeutic strategies. 

 

1.4.3 GSCs Markers 

Gene expression profiles have shown similarities between GSCs and NSCs,  

supporting the idea that GSCs are malignant variants of NSCs (Jackson and Alvarez-

Buylla, 2008). There are many common cellular markers and pathways between CSCs 

and NSCs. CD133 is the best-studied GSC biomarker and is often used experimentally 

to identify and enrich GSCs population. CD133 is also known as prominin-1, a cell 

surface glycoprotein associated with NSCs, and is expressed during embryonic 

development (Coskun et al., 2008; Pfenninger et al., 2007; Zacchigna et al., 2009). 

Previous reports have demonstrated that tumor cells isolated from glioblastoma 

tumors, grew as neurospheres in serum-free medium (indicating self-renewal 
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capabilities) and recapitulate tumors phenotypically similar to glioblastoma being 

CD133-positive (CD133+) (Dirks, 2008; Lathia et al., 2011; Singh et al., 2003). In 2007 

Beier and colleagues identified previously unknown CD133-negative (CD133-) GSCs 

in glioblastomas with similarly tumorigenic potential that CD133+ GSCs, a lower 

proliferation index and a signature of 117 differentially expressed genes (Beier et al., 

2007), suggesting that CD133 may serve as GSC marker in only a subgroup of 

glioblastomas (Wang et al., 2010b). In any case, tumors arising from CD133+ cells 

recapitulated the histopathological phenotype of the parental tumors, suggesting that the 

CD133+ subpopulation is capable of giving rise to the full heterogeneous complement 

of cells present in the tumor (RW.ERROR - Unable to find reference:96). 

Over the last decade several additional cell surface markers for GSCs have 

emerged, including A2B5 (Ogden et al., 2008), CD44 (Anido et al., 2010), CD171 (Bao 

et al., 2008), CD15 (Read et al., 2009), CD49f (integrin α6) (Lathia et al., 2010), used in 

traditional methods of GSCs enriching such as flow cytometry. 

Many of the transcription factors (TFs) or structural proteins essential for normal 

NSCs function also mark GSCs, including SOX2 (Guo et al., 2011; Hemmati et al., 

2003), NANOG (Ben-Porath et al., 2008), OLIG2 (Ligon et al., 2007), MYC (Kim et 

al., 2010), MUSACHI1 (Hemmati et al., 2003), BMI1 (Hemmati et al., 2003), NESTIN 

(Tunici et al., 2004), and ID1 (Anido et al., 2010).  

Several methods other than expression markers have been used to enrich for GSCs, 

such as the neurosphere assay. Neurospheres are floating structures that can be obtained 

by the dissociation of embryonic or adult germinal tissue into individual cells and 

exposing the individual cells to growth factors in a non-adherent culture system 

(Reynolds et al., 1992). These heterogeneous spherical structures arise through the 

clonal expansion of a NSC. Theyadheres to its progeny to form a three-dimensionally 

organized sphere composed of NSCs along with more-differentiated lineage specific 

cells. Neurospheres can be used to evaluate NSC self-renewal by testing the capacity of 

cells isolated from a primary neurosphere to generate new spheres. This assay is often 

used to define NSC identity, since NSCs are characterized by their capability to 

generate new neurospheres with serial passaging, but fails to address cellular hierarchy 

and does not recapitulate the tumor microenvironment. 
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1.4.3.1 SOX2 and Glioblastoma 

SOX2 belongs to the SOX (Sex-determining region Y (SRY)-box protein) family 

members, which are characterized by a conserved high mobility group (HMG) DNA-

binding domain (Gubbay et al., 1990). There are, at least, 20 members divided into 8 

groups (from A to H), based on their HMG sequence identity in humans (Schepers et 

al., 2002). Members within a group preserve higher than 80% identity in their HMG-

domain and share other well-conserved regions (Bowles et al., 2000). In addition, they 

share biochemical properties, have overlapping expression patterns and perform 

synergistic or redundant functions. In contrast, members from different groups usually 

perform different functions.  

SOX2 is located in the human chromosome 3q26.3 (Chr3q26.3) and is a single exon 

gene that encodes a member of the SoxB1 group (together with SOX1 and SOX3) 

required for the maintenance of the early embryo, before implantation (Avilion et al., 

2003). SoxB1 group members are co-expressed in the neuroepithelium and show certain 

degree of functional redundancy in the developing CNS (Avilion et al., 2003). In 

particular, SOX2 is one of the four essential factors required for induced pluripotent 

stem (iPS) cell induction (Takahashi and Yamanaka, 2006) and its expression is 

conserved in humans (Sisodiya et al., 2006). It is widely expressed in the embryo, in 

particular in the developing CNS where its expression is initiated concomitantly to  the 

acquisition of neural progenitor identity. High levels of SOX2 are indispensable for 

maintaining neural stem cell activity during embryogenesis and adult life (Bylund et al., 

2003; Graham et al., 2003; Gubbay et al., 1990). In the adult, its expression is 

maintained in different populations of stem cells (Ellis et al., 2004; Fauquier et al., 

2008; Taranova et al., 2006), acting intrinsically to confer stem cell properties(Pevny 

and Nicolis, 2010). Additionally SOX2 is not expressed in immature neurons, being 

down-regulated during differentiation. These findings emphasize the role played by 

SOX2 as a key factor in the control of stem cell fate and activity. In humans rare SOX2 

mutations cause anophtalmia, defective hippocampal development, cognitive defects 

and seizures (Fantes et al., 2003; Kelberman et al., 2006; Sisodiya et al., 2006).  

SOX2 is highly expressed in several human cancers (Bass et al., 2009), including 

glioblastoma (Alonso et al., 2011; Annovazzi et al., 2011; Holmberg et al., 2011). 

Interestingly, the expression of SOX2 and other stem cell markers identify a subset of 

patients with a poorer clinical outcome highlighting its clinical relevance in 

glioblastoma and in several other neoplasms (Ben-Porath et al., 2008). 
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Functionally, SOX2 is enriched in human GSCs where it sustains stemness 

properties and maintenance of tumorigenicity (Gangemi et al., 2009; Ikushima et al., 

2009). Indeed, siRNA-mediated downregulation of SOX2 in GSCs impaired 

proliferation and their ability to form tumors in vivo (Gangemi et al., 2009). SOX2 

maintains GSC stemness using the same molecular targets as normal NSCs (Gangemi et 

al., 2009), supporting a hierarchical model of glioblastoma controlled by SOX2. 

Furthermore, elevated expression of SOX2 is essential but not sufficient for maintaining 

the self-renewal of GSCs (Alonso et al., 2011) indicating that other factors cooperate to 

activate stem cell-like properties. Further supporting this notion, recently Suva and 

colleagues identified a core set of neurodevelopmental TFs (POU3F2, SOX2, SALL2, 

and OLIG2) essential for glioblastoma propagation. These TFs are able to reprogram 

differentiated tumor cells into GSCs, recapitulating the epigenetic landscape and 

phenotype of native GSCs, highlighting that SOX2 among other three TFs is required 

for the maintenance of the tumor-forming capability of these cells (Suva et al., 2014). In 

addition, SOX2-driven malignant GSCs are highly invasive and have migratory 

characteristics (Alonso et al., 2011), mimicking those of NSCs (Cayre et al., 2009). 

Indeed, SOX2 depletion induced attenuated cell proliferation, caused by decreased 

levels of Cyclin D1 (Oppel et al., 2011), while the impaired invasive activity is 

mediated by inhibition of focal adhesion kinase (FAK) signaling and downstream 

proteins such as HEF1/NEDD9 and matrix metalloproteinases 1 and 2 (Oppel et al., 

2011). 

In the last years the mechanism of SOX2 activation in glioblastoma has started to be 

unraveled. Our group identified SOX2 gene amplification and promoter DNA 

hypomethylation in a set of glioblastoma patients as the leading mechanism responsible 

for SOX2 aberrant expression (Alonso et al., 2011). SOX2 presents a high CpG density 

throughout the promoter that may poise the gene for repression upon differentiation 

(Mikkelsen et al., 2007), suggesting that SOX2 promoter hypomethylation in 

glioblastoma might reflect a more primitive cellular state resembling the one found in 

neural stem cells (Mikkelsen et al., 2007).   

SOX2 is also regulated transcriptionally and acts downstream relevant pathways in 

glioblastoma formation, such as TGF-β and PDGF, which regulates GSCs properties 

through SOX2 (Ikushima et al., 2009). In fact, transforming activity of PDGF in neural 

progenitors and PDGF-dependent tumors in mice triggered SOX2 expression 

(Appolloni et al., 2009). Moreover, SOX2 is activated at translational level by 
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eukaryotic initiation factor 4E (eIF4E) (Ge et al., 2010), showing a positive correlation 

between SOX2 and eIF4E in glioblastoma human samples. Together, all these results 

underscore the major role that SOX2 display in the malignant phenotype of 

glioblastoma. 

 

2. MicroRNAs 

 

MicroRNAs (miRNAs) are single strand RNA of ~22 nucleotides in length, that 

negatively regulate gene expression through base pairing with complementary mRNA 

sequences, resulting in translational repression or induction of the RNA degradation 

(Doench and Sharp, 2004) .  MiRNAs are found in a wide variety of organisms, ranging 

from plants to worms to humans (Bartel, 2004; Lai, 2003). 

 

2.1. Discovery 

MiRNAs were discovered in the early nineties by Ambros, Lee and Feinbaum, 

while studying genes that control development in the nematode Caenorhabditis elegans 

(C. elegans) (Lee et al., 1993). They reported the surprising finding that mutations in 

lin-4, a gene with an important role in developmental control of C. elegans, did not code 

for any protein, but rather was transcribed in two small transcripts of 22nt and 61nt of 

length. These two small RNAs were complementary to multiple conserved sites of the 

3`untranslated region (UTR) of lin-14, their target transcript, and were able to down-

regulate the lin-14 protein levels (Lee et al., 1993). The decrease in lin-14 protein level 

without a decrease in mRNA level was dubbed translational repression (Wightman et 

al., 1991; Wightman et al., 1993). After a gap of 7 years Reinhart and coworkers found 

another small 21-nucleotide RNA called lin-7 that was complementary to 3`UTR 

regions of various genes (lin-14, lin-28, lin-41, lin-42 and daf-12), and was evolutionary 

conserved (Reinhart et al., 2000). This sparked the idea that gene regulation through 

small RNAs could be a much more widespread phenomenon than was appreciated at the 

time. Not long after the findings of the first miRNAs, a number of reports started to 

appear describing numerous conserved endogenous small RNA genes from different 

organisms, ranging from worms, to plants, to flies, to humans (Lagos-Quintana et al., 

2003), suggesting that these molecules participate in essential processes (Pasquinelli et 

al., 2000). At present 1881 precursor molecules, which generate 2588 mature forms, 
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have been identified in the human genome, according to miRNA databases (miRBase) 

release 21 (Kozomara and Griffiths-Jones, 2014). 

 

2.2 Mechanism of Action 

The binding of mature miRNAs to their target mRNAs occurs through a specific 

miRNA region of about 6-8 nt in length often in the 5`end of the miRNA sequence 

(nucleotide 2 to 8). This region is termed the “seed region” and allows for each 

miRNAs to regulate the expression of genes, generally by binding to the mRNA 3` UTR 

region (Bartel, 2009). MiRNAs that share a similar seed region belong to the same 

miRNA family, and in general members of a miRNA family regulate related genes or 

are involved in the regulation of similar biological events.  

Two kinds of mechanisms for miRNA action have been identified depending on the 

degree of complementarity between a miRNA and its target (Figure 7) (Hutvagner and 

Zamore, 2002). In the case the target site is perfectly complementary to the miRNA, the 

miRNA functions like a short interfering RNAs (siRNAs) and the target is sequence-

specifically cleaved by miRISC. This is very rare in mammals but more frequent in 

plants (Pattanayak et al., 2005). Binding to partially complementary target sites leads to 

repression of translation or degradation of the target transcript, and mainly occurs in 

mammals (Krol et al., 2010). This degradation process involves the recruitment of 

deadenylase complexes such as the CCR4-NOT complex to the mRNA to remove or 

shorten the poly(A) tail, inducing the removal of the 5’ cap of the mRNA, process 

known as de-capping, through the decapping enzyme DCP2. Decapped mRNAs are 

rapidly removed from the cell by 5’ to 3’ exonucleases such as XRN1 (Huntzinger and 

Izaurralde, 2011). 

 

 

Figure 7. Mechanism of action of mature miRNA. The ~22-nt mature miRNA is excised from the pre-

miRNA and hybridizes to its complementary site in the 3`UTR of target mRNA. i: When miRNA and 
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mRNA target sites are perfectly complementary, mRNA is degraded. ii: Imperfect complementarity leads 

to inhibition of protein translation. Adapted from (Kiefer, 2006). 

 

 

2.3 Identification of MiRNA Target Genes 

The identification and characterization of miRNA predicted targets is an important 

issue in miRNA research. Currently several bioinformatics tools have been developed 

for predicting miRNA target interactors, although is relatively difficult due to the 

involvement of several factors, such as the context of surrounding sequence in mRNA 

(Grimson et al., 2007), the number of target sites, the protection of target sites by RNA-

binding proteins (Mazière and Enright, 2007), and the fact that miRNAs often bind to 

targets with incomplete complementarity, containing mismatches, gaps, and G:U base 

pairs at multiple positions (Brennecke et al., 2005; Hammell, 2010). 

Based solely on the principles of miRNA-target recognition, on average, each 

miRNA can recognize about 100-200 potential target sites of the transcriptome 

(Brennecke et al., 2005; Brodersen and Voinnet, 2009; Krek et al., 2005), highlighting 

that one of the problems of these computational algorithms is the target over-prediction. 

Each of these in silico approaches utilizes a unique combination of criteria for miRNA 

target site prediction. Although the criteria most commonly employed are the sequence 

similarity between miRNA and target, especially continuous Watson-Crick base paring 

in 5` proximal half of the miRNA, the free energy and thermodynamics of miRNA-

target mRNA duplex and the evolutionary conservation of the miRNA binding site in 

the 3` UTR of the target gene to eliminate false positives. 

The computational tools most popularly used are listed in Table 1. In addition to 

this conventional approaches, other tools provide several other valuable features, 

including information on polymorphisms in miRNAs and target sequences, like 

Patrocles (Hiard et al., 2010), co-expression of miRNA and their targets, like miRGator 

(Cho et al., 2013), analysis of pathways regulated by specific miRNAs, like miRPath 

(Vlachos et al., 2012), and miRNA disease relationships, like miR2disease (Jiang et al., 

2009). Further applications, such as miRWalk (Dweep et al., 2011) link the information 

across several independent prediction software tools and enable parallel analysis across 

multiple databases. A number of machine-learning algorithms, such as TargetBoost 

(Saetrom et al., 2005), TargetSpy (Sturm et al., 2010), MultiMiTar (Mitra and 

Bandyopadhyay, 2011), and NBmiRTar (Yousef et al., 2007) have also been developed, 

utilizing a database of validated interactions for prediction. However the dependence of 
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this machine learning algorithms on the quality of training data set of experimentally 

verified target genes represents a weakness. 

Experimental identification of the genes regulated by specific miRNAs is essential 

to elucidate the biological functions of miRNAs. Microarray profiles are widely utilized 

approaches to study genome-wide changes in gene expression, establishing global 

effects. However the appropriate interpretation of the massive amount of data generated 

remains a challenge. The best approach for miRNA target identification is the 

experimental demonstration. This can be addressed through different analysis, such as 

luciferase assay, qRT-PCR, western blotting, and immunohistochemistry,   which along 

with animal studies demonstrated the complexity of miRNA-regulated pathways in 

physiological conditions. 

 

Table 1: Summary of prediction techniques for miRNA target recognition 

Name Characteristic Link Reference 

Diana Micro-T 

Target prediction made with miRNA or 

mRNA sequences as input, combining 

conserved and non-conserved miRNA  

recognition elements into a final 

prediction score 

http://diana.cslab.ece.ntua.

gr/microT/ 

(Maragkakis et 

al., 2009)  

MicroInspector 

Identification of potential miRNA 

binding sites in user-submitted 

sequences, searching against databases 

of known miRNA binding sites 

http://bioinfo.uni-

plovdiv.bg/microinspector/ 

(Rusinov et al., 

2005)  

miRanda 

Optimizes sequence complementarity 

based on position-specific rules and 

interspecies conservation. 

http://www.microrna.org 

(Betel et al., 

2008; John et al., 

2004)  

miRBase 
Complete repository of miRNA 

sequences and targets 
http://www.mirbase.org/ 

(Kozomara and 

Griffiths-Jones, 

2014) 

miRecords 

Two main modules, experimentally 

validated targets, and integrated 

information across 11 independent 

prediction softwares 

http://mirecords.umn.edu/

miRecords/index.php 

(Xiao et al., 

2009)  

miRTar 

Identifies the biological functions and 

regulatory relationships between a 

group of known/putative miRNAs and 

protein coding genes. 

http://mirtar.mbc.nctu.edu.

tw/human/ 

(Hsu et al., 

2011)  

MiRTarBase 

Information on experimentally verified 

miRNA targets by data mining and 

manually surveying literature related to 

functional studies on miRNAs 

http://mirtarbase.mbc.nctu.

edu.tw/ 

(Chou et al., 

2016)  

PicTar 
Provides details about 3’ UTR 

alignments with predicted sites, and 
http://pictar.mdc-berlin.de 

(Krek et al., 

2005)  
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links to various public databases. 

PITA 

Secondary structure of the miRNA-

mRNA hybrid for target gene 

prediction. 

http://genie.weizmann.ac.il

/pubs/mir07/index.html 

(Kertesz et al., 

2007)  

RNA-hybrid 

Determines the most favourable 

hybridization site between two 

sequences. 

http://bibiserv.techfak. 

uni-bielefeld.de/rnahybrid 

(Kruger and 

Rehmsmeier, 

2006; 

Rehmsmeier et 

al., 2004)  

TarBase 
Experimentally validated miRNA 

targets 

http://diana.cslab.ece.ntua.

gr/tarbase/ 

(Vergoulis et 

al., 2012)  

TargetScan 

Search for the presence of conserved 

8mer and 7mer sites that match the seed 

region of each miRNA, in 5 

vertebrates. 

http://www.targetscan.org 

(Lewis et al., 

2003; Lewis et 

al., 2005) 

 

2.4 Downregulation of miRNAs 

In recent years several strategies have been developed to achieve miRNA loss-of-

function, either by the introduction of antisense oligonucleotides (Krutzfeldt et al., 

2005; Meister et al., 2004), or by overexpressing transgenic reporters that contain 

miRNA binding sites (Brown et al., 2007; Care et al., 2007; Ebert et al., 2007).  

Oligonucleotide miRNA inhibitors are industrially available and are known as 

antago-miRs or anti-miRs, comprising small single-stranded RNA oligonucleotides with 

near perfect complementarity against a miRNA, modified to improve their stability and 

increase their efficacy (Elmen et al., 2008; Krutzfeldt et al., 2005).  

The other strategy frequently used are the artificial miRNA sponges introduced for 

first time on 2007 (Ebert et al., 2007).  Natural non-coding RNAs acting as miRNA 

sponges are present in plants (Franco-Zorrilla et al., 2007; Ivashuta et al., 2011), 

animals (Poliseno et al., 2010), and humans (Hansen et al., 2013; Wang et al., 2013e). 

These natural miRNA sponges serve as an endogenous regulatory mechanism to 

sequester sequence-specific miRNAs, regulating miRNA distribution on their mRNA 

targets. Artificial miRNA sponges are DNA constructs that produces artificially 

designed miRNA binding sites on the 3’UTR region of a non-toxic gene such as GFP. 

These binding sites are usually tandem repeats of identical sites designed to target either 

single specific miRNAs or miRNA family members sharing the same seed region. After 

transfection with a non-viral vector or transduction with a viral vector, miRNA sponges 

are expressed by mRNA transcription inside cells, impairing the binding availability of 

the miRNA for natural target mRNAs and inhibiting its posttranscriptional regulation 

activity. Although antago-miRs have advantages including of the simple synthesis and 
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diverse chemical modification to improve their stability (Lennox et al., 2013; Takahashi 

et al., 2013), miRNA sponges can achieve inducible/tissue specific and stable 

expression for in vitro/vivo use (Chen et al., 2014a). 

A typical miRNA sponge vector contains an expression cassette with a miRNA 

binding sponge sequence inserted into the 3′ UTR of a reporter gene driven by 

promoters such as U6 or cytomegalovirus, which are among the strongest drivers of 

expression in mammalian systems (Ebert and Sharp, 2010).  

Apart from antago-miRs and miRNA sponge technology, the other miRNA loss-of 

function strategies include the genetic knockout/inactivation (Wang et al., 2007). 

MiRNA gene knockout is the only convincing way for complete loss-of-function of a 

particular miRNA; however is a relatively difficult, time-consuming and costly 

procedure. Furthermore, since many miRNA genes reside within protein-coding genes, 

knockout of a miRNA gene would often adversely affect nearby protein-encoding genes 

(Kim et al., 2009).  

As mentioned above each technology has pros and cons, however as a tool to 

manipulate miRNA function in cells, miRNA sponge technology exhibits the strongest 

potential. 

 

2.5 MiRNAs in Cancer 

MiRNAs are involved in the tumorigenesis of human malignancies. The earliest 

observation that provided a potential link between miRNA and tumor biology was the 

phenotype of lin-4 and let-7 loss-of-function mutations in C. elegans. These mutants 

caused larval stages repetitively and underwent extra cell divisions, implicating lin-4 

and let-7 in the control of cell differentiation and proliferation (Lee et al., 1993; 

Reinhart et al., 2000). The most direct evidence linking miRNAs to cancer came from 

the genetic analysis of B-cell chronic lymphocytic leukemia (B-CLL). Calin and 

colleagues found a commonly deletion of the miR-15a/16-1 cluster in chromosome 

13q14 in B-CLL patients (Calin et al., 2002).  

Since then, thousands of tumor miRNA expression profiling studies have generated 

an expansive list of these non-coding genes that are differentially expressed in tumors 

versus normal tissue. MiRNAs exhibit oncogenic or tumor suppressing activities 

depending on their respective targets oncogenes or tumor suppressor genes, and are 

known as “oncomiRs” or “tumor suppressor miRs”. One of the clearest examples of 

miRNAs acting with tumor suppressor functions is provided by miR-15a/miR-16-1 
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which negatively regulate the expression of the anti-apoptotic factor BCL2, suggesting 

that their absence in B-CLL inhibit apoptosis by reactivation of BCL2 (Cimmino et al., 

2005). On the other hand, the miR-17-92 cluster exhibits an oncogenic function since its 

expression along with cMYC accelerated the development of B-cell lymphoma in 

mouse models (He et al., 2005). 

Different mechanisms have been shown to be responsible for altered miRNA 

expression in tumours: 1) the establishment of an abnormal cancer epigenome, mainly 

mediated by DNA hypermethylation, occurring at miRNAs regulatory regions 

(Lujambio et al., 2008), 2) allelic loss due to localization of miRNAs sequence inside or 

close to cancer associated genomic regions subjected to genomic instability (Lujambio 

et al., 2007; Makunin et al., 2007), 3) localization of chromosomal abnormalities or 

other types of genetic alterations at miRNAs genomic region, 4) abnormal 

transcriptional regulation of miRNA promoter by tumour suppressors or oncogenes, 

(O'Donnell et al., 2005; Xi et al., 2006), 5) abnormalities in miRNA processing (Lee et 

al., 2008). In addition, different mutations affecting the functional activity of miRNAs 

in gene silencing have been described. Polymorphisms and potential deaminations 

affect the seed sequence or the binding site of miRNA in the 3`UTR of its target, 

resulting in either abolished or weakened miRNAs/mRNA interaction or redirection of 

miRNA to a new wrong target, and have been detected in various cancers (Mishra et al., 

2008).  

To better understand how miRNAs function in neoplastic cells, a large wealth of 

data has been generated. Altered miRNA expression has been reported in all tumors 

investigated to date, including brain tumors. Interestingly, miRNAs are particularly 

abundant in the brain. At least 60% of known microRNA species are detected in the 

adult brain (Bak et al., 2008), so many of which are drastically regulated during 

embryonic brain development (Miska et al., 2004). MiRNAs exhibit cell type and 

subcellular specific brain. For example upon neural lineage specification miR-9, miR-

124, and miR-128 are selectively expressed in neurons, and play pivotal roles in 

neuronal development and synaptic plasticity. In contrast other miRNAs species are 

preferentially expressed in glial lineages controlling normal glia cell proliferation and 

differentiation (Dugas et al., 2010; Lau et al., 2008; Zhao et al., 2010). Besides cell 

type-specificity, particular miRNAs demonstrate unique patterns of regional and 

subcellular brain localization. Regarding regional localization specificity, miR-218, 

miR-221, miR-222, miR-26a, miR-128a/b, miR-138, and let-7c are preferentially 
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enriched in the hippocampus, while miR-195, miR-497, and miR-30b are found to be 

enriched in the cerebellum (Bak et al., 2008). 

 

2.5.1 MiRNAs in Glioblastoma 

In glioblastoma the number of studies covering the miRNA expression and 

functional characterization has grown and miRNA signatures are redefining 

glioblastoma classification, differentiating between the different grades and stages, 

providing key regulatory links to disrupted signaling. This has led to a more in depth 

understanding about glioblastoma pathology (Kim et al., 2011).  

One of the first studies that examined global miRNA expression covered 245 

miRNAs in glioblastoma tissue and cell lines and found a strong upregulation of miR-

221 in glioblastoma while miR-128, miR-181a, miR-181b, and miR-181c were 

downregulated (Ciafre et al., 2005). Since then multiples profiling studies have been 

performed using glioblastoma tissues and cell lines. The most extensively investigated 

miRNA is miR-21, which is consistently reported to be overexpressed in glioblastoma 

in a grade-specific manner (Chan et al., 2005; Conti et al., 2009; Gabriely et al., 2008; 

Lakomy et al., 2011; Li et al., 2011; Malzkorn et al., 2010; Papagiannakopoulos et al., 

2008; Zhou et al., 2010a). At least for glioma, miR-21 appears to be the major anti-

apoptotic and pro-survival factor that is linked to shorter progression-free survival 

(Chao et al., 2013; Lakomy et al., 2011; Quintavalle et al., 2013a). 

MiRNAs could also be used as biomarkers for brain tumors, for example, Nass and 

collaborators showed that miR-92b and miR-9/9* are significantly overexpressed in 

primary brain tumors samples but not in metastatic brain tumor samples, suggesting that 

these miRNAs represent a valid biomarker to discriminate between primary brain 

tumors and brain metastasis (Nass et al., 2009). Moreover miRNAs can be used to 

distinguish between different types of brain tumors; for example Rao and colleagues 

identified a signature of miRNAs that can differentiate secondary glioblastoma from 

primary glioblastoma and from anaplastic astrocytoma, which are likely to lead to a 

rapid and accurate molecular diagnostic test in the future (Rao et al., 2010). 

A number of well characterized microRNA expression patterns and functional 

studies have been carried out to date in glioblastoma. Across all the profiling studies the 

most consistently up-regulated miRNAs are miR-21, miR-10b, miR-155, miR-210 and 

miR-221; while the most consistently down-regulated are miR-128, miR-330, miR-124, 

miR-149, miR-153, miR-154, miR-181(a, b, c), miR-323 and miR-328. These 
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prominent miRNAs can be used as potential biomarkers and/or therapeutic targets as 

they act as oncomiRs or tumor suppressor-miRs, directly involved in the development 

and growth of glioblastoma (Novakova et al., 2009). Several studies have described the 

role of different miRNAs in core signaling pathways in glioblastomas. MiR-21 is one of 

the components of the EGFR signaling pathway (Zhou et al., 2010a) and miR-7 directly 

inhibited EGFR expression (Kefas et al., 2008); miR-26a and miR-451 regulates the 

PI3K/AKT signaling pathway (Huse et al., 2009; Nan et al., 2010); miR-221/222 

enhance glioma malignant phenotype via activation of the AKT signaling pathway 

(Zhang et al., 2010b); miR-21 controlled p53, TGF-β and mitochondrial apoptotic 

networks (Papagiannakopoulos et al., 2008), down-regulate the expression of PDCD4 

(Chen et al., 2008) and activate caspase 9 and 3 (Zhou et al., 2010b), affecting the 

migratory and invasive abilities in glioblastoma cells; miR-326 and miR-34a are 

associated with Notch signaling pathway in glioblastomas (Kefas et al., 2009; Li et al., 

2009a); miR-218 inactivate NF-κB/MMP-9 signaling (Song et al., 2010), among other 

examples. 

 

2.5.1.1 hsa-miR-301a-3p 

MiR-301a plays an important role in various biological and pathological processes, 

including cellular development, proliferation, migration, differentiation and apoptosis 

(Liang et al., 2015; Ma et al., 2014a; Wang et al., 2013c; Zhang et al., 2014c). MiR-

301a has been linked to several neoplasms, including colorectal cancer (Fang et al., 

2015), laryngeal squamous cell carcinoma (Lu et al., 2015), breast cancer (Ma et al., 

2014a), gastric cancer (Wang et al., 2013c), ovarian carcinoma (Cui et al., 2011), small 

cell lung cancers (Miko et al., 2009), hepatocellular carcinoma (Jiang et al., 2008), and 

pancreatic cancer (Lee et al., 2007), where contributes to NF-κB activation (Lu et al., 

2011). Panguluri and colleagues reported that miR-301a was down-regulated in diabetic 

heart and modulated Kv4.2 by directly binding its 3'-UTR (Panguluri et al., 2013), and 

contributing to IL-6-induced insulin resistance by direct regulation of PTEN expression 

(Dou et al., 2015). In prostate cancer miR-301a function as an oncogene by directly 

targeting the p63 tumor suppressor gene (Nam et al., 2016) acting as a potential marker 

for metastasis in these patients (Damodaran et al., 2016). MiR-301a form an important 

axis along with b-NDRG2 modulating autophagy and viability under hypoxia (Guo et 

al., 2016). 
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In an elegant study Boyer and colleagues demonstrated that SOX2, NANOG and 

OCT4 co-occupied the promoter region of miR-301a, suggesting that this miRNA could 

be an important component of the transcriptional regulatory circuitry in human 

embryonic stem cells (Boyer et al., 2005). Moreover miR-301a has been previously 

described as one of the miRNAs up-regulated in GSCs (Lavon et al., 2010) although its 

role in glioblastoma is unclear. 

 

2.5.1.2 hsa-miR-425-5p 

MiR-425 is involved in different biological processes, such as angiogenesis (Gao et 

al., 2016), chemoresistance (Zhang et al., 2016), radioresistance (Moskwa et al., 2014), 

invasion and metastasis (Zhang et al., 2015c). Although its molecular mechanism is not 

very well understood. Despite the limited number of studies, miR-425-5p has been 

reported to be deregulated in several tumors, like cervical cancer (Gao et al., 2016), 

colorectal cancer (Zhang et al., 2016), osteosarcoma (Li et al., 2015a), gastric cancer 

(Peng et al., 2014), lung squamous cell carcinoma (Wang et al., 2015a), renal cell 

carcinoma (Ge et al., 2015) and human triple negative breast carcinoma cells (Ahir et 

al., 2016), where also has been shown its association with miR-191 forming a cluster 

(Di Leva et al., 2013). Regarding glioblastoma a recent work has described its 

implication on radioresistance through the up-regulation of cell-cycle checkpoint 

response (Moskwa et al., 2014). Nevertheless, the precise role of miR-425 and its 

clinical significance in glioblastoma remains poorly investigated making it an 

interesting candidate. 

 

2.6 MiRNAs and GSCs 

Many groups have highlighted the key role of miRNAs in self-renewal, 

differentiation and neural stem cell development (Christensen and Schratt, 2009; Gao, 

2008; Hatfield and Ruohola-Baker, 2008). Increasing evidence shows that the 

expression profile of miRNAs in stem cells resemble those of cancer cells 

(Papagiannakopoulos and Kosik, 2008).  

To date many groups have investigated the role of microRNAs in GSCs, casting a 

specific miRNA signature, for example miR-124 and miR-137 induce differentiation of 

GSCs (Silber et al., 2008); miR-451, miR-125b, miR-29b and miR-125a are 

significantly down-regulated in GSCs (Cortez et al., 2010; Gal et al., 2008; Shi et al., 
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2010) suggesting a potential role for these microRNAs in regulatory signaling pathways 

related to maintenance of stem cell properties and self-renewal of cancer cells. 

 

3. Long Non-Coding RNAs 

 

The revolution in secuencing technology has generated a vast amount of 

information regarding the human genomic landscape, and has highlighted the fact that 

the coding regions comprise only a tiny fraction of the human DNA. Precisely around 

the 98% of all transcriptional output in humans is non-coding RNA (Lander et al., 

2001).  Ten years later, the ENCODE (Encyclopedia of DNA Elements) study reported 

the existence of over 9,640 lncRNA loci in the human genome, roughly half the number 

of protein-coding genes (Djebali et al., 2012). These studies have changed our view of 

the mammalian genome and underlined the importance of understanding non-coding 

transcripts.  

Non-coding transcripts are further divided into housekeeping non-coding RNAs 

(ncRNAs) and regulatory ncRNAs. Housekeeping ncRNAs, which are usually 

considered constitutive, include ribosomal, transfer, small nuclear and small nucleolar 

RNAs. Regulatory ncRNAs are generally divided into two classes based on nucleotide 

length. Those less than 200 nucleotides are short/small ncRNAs, including miRNAs, 

and those greater than 200 bases are known as long non-coding RNAs (lncRNAs) 

(Nagano and Fraser, 2011). 

 

3.1 Identification and Definition of lncRNAs 

Unfortunately at present there is not a clear definition of lncRNAs. The latest 

definition proposed by HUGO Gene Nomenclature Committee (HGNC) describes 

lncRNAs as spliced, capped and polyadenylated RNAs (Wright and Bruford, 2011) with 

more than 200 nucleotides that are not predicted to be translated to a functional protein 

product (Kung et al., 2013). This distinction, while somewhat arbitrary and based on 

technical aspects of RNA isolation methods, serves to distinguish lncRNAs from 

miRNAs and other small RNAs. They typically do not possess functional open reading 

frames (ORFs). However, this distinction is blurred by the discovery of bifunctional 

RNAs that can have both protein-coding and coding-independent functions 

(Chooniedass-Kothari et al., 2004; Warden et al., 2008), raising the possibility that 

many protein-coding genes may also have non-coding functions.  
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It has been reported that lncRNAs have an unusual exonic structure, but exhibit 

standard canonical splice site signals and alternative splicing (Derrien et al., 2012). 

Many lncRNAs are characterized by ‘K4–K36’ domains, which consist of histone 3 Lys 

4 trimethylation (H3K4me3) at the promoter followed by histone 3 Lys 36 

trimethylation (H3K36me3) across its actively transcribed region (Cabili et al., 2011; 

Guttman et al., 2009), which marks the promoters of genes actively transcribed. There is 

substantial evidence indicating that lncRNAs, just like mRNAs, are transcribed by RNA 

polymerase II and usually contain canonical polyadenylation signals, even though some 

lncRNAs are likely to be transcribed by polymerase III (Pagano et al., 2007). 

LncRNAs can be classified using a canonical classification (Gibb et al., 2011; 

Ponting et al., 2009), by which can be grouped into five biotypes according to their 

proximity to protein-coding genes: sense (overlap coding mRNAs on the same strand), 

antisense, bidirectional, intronic (in the intron of a protein-coding gene) and intergenic 

(in intergenic regions located between annotated protein-coding or noncoding genes) 

(Figure 8). 

 

 

Figure 8. Schematic diagram illustrating the localization of lncRNAs. LncRNA are divided into three 

large groups. (1) Sense or antisense RNAs (when the lncRNA overlaps one or more exons of another 

transcript on the same or opposite strand respectively; (2) bidirect ional RNAs (when the expression of 

lncRNA and a neighboring coding transcript on the opposite strand is initiated in close genomic 

proximity); (3) intronic RNAs, when the lncRNA is derived from an intron of a second transcript; (4) 

intergenic RNAs, when the lncRNA is localized between two genes, also called large intergenic RNAs, 

(lincRNAs); (5) 3′-UTR associated RNAs (lncRNAs derived from 3′-untranslated regions of protein-

coding transcript, also named uaRNAs) (Mercer et al., 2011); (6) promoter associated  RNAs (lncRNAs 

transcribed from promoter domains of protein-coding genes) (Hung et al., 2011); (7) enhancers or 

enhancer-like lncRNAs (lncRNAs transcribed from enhancer domains and expressed coordinately with, 

activity-dependent genes, or lncRNAs exhibiting enhancer activity) (Ørom et al., 2010). Adapted from 

(Wu et al., 2013a). 
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3.2 Conservation and Cellular Localization of lncRNAs 

LncRNAs are present in large numbers in the mammalian genome (Carninci et al., 

2005; ENCODE Project Consortium et al., 2007). Many lncRNAs are scarcely 

expressed (Derrien et al., 2012), posing a challenge in terms of exploration of lncRNA 

functions. Several lncRNAs are ultra-conserved in DNA sequence, approximately 3% 

of lncRNAs appear to have originated more than 300 million years ago and can be 

found in organisms ranging from Xenopus and chicken to man (Necsulea et al., 2014). 

In addition, lncRNAs exhibits conserved biological function but low sequence 

conservation (Brockdorff et al., 1992; Lin et al., 2014; Ulitsky et al., 2011), suggesting 

that RNA molecules need less sequence conservation to retain their function compared 

to proteins. Conversely, there is high sequence conservation of lncRNA promoters, 

which is even higher than that of protein-coding gene promoters (Carninci et al., 2005), 

suggesting that regulation of lncRNA expression is important. 

LncRNAs can be found in many tissues, although the brain and the central nervous 

system appear to have the highest diversity of expressed lncRNAs (Ravasi et al., 2006). 

In addition, they tend to be enriched in the nucleus (Cheng et al., 2005; Kapranov et al., 

2007), although some lncRNAs localize to the cytosol and actually they associate with 

ribosomes (van Heesch et al., 2014). 

 

3.3 Functions of lncRNAs 

LncRNAs have a broad spectrum of functions involved in almost every aspect of 

the biological process, from chromatin structure to the protein level. Although the 

detailed functions of lncRNAs are not yet clearly defined, lncRNAs play different roles 

in cell physiology. They can function as signals for integrating temporal, spatial, 

developmental and stimulus-specific cellular information; as decoys with the ability to 

sequester a range of RNA and protein molecules, thereby inhibiting their functions; as 

guides for genomic site-specific and more widespread recruitment of transcriptional and 

epigenetic regulatory factors; and as scaffolds for macromolecular assemblies with 

varied functions (Figure 9) (Wilusz et al., 2009). Even more, lncRNAs can interact with 

other three kinds of biomolecules- DNA, RNA and proteins, forming binary even 

ternary interaction complexes.  
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Figure 9. Main functions of lncRNAs . Transcription from an upstream noncoding promoter (orange) 

can negatively (1) or positively (2) affect expression of the downstream gene (blue) by inhibiting RNA 

polymerase II recruitment or inducing chromatin remodeling, respectively. (3) An antisense transcript 

(purple) is able to hybridize to the overlapping sense transcript (blue) and block recognition of the splice 

sites by the spliceosome, thus resulting in an alternatively spliced transcript. (4) Alternatively, 

hybridization of the sense and antisense transcripts can allow DICER to generate endogenous siRNAs. By 

binding to specific protein partners, a noncoding transcript (green) can modulate the activity  of the 

protein (5), serve as a structural component that allows a larger RNA–protein complex to form (6), or 

alter where the protein localizes in the cell (7). (8) LncRNAs (pink) can be processed to yield small 

RNAs, such as miRNAs, and other less well-characterized classes of small transcripts. Adapted from 

(Wilusz et al., 2009). 

 

 

In the nucleus, the main roles of lncRNAs are associated with the regulation of 

gene and genome activity on various levels. LncRNAs can influence chromatin 

modifications and chromatin structure through several processes, such as modifications 

of histones by the interaction with polycomb repressive complexes (da Rocha et al., 

2014; Plath et al., 2003); modulation of DNA methylation (Arab et al., 2014; Di Ruscio 

et al., 2013); regulation of chromatin remodeling complexes altering the nucleosome 

spacing (Prensner et al., 2013). Even more lncRNAs interact with transcription factors 

regulating differentiation process (Jiang et al., 2015; Kurian et al., 2015). 

LncRNAs primarily found in the cytosol are thought to be involved in gene 

regulation on the posttranscriptional level. Several lncRNAs have been shown to 

influence splicing patterns of either specific genes or globally by interacting with 

splicing factors (Tripathi et al., 2010). Besides, lncRNAs may control 

nuclear/cytoplasmic shuttling of mRNA, affecting their availability to the translation 
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machinery and the resulting protein levels (Gong and Maquat, 2011; Mourtada-

Maarabouni and Williams, 2013), or conversely stabilizing mRNAs (Matsui et al., 

2008). 

 

3.4 LncRNAs in Glioblastoma 

In addition to their activity in normal physiological processes, just as other 

molecules, lncRNAs are also linked to human diseases, including a variety of human 

cancers and human genetic disorders (Figure 10) (Brunner et al., 2012; Gibb et al., 

2011).  

 

Figure 10. LncRNAs associated in cancer. The color represents either up-regulated (red) or down-

regulated (blue) compared to normal tissues. Adapted from (Bartonicek et al., 2016). 

 

 

Given that numerous lncRNAs are involved in a wide range of CNS 

pathophysiology, such as neural differentiation (Mercer et al., 2010), brain development 

(Sauvageau et al., 2013) and neural cell fate (Amaral et al., 2009); they are also key 

regulators in brain cancers, including glioblastoma (Han et al., 2012). Information on 

the central role of lncRNAs in gliomagenesis has only become to emerge during the 

past few years. LncRNAs appear to be exceptionally important in all different aspects of 

glioma pathophysiology, from malignant transformation to tumor recurrence, and also 

in disease prognosis (Figure 11). 
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Figure 11. Effects of lncRNAs in regulating glioma biological processes . LncRNAs are implicated in 

various biological processes of glioma, although the detailed molecular mechanisms remain unclear.. 

Adapted from (Zhang and Leung, 2014). 

 

LncRNAs are involved in cell proliferation, apoptosis and invasion (Gordon et al., 

2010; Shi et al., 2014b; Wang et al., 2012a), and are potentially implicated in 

determining glioma development through interaction with different molecules and 

through diverse signaling pathways; for example MEG3 controls proliferation via 

interacting with p53 and MDM2 protein (Benetatos et al., 2011); CRNDE regulates 

glioma cell growth via mTOR signaling (Wang et al., 2015b); and ASLNC22381 and 

ASLNC20819 promote proliferation through the IGF-1R signaling pathway (Trojan et 

al., 2003). However, the mechanisms through which lncRNAs regulate signaling 

pathways remain largely unknown. 

It has been proposed that dysregulation of lncRNAs are significantly associated 

with glioma pathogenesis (Yao et al., 2015), through their transcriptional regulation by 

TFs. Bio-computational analyses have demonstrated abundant TF binding sites in 

lncRNA promoter regions  (Ma et al., 2014b; Yang et al., 2013; Zhang et al., 2015a) . 

Moreover, TFs could bind directly to lncRNAs and regulate their expressions, for 

example the lncRNA HOTAIR is a direct target of c-MYC, by which HOTAIR is 

activated and can drive tumor progression (Ma et al., 2014b). 

Differential expressions of lncRNAs between normal and different grades of 

gliomas offer significant promises of using lncRNA signatures in glioma diagnosis and 

prognostication (Ma et al., 2015; Vital et al., 2010; Zhang et al., 2012c). In glioma 

recurrence lncRNAs also participates, for example, the PPAR signaling pathway was 

found to be the most significant pathway through which glioma-associated lncRNAs 

may act (Han et al., 2012). Furthermore, profiling studies have used lncRNAs to 
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establish a molecular sub-classification based on lncRNAs expression with important 

clinical implications, defining three lncRNAs signature subgroups: astrocytic tumor 

with high EGFR amplification, neuronal-type tumor and oligodendrocytic tumor 

enriched with IDH1 mutation and 1p19q co-deletion (Li et al., 2014a). Some lncRNAs 

have also associated with glioma patient survival (Ma et al., 2015; Zhang et al., 2013). 

 

3.4.1 ANRIL 

ANRIL (officially known as CDKN2B antisense RNA 1) was originally identified 

in the familial melanoma patients (Pasmant et al., 2007). Since its identification, 

accumulating studies have showed that ANRIL is deregulated in a number of 

malignancies such as gastric, breast, lung and bladder cancer (Iranpour et al., 2016; 

Naemura et al., 2015; Zhang et al., 2014a; Zhu et al., 2015). ANRIL was originally 

identified from familial melanoma patients with a large of germline deletion in the 

INK4B-ARF-INK4A gene cluster (officially known as CDKN2B, CDKN2AIP and 

CDKN2A), which was located a 42-kb stretch on the chromosome 9p21 (Gil and Peters, 

2006; Kia et al., 2008; Ozenne et al., 2010; Pasmant et al., 2007). This gene locus is 

transcriptionally silenced or homozygously deleted in a lot of tumors with a frequency 

of about 40 % exhibiting one of the most diversify genes in human tumors (Gil and 

Peters, 2006; Kia et al., 2008). The INK4B-ARF-INK4A locus is governed by PRCs 

and ANRIL is involved in suppressing this locus (Kheradmand Kia et al., 2009; Yap et 

al., 2010). 

Overexpression of ANRIL is linked to poor prognosis in prostate and gastric cancer 

(Kotake et al., 2011; Yap et al., 2010; Yu and Thomson, 2008), and have been 

associated with glioma and basal cell carcinoma, discovered based on the known risk 

loci established through genotyping of cancer patients (Bennett and Swayze, 2010; 

Guttman et al., 2011). However, the detail molecular mechanism of ANRIL remains to 

be studied. 

 
3.4.2 SOX2OT 

The SOX2 overlapping transcript, known as SOX2OT, is a multi-exon lncRNA 

which harbors SOX2 gene in its intronic region and is transcribed in the same 

orientation as SOX2 (Fantes et al., 2003). While little is known about the exact role of 

SOX2OT, recent studies have demonstrated a positive role for it in the regulation of 

SOX2 gene in human stem cells (Amaral et al., 2009; Shahryari et al., 2014). 
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The lncRNA SOX2OT is co-upregulated with master regulators of pluripotency, 

SOX2 and OCT4, in tumor samples of esophageal squamous cell carcinoma, which 

suggested a potential part for it in tumorigenesis of esophagus (Shahryari et al., 2014). 

Overexpression of both SOX2OT and SOX2 has been reported in human primary lung 

cancer tissues, in comparison with the corresponding non-tumor samples, where they 

act as a novel prognostic indicators (Hou et al., 2014). Furthermore, SOX2OT plays 

regulatory function in cell cycle progression; being associated with carcinogenesis in 

different human tumors, such as breast (Askarian-Amiri et al., 2014), and esophagus 

(Shahryari et al., 2014) cancers. Current evidences indicate a functional association 

between SOX2OT and SOX2 in tumorigenesis, cellular differentiation, and 

pluripotency, although more remains to be investigated on the mechanisms underlying 

this regulation (Shahryari et al., 2015). 

 

3.5 LncRNAs in NSCs and GSCs  

The functional role of lncRNAs in GSCs have been demonstrated in a comparative 

analysis of microarray data, where different patterns of lncRNAs expression, such as 

H19, XIST and MIAT in undifferentiated tumor cells were found (Bao et al., 2006a; 

Cheng et al., 2010; Galli et al., 2004). In an exploratory analysis, a set of 35 lncRNAs 

were differentially expressed between progenitor and mature states, showing that at 

least one lncRNA can interact with  the neurogenesis repressor complex REST/NRSF 

(neural restrictive silencer factor) to regulate neuronal gene expression (Ng et al., 2012). 

Another refined study monitored induced pluripotent stem cells (iPSC)-NSC 

differentiation, and revealed a gradual increase in the expression of different lncRNAs 

as NSCs differentiate (Hjelm et al., 2013). Another report using adult NSCs in mice has 

further confirmed that lncRNAs increase as cells differentiate (Ramos et al., 2013), 

indicating that lncRNAs are important regulators of pluripotency and neurogenesis, and 

exert important roles in human brain development. 

Recent global analysis showed that cancer transcriptome is more complex than 

previously anticipated. Dysregulated expression of lncRNAs has potential pervasive 

roles as drivers of human cancers. Therefore, understanding the precise molecular 

mechanisms of lncRNAs to the various biological processes will be a critical step in 

exploring new strategies in future cancer therapy. 
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Hypothesis 

 

SOX2 is highly expressed in the GSC compartment, where it controls stemness 

properties and maintenance of tumorigenicity; however its mechanism of action in the 

context of the GSCs is poorly understood. We hypothesized that SOX2 plays a 

prominent role in driving the growth, treatment resistance and recurrence of 

glioblastoma, through the orchestration of different transcriptional pathways. The 

elucidation of the transcriptome and the molecular pathways involved in the generation 

and maintenance of GSCs is critical to understand the molecular underpinnings of 

glioblastoma malignancy and could allow the identification of relevant and novel 

therapeutic targets. 

 

In order to address our hypothesis we propose the following aims. 

 

Aims 

 

1. To identify the gene-coding landscape controlled by SOX2 in GSCs 

2. To uncover the non-coding landscape controlled by SOX2 in GSCs 

3. To study the functional role of key miRNAs controlled by SOX2 in GSCs in vitro 

and in vivo. 
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1. Cell lines and culture conditions 

We worked with different GSC lines in order to have a representative number of 

cell lines. Some of them were available at our group, other were available at Dr. 

Laterra´s group, where I made a short-term stay performing some of the experiments of 

this thesis. 

The adult neurosphere lines GSC-11 and GSC-23, a kind gift of Dr. Lang at UT 

MD Anderson Cancer Center, were established from acute cell dissociation of human 

glioblastoma surgical specimens and maintained in our lab. The neurosphere lines 

GBM1A and GBM1B were originally derived and characterized by Vescovi and co-

workers (Galli et al., 2004) and available at Dr. Laterra`s lab.  All neurosphere cell lines 

were cultured and maintained in serum-free medium containing Dulbecco's modified 

Eagle's medium/nutrient mixture F12 (1:1, vol/vol) (Thermo Fisher Scientific Inc, 

Waltham, MA) supplemented with 10% of Penicillin/Streptomycin (Lonza, Verviers, 

Belgium) B27 10x (Thermo Fisher Scientific Inc, Waltham, MA) and 20  ng/ml of both 

EGF and FGF (Sigma-Aldrich, St Louis, MO) according to the procedures described by 

Galli (Galli et al., 2014). 

The human glioblastoma xenograft line Mayo 39, was originally obtained from the 

Mayo Clinic (Rochester, MN) and maintained at Dr. Laterra`s group as attached cell 

line. The established glioma cell lines U87 MG, A172 and the human embryonic kidney 

293FT (HEK293FT) cell lines were obtained from the ATCC and were grown attached. 

All attached cell cultures were maintained in Dulbecco's modified Eagle/F12 medium 

(1:1, vol/vol) and supplemented with 10% FBS (Fetal Bovine Serum, Thermo Fisher 

Scientific Inc, Waltham, MA). Finally all cell lines were grown at 37°C in a humidified 

incubator with 5% CO2. All cell lines are routinely fingerprinted to ensure authenticity. 

 

2. Patient samples and ethic statement 

Glioblastoma tissues were obtained from surgical procedures performed at the 

Department of Neurosurgery of the University Hospital of Navarra. Tissue samples 

were resected during surgery and immediately frozen in liquid nitrogen. We collected 

30 human glioblastoma specimens. Written informed consent was obtained from all 

subjects, specifying that sample collection was for experiment purposes, and approved 

by the Ethics Committee of of the University Hospital of Navarra (Ref. 123/2014). 
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3. Transient transfection of cells 

To inhibit SOX2 expression, transient transfection assays were performed using 

commercially available, specific siRNA against human SOX2 (si-SOX2, si13295) and a 

non-targeting control siRNA (si-Scramble) (Ambion) in four independent experiments. 

The siRNA transfections were performed according to the manufacturer's instructions 

using Lipofectamine 2000 (Invitrogen, Carlsbad, CA). The cells were then cultured for 

72 h after transfection and subjected to different analysis.  

To down-regulate miR-301a expression, GSC-23 cells were transfected with an 

anti-miR inhibitor miR-301a (anti-miR-301a) (MH10978, Ambion), or a scrambled 

sequence miRNA (anti-miR-Sc) (AM17010, Ambion) to a final concentration of 100nM 

using Lipofectamine 2000 (Invitrogen, Carlsbad, CA), according to the manufacturer's 

recomendations. Cells were harvested 72h post-transfection and subjected to different 

analysis. 

 

4. Lentivirus generation 

Lentiviral vectors are potent gene delivery vehicles that enable stable expression of 

transgenes in both dividing and post-mitotic cells. Lentivirus are capable of infecting a 

wide range of cell types and tissues in vitro and in vivo, without toxicity or immune 

responses (Blomer et al., 1997; Kafri et al., 1997; Miyoshi et al., 1997; Naldini et al., 

1996), integrate stably into the host genome, and result in long term expression of the 

transgene. The safety of the lentiviral vectors has been further improved with the 

generation of self-inactivating vectors and a minimal packaging system (Miyoshi et al., 

1997; Zufferey et al., 1998).  

For the production of lentiviral particles, we used a 2nd-generation lentiviral system 

according to Addgene instructions, using three components: 1) the lentiviral transfer 

vector containing the insert of interest, in this case we used LentimiRa-Off-hsa-miR-

425-5p vector to inhibit the expression of miR-425-5p or pLenti-III-mir-GFP as a 

positive control empty vector (Applied Biological Materials Inc, Richmond, BC, 

Canada), 2) one packaging vector which contain all necessary viral structure proteins, 

psPAX2 (Addgene, Cambridge, MA), and 3) an envelope vector expressing Vesicular 

Stomatitis Virus (VSV) glycoprotein (G), using the pMD2.G plasmid (Addgene, 

Cambridge, MA). The plasmid map of LentimiRa-Off-hsa-miR-425-5p vector is shown 

in Figure 12. Co-transfection of the lentiviral packaging/envelope plasmids and transfer 
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vector into the HEK239FT packaging cell line, allows efficient production of lentiviral 

supernatant. The lentivirus miRNA inhibitor used enables a long-term potent inhibition 

of miR-425-5p without repeated transfections. Figure 12 outlined the process of the 

production of infectious lentivirus and cell infection. 

First, 1 × 106 HEK293FT cells were seeded on 10 cm plates and 24h later were 

transfected with 2 μg of PAX2 packaging plasmid, 1 μg of pMD2.G envelope plasmid, 

and 3 μg of lentiviral vector using 18 μl of Lipofectamine 2000 (Invitrogen, Carlsbad, 

CA). The lentiviral particles in supernatant were collected at 48–72 h and used to infect 

cells. 

 

 

Figure 12. Scheme of the production of 2
nd

-generation lentiviral system and cell infection, adapted 

from (Addgene Lentiviral guide). 

 

5. Lentiviral transduction 

GSC-23, GSC-11, GBM1A, GBM1B, A172, U87 MG and HEK293T cells were 

transduced with lentiviral particles. Briefly, a total of 1.5 × 104 cells were seeded in a 6-

well cell culture plate and infected with lentiviral medium containing lentiviral particles 

and polybrene (1 µg/mL), supplemented with appropriate medium. GFP expression was 

assessed using an inverted fluorescence microscope (Leica Microsystems, Wetzlar, 

Germany).  

 

6. Forced differentiation of neurospheres  

Forced differentiation was performed according to the method of Galli and co-

workers (Galli et al., 2004) with some modifications. Briefly, the neurosphere cells 

were plated onto Matrigel in FGF-containing neurosphere medium (no EGF) for 2 days 

and subsequently grown in 1% FBS without EGF/FGF for 5 days.  
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7. Neurosphere size assessment  

To assess neurosphere size, cells were dissociated into single cells and cultured in 

ultra-low attachment flasks (2.5 × 104 cells/ml). After 10 days, neurospheres were 

embedded in 1% agarose and stained with 0.1% Wright stain solution for 1–2 h at 37 °C. 

Cells were washed four times with phosphate-buffered saline (PBS) and incubated at 

4 °C overnight (in PBS) before quantification. Spheres larger than 100 μm were 

quantified using computer-assisted image analysis (MCID™ Analysis Software). 

 

8. Cell viability assay 

To assess the effect of the inhibition of miR-425-5p expression in cell viability we 

used the Cell-Titer 96 One Solution Aqueous Proliferation kit (Promega) following 

manufacturer's instructions. This is a colorimetric method for determining the number 

of viable cells in proliferation. This assay contains a tetrazolium compound [3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, 

inner salt; MTS] and an electron coupling reagent (phenazine ethosulfate; PES). PES 

has enhanced chemical stability, which allows it to be combined with MTS to form a 

stable solution. The MTS tetrazolium compound is bioreduced by cells into a colored 

formazan product that is soluble in tissue culture medium. This conversion is 

presumably accomplished by NADPH or NADH produced by dehydrogenase enzymes 

in metabolically active cells.  

Neurosphere cells were seed at a density of 5x103 cells per well in a 96-well plate. 

After either 3 or 5 days, MTS reagent was added to cells, incubated during 2h at 37ºC 

and then the absorbance was measured at a wavelength of 490nm in a Sunrise 

microplate reader with Magellan Software (Tecan, Mannedorf, Switzerland). 

 

9. Cell cycle analysis 

To analyze the cell cycle progression after miR-425-5p inhibition we used flow 

cytometry. GSC-23 cells were collected after 7 days of infection with miR-425-5p 

lentivirus, washed with PBS 1x, fixed by adding ice-cold 70% ethanol and store at 4°C 

for at least 30 min. Then cells were washed with PBS and stained with10  μg/ml 

propidium iodide (Roche), 100µg/ml RNase (Sigma-Aldrich) in PBS, and incubated at 

37°C for 30 min in the dark. The percentage of cells in the different phases of the cell 
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cycle was measured with a FACS Calibur instrument (Becton-Dickinson, Franklin 

Lakes, NJ, USA) and analyzed with FlowJo (Ashland, OR, USA) software. 

 

10. Migration and invasion assays 

The Transwell migration assay is a commonly used test to study the 

migratory/invasive response of cells to chemical cues. This assay consists of a chamber 

with a membrane which separates the wells of a multiwell plate into top and bottom 

compartments. Cells were seeded into the top compartment and the chemo attractant 

solution is placed in the bottom compartment. After incubation, counting the cells in the 

bottom compartment allows quantification of migration induced by chemo attractants. 

For invasion assay the pores of the membrane were covered  with a gel composed of 

extracellular matrix, known as Matrigel. By placing the cells on one side of the gel and 

a chemo-attractant on the other side of the gel, invasion was determined by counting 

those cells detected in the lower side of the compartment, having invaded towards the 

higher concentration of chemoattractant (Figure 13).  

In our study, 1×104 cells were plated in the top chamber with the non-coated 

membrane (24-well insert; pore size, 8 µm; BD Biosciences). For invasion assays, 

1×105 cells were plated in the top chamber with a Matrigel-coated membrane (24-well 

insert; pore size, 8 µm; BD Biosciences). In both assays, cells were plated in serum-free 

medium without growth factors, and medium supplemented with 2% fetal bovine serum 

was used as a chemo attractant in the lower chamber. The cells were then incubated for 

12h for invasion or 6h for migration at 37°C. Cells that did not migrate or invade 

through the pores were removed by a cotton swab. Cells on the lower surface of the 

membrane were stained with crystal violet and counted under a conventional 

microscope at 200X magnification (Leica Microsystems, Wetzlar, Germany). 

 

Figure 13. Schematic representation of Transwell invasion assay. 
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11. Caspase 3/7 activity 

The activation of Caspase 3/7 was assessed using the Caspase-Glo 3/7 assay kit 

(Promega Corp, Wisconsin, USA). Caspase 3 and 7 detection is based on coupled 

reactions. In the first reaction, the cleavage of the target tetrapeptide sequence DEVD 

by active caspase 3 and/or 7 takes place. This cleavage produces aminoluciferin, which 

is further used as the substrate for the luciferin enzyme in the second reaction, to finally 

produce a light signal that could be measured in a luminometer. 

Briefly, 1.5 × 104 cells were seeded in quadriplicate into 96-well plate after 1 day of 

infection and 50 μL of Caspase-Glo 3/7 reagent was added in quadruplicate the days of 

measure (7 and 10 days after infection) and incubated during 1h at 37ºC. Bioluminiscent 

fluorescence was detected using spectrofluorometer (SpectraMAX Gemini XS, 

Molecular devices). Luminescence was proportional to the amount of caspase activity 

present, so the proportional fluorescence intensity between infected and non-infected 

cells allowed the determination of the changes in caspase activity. 

 

12. Annexin V assay 

For apoptosis determination we used APC-Annexin V (BD Pharmingen™, San 

Jose, CA) staining and SYTOX™ Blue (Invitrogen, Carlsbad, CA) for determination of 

viability. In apoptotic cells, phosphatidyl serine (PS) is translocated from the inner to 

the outer leaflet of the plasma membrane, thus exposing PS to the external cellular 

environment. Annexin V labeled with a fluorophore or biotin can identify apoptotic 

cells by binding to PS exposed on the outer leaflet of the membrane. SYTOX™ Blue 

dead cell stain is a high-affinity nucleic acid stain that easily penetrates cells with 

compromised plasma membranes but will not cross uncompromised cell membranes. 

After brief incubation with SYTOX™ Blue stain, the nucleic acids of dead cells 

fluoresce bright blue when excited with 405 nm violet laser light. Briefly, 1.5 × 105 

GSC-23 cells were seeded into 6-well plate and after 7 days of transduction cells were 

washed and resuspended in 1x Binding Buffer. APC Annexin V and SYTOX Blue were 

added to cells and incubated during 15 min in the dark and analyzed by flow cytometry 

(Becton-Dickinson, Franklin Lakes, NJ, USA). 

Viable cells are both APC-Annexin V and SYTOX Blue negative, while cells that 

are in early apoptosis were APC-Annexin V positive and SYTOX Blue negative and 
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cells that were in late apoptosis or already dead are both APC-Annexin V and SYTOX 

Blue positive. 

 

13. Transmission electron microscopy 

To perform the ultrastructural analysis of cell morphology after inhibition of miR-

425-5p expression we used the transmission electron microscopy (TEM). TEM is a high 

resolution microscopy which allows enough magnification to visualized cell 

morphology. GSC-23 cells were collected after 7 days of infection with miR-425-5p 

lentivirus and fixed with a solution containing 4% glutaraldehyde in 0.1M cacodylate 

buffer, pH 7.4 during 1h at 4ºC. Then cells were centrifuged and treated with 0.25M of 

sacarose in 0.1M cacodylate buffer, postfixed with 1% buffered osmium tetroxide for 

1h at 4ºC and stained in block with 1% Millipore-filtered uranyl acetate. The samples 

were dehydrated with increasing concentrations of ethanol, infiltrated and embedded in 

LX-112 medium. Then, cells were polymerized in an oven at 60ºC for 2 days. Ultrathin 

section (65nm) were cut in a Leica Ultracut microtome, stained with uranyl acetate and 

lead citrate in a Leica EM Stainer, and examined in a Jeol-1210 transmission electron 

microscope (Jeol Ltd., Herts, UK) in the Department of Histology and Pathology of The 

University of Navarra. 

 

14. Array Studies 

14.1 Microarray expression analysis 

To identify genome-wide SOX2-regulated coding and non-coding transcripts, we 

subjected samples to an Agilent Array. Total RNA was isolated from scrambled and 

SOX2-siRNA GSC-11 cells using Trizol extraction and quantified using Nanodrop 

1000 (Thermo Fisher Scientific). RNA was purified by the QIAGEN RNAeasy mini kit 

(QIAGEN) according to the manufacturer´s protocol. One-color Cy3 RNA labeling, 

array hybridization to Agilent SurePrint G3 8 × 60 K Human Gene Expression Arrays 

(Agilent Technologies), data collection, and analysis were performed at the Department 

of Biostatistic (Fundación para la Investigación Médica Aplicada, CIMA, Pamplona, 

Spain). The microarray data from this study have been submitted to Gene Expression 

Omnibus (http://www.ncbi.nlm.nih.gov/geo) under accession number GSE79302. 

 

 

http://www.ncbi.nlm.nih.gov/geo
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14.2 TaqMan Low Density microRNA Array (TLDA) 

Total RNA from scrambled and SOX2-knock down GSC-11 cells was reverse 

transcribed into cDNA using Taqman miRNA Reverse Transcription Kit (Applied 

Biosystems) and loaded onto a TLDA Human miRNAs panel containing 384 wells 

according to manufacturer’s protocol (Applied Biosystems). Quantitative miRNAs 

expression data were normalized with U6b housekeeping gene and quantified using ABI 

7700 sequence detection system (Applied Biosystems, Foster City, CA). 

 

14.3. Functional group analysis 

In this study we applied Gene Ontology (GO) analysis to find the primary function 

of the differential expression of mRNAs regulated by SOX2, using online software 

DAVID (Database for Annotation, Visualization and Integrated Discovery, 

http://david.abcc.ncifcrf.gov/). GO analysis can organized genes into hierarchical 

categories (Gene Ontology Consortium, 2006). To identify the significant pathway of 

the differential genes participating we performed gene regulatory network analysis 

using Ingenuity Pathway Analysis (IPA) software (http://www.ingenuity.com), which 

can integrate gene-expression data with other molecular databases to facilitate the 

development of new and more complete pathway maps. Fisher's exact test was used to 

select the significant GO categories. The threshold of significance was defined by P 

value with a cut-off set in 0.05. 

 

15. In silico prediction of binding sites  

SOX2 binding sites 2 kb upstream of the miR-301a-3p and miR-425-5p translation 

start site were identified using the PROMO (Messeguer et al., 2002) algorithm using 

search term ‘SOX2’ (Transcription factor identifier: T01836), which is specific for 

SOX2. 

 

16. Predicted target gene analysis  

In the present study miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/), miRDB 

(http://mirdb.org/miRDB/) and PicTar (http://pictar.mdc-berlin.de/) were used to predict 

target genes for miR-301a-3p and miR-425-5p. We considered as target genes only 

genes that were predicted by all three software programs.  

 

http://david.abcc.ncifcrf.gov/
http://www.ingenuity.com/
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17. Total Nucleic Acids Methods 

17.1 RNA extraction 

For RNA isolation, cells were incubated with Trizol reagent (Life Technologies, 

California, USA). Trizol is a monophasic lysis solution which recovers total RNA and 

inactivates RNAse enzymes. Chloroform addition separates the RNA from the DNA, 

maintaining the RNA exclusively in the aqueous phase. After phase separation, RNA is 

precipited by the addition of isopropanol and then followed by drying with the 

subsequent ethanol step. Finally RNA is hydrated with free RNAse water (Sigma) 

(Green and Sambrook, 2012). RNA samples were quantified using Nanodrop 1000 

spectrophotometer (Thermo Fisher Scientific) and then stored at -80ºC until further 

used. 

 

17.2 Reverse Transcription 

cDNA (complementary DNA) is the total RNA copy translated to DNA. For gene 

expression analysis we obtained cDNA by reverse transcriptase reaction (retro-

transcription) using total RNA as the template. The primers are known as random 

hexamers, which allow the copy of total RNA in the same proportion and this 

characteristic allows the evaluation of initial RNA (Green and Sambrook, 2012). cDNA 

was obtained by standard retro-transcription, using the MultiScrib Reverse 

Transcriptase kit (Thermo Fisher Scientific). For the procedure, the following mixture 

was prepared: 

 

 

Total RNA (extracted from cells) 1µg 

MultiScrib Reverse Transcriptase 1 µL 

10x RT Buffer 2 µL 

dNTPs (2.5mM each) 1 µL 

Random deoxynucleotide hexamers (60 ng/µL) 1 µL 

RNAsa Inhibitor (1U/uL) 1 µL 

DEPC water Up to 20 µL 

 



Materials and Methods 

 
 

59 

 

Sample reaction was incubated at 25ºC for 10 minutes, followed by a 2 hours step 

at 37ºC in the thermal cycler GeneAmp PCR System 2700 (Applied Biosystems), and 

cDNA was stored at -20ºC until further evaluation. 

For miRNA analysis, reverse transcriptions were performed using TaqMan® 

miRNA Reverse Transcription Kit (Life Technologies) and specific RT Taqman primer 

for each miRNA, according to the manufacturer’s instructions. 

 

17.3 Quantitative real-time PCR 

Real Time (RT) Polymerase Chain Reaction (PCR) allows monitoring the PCR in a 

real time. In our study, we used the Taqman Master Mix No Amperase (Applied 

Biosystems) for miRNA and lncRNA expression analysis and the SYBR-Green Master 

Mix (Applied Biosystems) for gene expression analysis. SYBR-Green dye is a cyanine 

molecule that intercalates with the DNA by non-specifically binding. The complex 

DNA-dye emits green light (497nm). We analyzed relative levels of several genes and 

lncRNAs, listed in the following table and normalized against human GAPDH levels. 

MiRNA levels were normalized against human U6b housekeeping RNA. 

To guarantee the specificity of the reaction, all pairs of primers were tested using 

the melting curve analysis and afterwards PCR products were visualized in agar gels. 

RT-PCR was monitored using ABI 7700 sequence detection system (Applied 

Biosystems, Foster City, CA). Expression levels were calculated using the ddCt method 

(Livak and Schmittgen, 2001). P-values were calculated by analysis of variance using 

Microsoft Excel. 

Primers for lncRNA detection and quantification were designed at Universal Probe 

Library Assay Design Center (http://www.roche-applied-science.com/). Each full 

sequence of the selected candidate lncRNAs was searched by UCSC Genome Browser 

Home and inputted into the Roche Applied Science: Universal Probe Library System-

Assay Design Center (https://www.roche-applied-science.com) to design primers for the 

RT-PCR. All primer sequences are listed in Appendix 1.  

 

17.4 Chromatin immunoprecipitation 

SOX2 binding sites 2kb upstream of the miR-425-5p translation start site were 

identified using the PROMO algorithm (Messeguer et al., 2002), using search term 

‘SOX2’ (transcription factor identifier: T01836) which is specific for SOX2. Chromatin 

https://www.roche-applied-science.com/
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immunoprecipitation was performed using the MAGnify Chromatin 

Immunoprecipitation System (Life Technologies Corporation). Briefly, DNA from 

GBM1A neurosphere over-expressing SOX2 was crosslinked using formaldehyde and 

chromatin was isolated and fragmented by sonication. DNA fragments were incubated 

with specific antibodies, ChIP formulated, against human SOX2 (Cell Signaling) or IgG 

(Life Technologies) overnight at 4 °C. Precipitation of DNA fragments complexed with 

SOX2 at the miR-425-5p promoter was quantified using qRT–PCR. We select a specific 

region of miR-425-5p promoter region (Region 1) and design a pair of primers covering 

multiple SOX2 potential binding sites. Primers targeting promoter regions lacking 

SOX2 binding sites were used as a negative control. Primer sequences for Region 1 

were: Forward primer: 5`- CCTGCCCCACGGATCTAA-3  ̀ and Reverse primer: 5`- 

AGCAGGGGACGAAATCCAA-3 .̀ 

 

18. Protein Methods 

18.1 Protein isolation 

For protein extraction, cells were washed twice with PBS and then lysed during 30 

min at 4ºC in lysis buffer (PBS 1% Triton X100) supplemented with one tablet protease 

inhibitor cocktail (Roche, Basilea, Switzerland) per 5ml of lysis buffer. Samples were 

centrifuged during 15 min at 10 000G at 4ºC on a benchtop centrifuge (Eppendorf). 

Supernatants were collected and transferred to a clean tube and store at -80ºC. 

 

18.2 Protein quantification 

Protein concentration was determined by a colorimetric assay. We used the Protein 

Assay Dye Reagent Concentrate (Bio-Rad Laboratory, West Berkeley, CA). We 

performed a BSA (bovine serum albumin, Sigma-Aldrich, St Louis, MO) standard 

curve. Protein samples were added in duplicates and mixed with protein assay diluted 

1/5. Absorbance at 550 nm was measured in a Sunrise Microplate Reader, using 

Magellan Software (Tecan, Mannerdorf, Switzerland). 

 

18.3 Immunoblotting Assay   

Immunoblotting (Western Blotting, WB) is a rapid and sensitive assay for the 

detection and characterization of proteins, based on the inherent specificity in antigen-

antibody recognition. The technique uses three elements to accomplish this task: (1) 
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solubilization and electrophoretic separation of proteins by size, (2) transfer and 

irreversible binding to nitrocellulose, PVDF, or nylon, and (3) marking target protein 

using a proper primary and secondary antibody to visualize. The immunoblotting 

technique is useful in identifying specific antigens recognized by polyclonal or 

monoclonal antibodies and is highly sensitive (1 ng of antigen can be detected). The 

membrane is then detected using the label antibody, usually with an enzyme such as 

Horseradish Peroxidase (HRP), which is conjugated with a secondary antibody that 

specifically binds to the primary one, and the signal is captured on a X-ray film. Time 

of exposition is variable, intense bands appears within few seconds, whereas weak 

bands need 30 min at least to be developed (Green and Sambrook, 2012). 

Western blot uses two different types of agarose gel: stacking and separating gel. 

The higher, stacking gel is slightly acidic (pH 6.8) and has a lower acrylamide 

concentration making a porous gel, which separates protein poorly but allows them to 

form thin, sharply defined bands. The lower gel, known as the resolving gel, is basic 

(pH 8.8), and has a higher polyacrylamide content, making the gel's pores narrower. 

Protein is thus separated by their size, as the smaller proteins to travel more easily and 

hence rapidly, than larger proteins.  

In this case, proteins were separated according to their size mixing 25-40µg of 

samples with commercial loading buffer NuPAGE LDS Sample Buffer (Invitrogen, 

Carlsbad, CA). For reducing conditions, 10% β-mercaptoethanol was also added. The 

mixed was heated for 5 min at 95ºC, in order to denature the higher order structure 

while retaining sulfide bridges, snap-cooled to avoid protein refolding, and loaded into 

the gel. 

Electrophoresis was carried out during 90 min at 120V in running buffer (50mM 

MOPS, 50mM Trizma-base, 0.1% SDS and 1mM EDTA, pH 7,7). After 

electrophoresis, gels were carefully placed in cuvettes, and rinse with ultrapure water. 

Then proteins were transferred electrophoretically during 2 to 3 hours at 100V from the 

gel into a nitrocellulose membrane (0,45 µm pore size). In order to verify the correct 

amount of protein loaded, membranes were stained with the removable stain Ponceau S 

(Sigma-Aldrich, St Louis, MO). 

Nitrocellulose membrane (Bio-Rad Laboratories, West Berkeley, CA) was blocked 

using 5% nonfat dried Milk diluted in PBS 0,1% during 1 hour to avoid non-specific 

union of antibodies. The proteins immobilized in the membrane were incubated with a 
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primary specific polyclonal or monoclonal antibody at 4ºC overnight, with the 

subsequent secondary HRP-conjugated secondary antibody that specifically binds to the 

primary antibody. 

To detect the signal, membrane was incubated with Amersham Enhanced 

Chemiluminiscence (Perkin Elmer Waltham, MA). The X-ray film confrontation with 

the membrane was performed in darkness, using an automated Curix 60 device (AGFA, 

Mortsel, Belgium) to reveal the X-ray film. 

 

Table 2. Antibodies used in Western Blot  

Antibody Dilution Company Reference 

α-SOX2 1/1000 Cell Signaling Technology, Danvers, MA 2748 (Rabbit) 

α-Caspase 3 1/1000 Cell Signaling Technology, Danvers, MA 9668 (Mouse) 

α-Cleaved Caspase 

3 

1/500 Cell Signaling Technology, Danvers, MA 9661 (Rabbit) 

α-PARP1 1/1000 Cell Signaling Technology, Danvers, MA 9542 (Rabbit) 

α-p62 1/1000 Sigma-Aldrich, St Louis, MO P0067 (Rabbit) 

α-E2F1 1/1000 Santa Cruz Biotechnology, Santa Cruz, CA SC-251 (Mouse) 

α-CDK4 1/1000 Cell Signaling Technology, Danvers, MA 9868 (Rabbit) 

α-CDK6 1/1000 Cell Signaling Technology, Danvers, MA 9868 (Rabbit) 

α-Phospho-Cyclin 

D1 

1/1000 Cell Signaling Technology, Danvers, MA 3300 (Rabbit) 

α-AKT(pan) 

C67E7 

1/1000 Cell Signaling Technology, Danvers, MA 4691 (Rabbit) 

α-Phospho-AKT 

(Ser473) 

1/1000 Cell Signaling Technology, Danvers, MA 4060 (Rabbit) 

α-H2AX 1/1000 Cell Signaling Technology, Danvers, MA 9718 (Rabbit) 

α-Tubulin 1/1000 Sigma-Aldrich, St Louis, MO T40206 (Mouse) 

α-GRB2 1/1000 BD Transduction Laboratories
TM

, San Jose, 

CA 

610112 (Mouse) 

α-GAPDH 1/1000 Abcam plc, Cambridge, UK Ab9485 (Rabbit) 

α-Mouse IgG HRP 1/5000 Sigma-Aldrich, St Louis, MO A9044 

α-Rabbit IgG HRP 1/5000 Cell Signaling Technology, Danvers, MA 7074 
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19. Animal Methods 

19.1 Intracranial animal model 

All the animal experimental protocols were reviewed and approved by the Comitee 

of Bioethics of the Government of Navarra and the Institutional Animal Care 

Department. In this work we used the guide-screw animal orthotopic brain tumor model 

described by Lal and colleagues (Figure 14) (Lal et al., 2000). Briefly, it consists in two 

different surgeries where the animal is anesthetized by intraperitoneal injection with 

ketamine (Imalgene)/xylazine (Rompun 2%, Bayer) solution (200 mg ketamine and 20 

mg xylazine in 17 ml of saline) at a dosage of 0,15 mg/10g body weight. The first 

procedure consists in the implantation of 2.6-mm guide screw at 2,5 mm lateral and 1 

mm anterior to the bregma. The second intervention is performed one week after bolt 

implantation and involves the cell injection using an infusion pump. We used the GSC-

11 cell line, grown as neurospheres (500 000 cells/mouse) diluted in 5µL of free 

medium. Cells were implanted through the screw using a Hamilton syringe (Fisher 

Scientific). In order to avoid a reflux, an infusion pump (Harvard Apparatus, Holliston, 

MA) was used to control the flow ratio using 15 µL for 1 hour. 

Athymic nude female mice were obtained from Harlan Laboratories (Barcelona, 

SP) and maintained at The Center for the Applied Medical Research (CIMA, Pamplona, 

SP) in specific pathogen-free conditions and feed standard laboratory chow. 

Experiments were performed using 6-8 weeks old mice and were sacrificed when 

symptoms; including neurological deficit (hemiparesis, seizures), unresponsiveness to 

stimuli, hunched posturing and weight loss. 
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Figure 14. Artist`s drawing showing the method of implanting the guide screw and the injection of 

cells, by (Lal et al., 2000). Left: The skin is incised and the coordinates for the point of screw 

implantation are visualized on the skull. This point is directly over the caudate nucleus. Right: Three -

dimensional and cross-sectional view of an engrafted tumor being treated with an intratumoral inject ion 

by using the Hamilton syringe. The screw fixes the anterolateral point of injection and the depth is 

determined by the cuff in the Hamilton syringe.  

 

 

19.2 Immunohistochemical analysis 

Immunohistochemistry (IHC) is a wide-used biological technique that combines 

anatomy, physiology, immunology and biochemistry. Developed from the antigen-

antibody binding reaction, immunohistochemistry can be considered as a method that 

visualizes distribution and localization of specific antigen or cellular components in 

tissue sections. It comprises three major components: 1) primary antibody binds to 

specific antigen, 2) the antibody-antigen complex is formed by incubation with a 

secondary, enzyme-conjugated, antibody and 3) the enzyme catalyzes the substrate 

generating colored deposits at the sites of antibody-antigen binding.  

In this study, brains extracted from treated mice were fixed in formaldehyde for 48 

hours, at that point they were transferred to ethanol, and then embedded in paraffin 

blocks and sectioned (5 µm) (Morphology Core facility, CIMA). For histological 

analysis, slides were stained with Hematoxylin and Eosin. For IHC, sections were 

deparaffinized, hydrated and incubated for 10 min with 3.3% H2O2 in water to block 

endogenous peroxidase. Standard protocols for antigen retrieval were employed. 
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Samples were incubated with primary antibodies at 4°C overnight. Images were 

captured with a fluorescent microscope (Zeiss AXIO Imager Z1) equipped with 

Imaging System V.5.0 software (MetaSystem GmbH, Altlussehem, Germany).  

20. Statistical analysis 

Experimental data are represented as the mean ± standard deviation of three 

biologic replicates and were compared using Student's t-test. Significant P-values are 

indicated with asterisks as follows: *P < 0.05, **P < 0.01, ***P < 0.001. Survival rate 

was performed using Kaplan-Meier method. For statistical analysis the log rank was 

used. The statistical program used for the analysis is the GraphPad Prism Software 

(GraphPad Software, San Diego, CA). 
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1. Transcriptomic signature regulated by SOX2 

Since SOX2 is a key driver in the maintenance of the GSCs phenotype and 

therefore in the perpetuation of this devastating tumor, we down-regulated the 

expression levels of this gene in the human glioblastoma stem cell line GSC-11. We 

performed four independent experiments, using a siRNA specific for SOX2 (Figure 

15A). The efficiency of SOX2 knockdown was assessed by real-time PCR and western 

blot analysis (Figure 15B) and was also confirmed in our array results.  Microarray data 

identified a total of 2048 differentially expressed coding transcripts and 261 non-coding 

transcripts (B value >0) (Figure 15A). 

Figure 15 Transcripts regulated by SOX2.  (A) Schematic representation of the research design 

employed to uncover the SOX2 transcriptome in GSC-11 cells. (B) qRT-PCR and western blot 

confirmation of SOX2 inhibition in GSC-11 cells after 72h of si-SOX2 or si-Scramble (si-Sc) 

transfection. SOX2 relative mRNA levels are presented as 2
-ΔΔ

Ct standardized with their constitutive 
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gene GAPDH. Each bar represents the mean ± SD. For western blot Tubulin was used as housekeeping 

control and shown as a representative blot of four independent experiments. For space reason we have 

omitted the list of candidate transcripts regulated by SOX2. 

 

1.1 SOX2 controls a wide spectrum of protein-coding genes and pathways in GSCs 

To further narrow the coding transcripts data, we set a cut-off of 1 logarithmic fold 

change difference and B>0 between SOX2 knockdown and scrambled GSC-11 cells, 

identifying 35 up-regulated and 100 down-regulated genes. These results suggest that 

SOX2 act primarily as a transcriptional activator. In Table 3 we showed the top-10 up 

or down-regulated protein coding-genes. We selected the top 5 candidates of each group 

for further validation by qRT-PCR in the GSC-11 and GSC-23 cell lines. We confirmed 

the observed microarray expression changes in 5 out of 5 down-regulated coding-genes 

in GSC-11 cells and in 4 out of 5 in GSC-23 cells, including SOX2 (Figure16A). 

Regarding the up-regulated coding-genes in GSC-11 and GSC-23 we confirmed one out 

of 5 and 5 out of 5 in GSC-11 and GSC-23 respectively (Figure16B), partially 

validating our microarray results. 

 

Table 3: The top 10 up- and down-regulated protein-coding genes in SOX2-down-

regulated  GSC-11 cells, organized by logFC. 

GeneName logFC P.Value B 

PLP1 2,443 4,73E-05 2,488 

COL2A1 2,122 2,18E-05 3,281 

ATP8B1 1,954 1,50E-06 5,943 

PPP1R1B 1,925 7,27E-06 4,393 

CMTM5 1,702 1,12E-04 1,586 

ELMO1 1,66 5,97E-05 2,246 

ITIH5L 1,555 6,67E-05 2,133 

IGFBP5 1,522 1,82E-06 5,759 

SCARNA9 1,498 7,10E-05 2,067 

SCARNA17 1,435 4,46E-06 4,879 

GALNT14 -3,006 0,000299 0,569 

F11R -2,824 1,13E-07 8,308 

SYT4 -2,664 2,61E-06 5,405 

SLC18A1 -2,335 4,01E-06 4,984 

ITLN2 -2,329 3,57E-07 7,288 

RASEF -2,294 9,38E-07 6,39 

GADD45G -2,231 3,55E-08 9,277 

CYP26A1 -2,056 7,66E-10 11,938 

KRTAP21-1 -2,028 0,00021 0,94 

PNLIPRP2 -1,992 0,000495 0,042 
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Figure 16 Analysis by qRT-PCR of the top 5 (A) up- and (B) down-regulated coding transcripts in 

SOX2 silenced GSC-11 and GSC-23 cells. Total RNA was extracted after 72h of si-Scrbl or si-SOX2 

transfection in GSC-11 and GSC-23 cells. Values were normalized to GAPDH. Each bar represents the 

mean ± SD of three independent experiments. 

 

To understand the significance of differential gene expression in the context of 

SOX2 dowregulation, we performed bioinformatics analysis related to Gene Ontology 

(GO) Classification and pathway analysis. GO classifications using the DAVID web 

tool and pathway analysis using Ingenuity Pathway Analysis (IPA) were performed. For 

these analyses, gene lists were classified based upon decreased (logFC < -1) or 

increased (logFC > 1) expression relative to control and analyzed altogether as a single 

list. 

Enrichment analysis of GO categories including biological process (BP), molecular 

function (MF), and cellular component (CC) were obtained using DAVID web tool 

(Figure 17). We observed the highest enrichment in the categories related to “cell 
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adhesion”, “biological adhesion”, “cell-cell signaling”, “extracellular region” and 

“calcium ion binding”.  

 
Figure. 17. Analysis of the top-10 GO Biological Processes of protein-coding genes regulated by 

SOX2 in GSC-11 cells .  Bar chart represents classification of GO Biological Processes  (A), Cellular 

Component (B) or Molecular Function (C), as determined by DAVID web tool. Bars represent the 

number of genes in the specified category, organized by p-value. 

 

 

We used IPA analysis to uncover the canonical pathways regulated by SOX2 in 

GSCs. Our results showed 13 pathways significantly altered (Table 4). Most of them 
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related with amino-acid metabolism pathways, such as “histamine biosynthesis”. This is 

consistent with the fact thathistamine represents an important regulator of numerous 

physiological processes including neurotransmission in the central nervous system 

(CNS)  (Nuutinen and Panula, 2010); “L-cysteine degradation process” where 

cystathionine γ-lyase (CTH) activity has been related with glioblastoma treatment 

(Chen et al., 2015) and “serotonin receptor signaling pathway” being serotonin an 

important neurotransmitter in the CNS during neuronal development (Dinan, 1996). 

Other enriched pathways were “hematopoiesis from multipotent stem cells”, where 

KITLG has been reported to regulate neoplastic processes such as growth and invasion 

(Yang et al., 2014b); apoptosis (Carson et al., 1994) and cell adhesion (Flanagan et al., 

1991). Role of JAK2 in Hormone-like Cytokine Signaling stood out because GHR 

(growth hormone receptor) and IRS1 (insulin receptor substrate 1) has been linked with 

glioma progression (Lea et al., 2015; Minchenko et al., 2013). A well-characterized 

pathway frequently altered in tumors is the NOTCH signaling cascade, which was also 

enriched in our analysis. The NOTCH pathway is a conserved intercellular signaling 

route that has been implicated in different developmental processes. Interestingly, 

NOTCH pathway is deregulated in human glioblastoma and plays a key role in 

maintaining the growth, the undifferentiated state of glioma cells and tumorigenesis 

(Kanamori et al., 2007); (Fan et al., 2010; Gilbert et al., 2010; Wang et al., 2010a). The 

integrated analysis of SOX2 enriched canonical pathways revealed the link between this 

transcription factor and multiple cellular processes such as amino-acid metabolism and 

intercellular signaling cascades, including the NOTCH pathway.  

 

Table 4: List of top-13 canonical pathways identified by IPA software , organized by the 

negative logarithm of p-values (Fisher Test), calculated by IPA ([-Log (0.05) =1.3]). 

 

Pathway -log(p-value) Ratio Molecules 

Glycine Betaine Degradation 2,63E+00 2,50E-01 DMGDH,PIPOX 

Hepatic Stellate Cell Activation 2,38E+00 4,42E-02 
LY96,COL2A1,COL22A1

,IGFBP5,COL28A1 

Histamine Biosynthesis  2,03E+00 1,00E+00 HDC 

L-cysteine Degradation II 2,03E+00 1,00E+00 CTH 

Triacylglycerol Degradation 2,02E+00 1,25E-01 PNLIPRP2,CES1 

Retinol Biosynthesis  2,02E+00 1,25E-01 PNLIPRP2,CES1 
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Hematopoiesis from Multipotent Stem Cells  1,73E+00 5,00E-01 KITLG 

Cysteine Biosynthesis/Homocysteine 

Degradation 
1,73E+00 5,00E-01 CTH 

Role of JAK2 in Hormone-like Cytokine 

Signaling 
1,61E+00 7,69E-02 GHR,IRS1 

Serotonin Receptor Signaling 1,58E+00 7,41E-02 SLC18A1,HTR1D 

Phenylethylamine Degradation I 1,56E+00 3,33E-01 AOC3 

NOTCH Signaling 1,35E+00 5,56E-02 HES5,HEY1 

Lysine Degradation V 1,34E+00 2,00E-01 PIPOX 

 

The IPA analysis also showed the most relevant biological functions and diseases 

in our data set. The most significant bio-functions altered following SOX2 down-

modulation are shown in Table 5.  The set of SOX2-associated genes were assigned 

mainly to the following networks: “cancer”, “organismal injury and abnormalities”, 

“cellular movement”, “tissue morphology”, “cellular development” and 

“hematopoiesis”. Interestingly, most of these networks involved very well-known 

functions of SOX2 such as morphology determination (Zhou et al., 2014), development 

(Ferri et al., 2013) and cellular proliferation and migration in glioma (Alonso et al., 

2011). Figure 18 shows the most relevant selection of bio-function categories: disease 

and disorders, molecular and cellular functions and physiological system development 

and function, obtained by using IPA software and organized by p-value.   

 

Table 5: The top ten significant Bio-Functions altered following SOX2 silencing in the 

GSC-11 cell line. The p-value range indicates the p-values of the various pathways and 

processes belonging to that category. The number of targets indicates the total number of genes 

associated with the functional category. 

Category p-value Number of Targets 

Dermatological Diseases and Conditions 1,63 x 10
-08 

- 9,35 x 10
-03

 74 

Cancer 2,93 x 10
-08 

- 9,35 x 10
-03

 93 

Organismal Injury and Abnormalities 2,93 x 10
-08 

- 9,35 x 10
-03

 100 

Cellular Movement 3,98 x 10
-06 - 

9,35 x 10
-03

 41 

Connective Tissue Development and Function 1,71 x 10
-05 

- 9,35 x 10
-03

 23 

Tissue Morphology 1,71 x 10
-05 

- 9,35 x 10
-03

 39 
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Reproductive System Disease 2,52 x 10
-05 

- 9,35 x 10
-03

 16 

Cellular Development 2,72 x 10
-05 

- 9,35 x 10
-03

 51 

Hematological System Development and 

Function 2,72 x 10
-05 

- 9,35 x 10
-03

 31 

Hematopoiesis 2,72 x 10
-05 

- 9,35 x 10
-03

 9 

 

These results established a signature of protein coding-genes regulated by SOX2 in 

GSCs with biological functions relevant to glioblastoma growth and maintenance of its 

malignant phenotype. The tight overlap between the existing literature and our 

enrichment analysis highlights the robustness of our results and predicts that this 

approach will be an excellent discovery platform to identify novel SOX2 targets. 
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Figure. 18. 10-Top Bio Functions categories altered following SOX2 inhibition. The categories listed 

are (A) Physiological System Development and Function, (B) Molecular and cellular Functions and (C) 

Disease and Disorders, identified using IPA software. Bars represent the number of genes in the specified 

category, organized by p-value. 

 

1.2 SOX2–regulated non-coding RNAs in GSCs 

Reprogramming transcription factors, including SOX2, have been shown to 

regulate both coding and non-coding RNAs (Dinger et al., 2008). LncRNAs are 
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emerging as key regulators of biological processes and disease (Dey et al., 2014) 

therefore, seems reasonable to hypothesize that SOX2 will regulate this class of genes 

as well. The strength of our data-sets allowed us to identify potential non-coding 

transcripts differentially expressed (B value > 0) regulated by SOX2 in GSCs. After 

biotype distribution analysis we identified protein coding RNAs (44% for up-regulated 

and 41% for down-regulated), while the rest were classified as different types of non-

coding transcripts. Out of the total number of transcripts differentially expressed we 

identify 80 up-regulated and 181 down-regulated and we classified them as intergenic 

RNAs, antisense, processed transcripts, transcripts derived from pseudogenes and 

unassigned transcripts (Figure 19). The transcripts classified as “others” correspond to 

transcripts derived from miRNAs, rRNAs, sense-overlaping and sense intronic 

transcripts. The lncRNA annotation was performed with the Bioconductor package 

ChIPpeakAnno (Zhu et al., 2010) and using Gencode v19 as reference (Harrow et al., 

2012). The gene type corresponding to the gene that overlaps with the lincRNA locus 

was assigned to each lincRNA. Table 9 shows the top 25 non-coding transcripts 

regulated by SOX2 in GSCs. 
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Figure 19. SOX2 regulated non-coding transcripts. (A) A total of 261 transcripts were found 

differentially expressed (B > 0), including 80 upregulated and 181 downregulated transcripts. (B) Biotype 

distribution of the differentially expressed transcripts following SOX2 down-modulation in GSC-11 cells. 

 

We selected the top four differentially expressed lncRNAs (Appendix 2) that 

presented chromatin marks and high abundance in brain using GRCh37/hg19 assembly 

in UCSC Genome Browser. We validated the expression of these lncRNAs using qRT-

PCR in GSC-11 cells, comparing SOX2-siRNA versus si-scrambled control. Our data 

indicated that the expression of chr19:28,281,401-28,284,848 (TCONS_00027256) was 

significantly down-regulated (p value = 0,018), while chr11:121899032-121899389 

(TCONS_00020142) was significantly up-regulated (p value = 0.042) after SOX2 

inhibition (Figure 20A). These results were consistent with the microarray data (Figure 

20B). 
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Figure 20. Validation of two lncRNAs regulated by SOX2 in GSC-11 cells . (A) The expression of the 

transcripts located in chr11:121899032-121899389 (TCONS_00020142) and chr19:28,281,401-

28,284,848 (TCONS_00027256) were assessed. In both cases GSC-11 cells were transfected with siRNA 

control or siRNA against SOX2 and three days later RNA was extracted  and subject to RT-PCR. Values 

were normalized to GAPDH (mean ± SD of three replicates). (B) Comparison between microarray and 

qRT-PCR results. The height of each column in this graph represents the log -transformed mean fold 

change in the expression of lncRNA between Scramble and siSOX2 transfected cell line. 

 

Altogether, these results identified and confirmed the non-coding transcript profile 

controlled by SOX2 in GSCs. Characterizing the functional relevance of these lncRNAs 

will undoubtedly impact in our understanding of the glioblastoma biology.  

 

2. Differentially expressed miRNAs regulated by SOX2 in GSCs  

To identify the set of miRNAs regulated by SOX2 in GSCs, we down-regulated the 

expression of SOX2 in GSC-11 cell line in four independent experiments, using a 

SOX2 specific siRNA and subjected to a miRNA array analysis. The efficiency of 

SOX2 down-regulation was assessed by real-time PCR and western blot (Figure 15B). 
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After the hierarchical clustering analysis we identified 21 down-regulated and 35 up-

regulated differentially expressed miRNAs (p < 0.01) in GSC-11 cell line (Figure 21). 

Interestingly many of the deregulated miRNAs found in our data set are among the 

several well studied miRNAs in glioblastoma (Yang et al., 2015b) and moreover are 

among a previously reported set of deregulated miRNAs in GSCs (Lavon et al., 2010). 

To validate our results we selected 6 miRNAs from each group based in their P 

value and their role as described in the literature. Their expression was analyzed using 

qRT-PCR in GSC-11, GSC-23 and LN-229 cell lines, comparing SOX2-siRNA versus 

si-scrambled control. The expression levels of miRNAs were normalized to the U6 

RNA level. We confirmed the observed microarray expression changes in all the down-

regulated miRNAs (miR-7, miR-30e5p, miR128, miR-126, miR-301 and miR-425) and 

up-regulated miRNAs (miR-21, miR-124, miR-181b, miR-182, miR-183 and miR-210) 

after SOX2 down-regulation in 3 different cell lines (Figure 21). The robustness of our 

results suggests that this approach is an excellent platform to identify miRNAs 

controlled by SOX2 in GSCs. 
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Figure 21. Analysis of miRNAs regulated by SOX2 in GSCs . (A) GSC-11 cells were transfected with 

si-Scrambled or si-SOX2. Total RNA was extracted 72h later and subjected to a miRNA array analysis 

(TLDAs). We selected 6 up-regulated and down-regulated miRNAs based in their p value and their 

putative role as described in the literature. We validated their expression in GSC-11 cells. Quantification 

of the relative miRNA expressions were performed using specific Taqman expression assays. RNU6B 

was used an internal control. To determine relative miRNA expression we used the comparative threshold 

cycle method. Each bar represents the mean ± SD. (B) GSC-23 and Ln-229 were transfected with si-

Scrambled or si-SOX2. Total RNA was extracted 72h after transfection and subjected to qRT-PCR 

analysis. Quantification of the relative miRNA expression was performed using specific Taqman 

expression assay. RNU6B was used an internal control. To determine relative miRNA expression we used 

the comparative threshold cycle method. (C) qRT-PCR confirmation of SOX2 inhibition in GSC-23 and 

LN-229 cells after 72h of si-SOX2 or si-Sc transfection Each bar represents the mean ± SD of three 

independent experiments . 

 

2.1 miR-301a-3p regulates migration/invasion properties of GSCs 

miR-301a-3p was one of the miRNAs significantly downregulated in our study. 

Based on the previous report of Boyer and colleagues, where they described the 

occupancy of the promoter region of miR-301a by SOX2, among other TFs (Boyer et 

al., 2005), and the fact that miR-301a has been previously described to be up-regulated 

in GSCs (Lavon et al., 2010) we decided to focused on this miRNA to further study its 

potential role in GSCs biology.  

We first examined the expression of miR-301a-3p by qRT-PCR in 30 glioblastoma 

tissue samples, compared with a normal human brain reference RNA sample. As shown 

in Figure 22A, the expression of miR-301a-3p was significantly overexpressed in all 

glioblastoma samples when compared with its expression in normal brain. We also 

showed that the expression of SOX2 and miR-301a-3p showed a significant positive 

correlation (R2= 0.8579; P<0.0001) in the same set of glioblastoma tissues as assessed 

by qRT-PCR (Figure 22B).  
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Figure 22. MiR-301a expression correlates positively with SOX2 expression in glioblastoma tissues. 

(A) Assessment of miR-301a-3p expression in 30 glioblastoma tissues where we previously demonstrated 

SOX2 overexpression. Total RNA was extracted from paraffin-embedded tissues using the RecoverAll 

Total Nucleic Acid Isolation Kit. The expression of miR-301a-3p was profiled using a qRT-PCR and 

values were normalized to U6b compared to RNA brain reference. To determine relative miRNA 

expression we used the comparative threshold cycle method. Each bar represents the mean ± SD. (B) 

Correlation between SOX2 mRNA expression and miR-301a-3p expression in 30 glioblastoma samples. 

Scatter plot and lowess line illustrated the correlation between SOX2 and miR-301 expression levels .  

 

In silico analysis of the miR-301a-3p 5′ promoter from the translation start sites 

identified several potential binding sites for SOX2 (Figure 23A), suggesting that SOX2 

can directly activate miR-301a-3p expression, supported by the study of Boyer and 

colleagues (Boyer et al., 2005). We therefore hypothesized that miR-301a-3p could 

function as a sort of onco-miRNA, inhibiting tumor suppressor target genes. 

To identify the target genes of miR-301a-3p we employed three different 

bioinformatic programs (miRDB, miRTarBase and PicTar) in base on the differentially 

combination of criteria used to predict target genes and the availability of predicted 

miR-301a-3p target genes. We select only the genes identified by all the three 

approaches. As Figure 23B illustrates, a total of 45 predicted target genes was obtained.  

 

 

miR-301a-3p predicted target genes  

ACBD5 ENPP5 MBNL1 RUNX3 

ACSL4 ERBB2IP MEOX2 SMOC1 

ACVR1 ESR1 MID1IP1 SOX4 

ARHGAP1 FBXO28 NIPA1 SPG20 

ARHGAP12 HABP4 NRBF2 STARD13 

ATP6V1B2 HBP1 PAPD4 UBE2D2 

BLCAP IER3IP1 PPP6R3 USP32 

BTBD3 IRF1 PRKAA1 VPS37A 

CFL2 LONRF1 PTPRG WHSC1L1 

CUL3 MAP3K9 RAB34 ZBTB4 

DPYSL2 MB21D2 RPS6KA5 ZFYVE9 

 
  

ZNF800 

A 

B 
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Figure 23. Analysis of the putative promoter region of miR-301a-3p. (A) Analysis in silico of 

the miR-301a-3p putative promoter region using a distance of 2kB from the transcription start site 

(TSS).A total of 30 binding sites for SOX2 were found using PROMO software. (B) Identification of 

predicted target genes of miR-301a-3p using 3 different bioinformatic programs (miRDB, miRTarBase 

and PicTar). A total of 45 common predicted genes were found. (C) Gene Ontology (GO) Biological 

Process and Molecular Function categories were determined for the 45 predicted target genes, using 

DAVID web tool. Bars represent the number of genes in the specified category, organized by p-value. 

 

Several of these target genes have been reported to be tumor suppressor genes in 

different tumor types (Table 6), reinforcing our hypothesis that miR-301a-3p can act as 

an onco-miRNA in glioblastoma.  

 

Table 6. MiR-301a-3p predicted target genes previously reported to function as tumor 

suppressor genes. 

Symbol Name 

Tumor type in which the 

gene act as tumor 

suppressor 

Reference 

BLCAP bladder cancer associated protein cervical carcinoma (Zuo et al., 2006)  

CUL3 cullin 3 lung cancer (Dorr et al., 2015)  

ESR1 estrogen receptor 1 hepatocellular carcinoma (Escamilla-Powers et al., 
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2010; Hishida et al., 2013)  

HBP1 HMG-box transcription factor 1 breast cancer 
(Escamilla-Powers et al., 

2010) 

IRF1 interferon regulatory factor 1 
breast cancer, gastric 

adenocarcinoma 

(Bouker et al., 2005; Gao et 

al., 2011; Rettino and 

Clarke, 2013)   

MEOX2 mesenchyme homeobox 2 
mammary carcinoma, 

hepatocarcinoma  
(Valcourt et al., 2007)  

PTPRG 
protein tyrosine phosphatase, receptor 

type G 
nasopharyngeal carcinoma (Cheung et al., 2015)   

RUNX3 runt-related transcription factor 3 human neoplasia (Chen et al., 2016b)   

SOX4 SRY (sex determining region Y)-box 4 glioblastoma (Zhang et al., 2014b)   

STARD13 
StAR-related lipid transfer (START) 

domain containing 13 
breast cancer (Hanna et al., 2014)  

WHSC1L1 
Wolf-Hirschhorn syndrome candidate 1-

like 1 
breast cancer (Zhou et al., 2010c)   

ZBTB4 zinc finger and BTB domain containing 4 breast cancer (Kim et al., 2012)   

  

To understand the biological process where these predicted target genes were 

involved, we performed bioinformatics analysis related to GO Classification. Using the 

DAVID web tool, we obtained enrichment analysis of GO categories including 

biological process, molecular function and cellular component (Figure 23C). We 

observed the highest enrichment in the categories related to “regulation of 

transcription”, “transcription”, “ribonucleotide binding”, “purine ribonucleotide 

binding” and “purine nucleotide binding”. 

To elucidate the role of miR-301a-3p in the development of glioblastoma and more 

precisely in GSCs maintenance, we used GSC-11 cells to conduct further functional 

studies. We transfected cells with an anti-miR-301a-3p or an anti-miR-scrambled and 

evaluated the effect of loss of function on the proliferation, migration and invasion of 

the GSCs. The efficiency of miR301a-3p down-regulation was confirmed by qRT-PCR 

(Figure 24A). We found that miR-301a-3p inhibition did not affect the proliferation rate 

of GSC-23 cells when compared with the proliferation of scrambled control, measured 

by MTS assay (Figure 24B). Of importance, the transwell assay revealed a significant 

decreased in the GSC-11 cell capacity to invade after miR-301a-3p inhibition (Figure 

24C), suggesting that miR-301a-3p has a functional relevance in the invasive properties 

of GSCs. 
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Figure 24. Inhibition of miR-301a-30 inhibits invasionnes of GSC-23 cells . (A) Validation of miR-

301a-3p as a downstream target of SOX2. Total RNA and proteins were extracted after 72h of si-Sc or si-

SOX2 transfection in GSC-11 cells and subjected to qRT-PCR and Western blot analysis. Quantification 

of the relative miR-301a-3p expression was performed using specific Taqman expression assay. RNU6B 

was used an internal control. To determine relative miRNA expression we used the comparative threshold 

cycle method. Each bar represents the mean ± SD in three independent experiments . SOX2 expression at 

protein level was measured using western blot. (B) Quantification of miR-301a-3p expression levels by 

qRT-PCR in GSC-11 cells transfected the anti-miR-301a or anti-miR-Sc. Expression was performed 

using Taqman gene expression assay. (C) Proliferation assay of GSC-11 cells transfected with anti-miR-

301a or anti-miR-Sc, measured by MTS assay at indicated time points. (D). Assessment of invasion in 

GSC-11 cells after 12h of transfection with anti-miR301 and anti-miR-Sc, following the conditions 

described in materials and methods. Representative images of three independent experiments.  

 

To expand our knowledge regarding the role of miR-301a-3p in the invasion 

capacities of GSCs, we examined a set of molecular markers involved in tumoral 

migration and invasion using miR-301a-3p silenced GSC-23 cells. We analyzed the 

expression of EphA, RAC, RHO, ROCK1, ROCK2, VEGF, TGFB, MMP9, MMP2 and 

NOTCH1-3 genes using qRT-PCR and normalized the expression to GAPDH levels. 

After miR-301a-3p inhibition, the expression levels of all the genes assayed was 

significantly down-modulated (Figure 25), suggesting that miR-301a-3p regulates the 

expression of numerous molecular makers required for the mobility, migration and 

invasion of GSCs. 
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Figure 25. Analysis of invasion markers in miR301-silenced GSC-11 cells . Total RNA was extracted 

after 72h of anti-miR-Sc or anti-miR-301a transfections in GSC-11 cells. Quantification of the expression 

of the indicated genes was performed using qRT-PCR. Values are normalized to GAPDH and represents 

the mean ± SD of three independent experiments. 

 

Overall these results showed the miRNA signature controlled by SOX2 in GSCs, 

where miR301a-3p is one of the validated SOX2 miRNA targets and that could act as 

an onco-miR regulating migration/invasion property in GSCs.  

 

3. Elucidation of SOX2-miRNA targets combining different experimental 

approaches 

To provide robustness to the SOX2-regulated-miRNAs profile in GSCs, we 

confronted our miRNA array results to another set of miRNAs data generated by Dr. 

Laterra`s group (John´s Hopkins, Baltimore, USA). In their case, the experimental 

setting was slightly different and they overexpressed SOX2 in the GSC cell line 

GBM1A. The experiment was performed in triplicates using a specific SOX2 lentivirus. 

RNA was extracted and subjected to a miScript miRNA PCR Array Human Brain 

Cancer (MIHS-108Z). The efficiency of SOX2 over-expression was assessed by RT-

PCR and Western Blot (Lopez-Bertoni et al., 2015). Using this approach, they identified 

12 down-modulated and 52 up-regulated differentially expressed miRNAs (p < 0.01) in 

GBM1A cells. Interrogation of our two differentially expressed miRNA candidate lists 

yielded 7 common miRNAs that were regulated by SOX2 in the same direction: miR-7, 

miR-16, miR-18a, miR-20a, miR-128a, miR-128b and miR-425-5p (Figure 26). 
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Figure 26. Schematic representation of the common miRNAs candidates obtained, by two different 

approaches. In our lab, SOX2 expression was down-regulated using a SOX2 specific siRNA in NSC-11 

cells. In the other lab, the expression of SOX2 was over-expressed in GBM1A cells, using a lentiviral 

vector coding for mCitrine-SOX2 and then selected by flow cytometry, in the group of Dr. Laterra. In 

both cases RNA was extracted and subjected to 2 different miRNAs arrays, obtaining a list of miRNA 

candidates regulated by SOX2. 

 

To validate these candidates we analyzed their expression by qRT–PCR using RNA 

isolated from different cell lines where SOX2 was over-expressed or down-modulated 

(Figure 27). As a proof of concept, we overexpressed SOX2 in HEK293FT. This cell 

line is easy to grow and maintain in culture, and is amenable for transfection with high 

efficiency. We also used the glioblastoma cell line A172 to up-regulate SOX2 

expression. The expression of SOX2 was confirmed by Western Blot in both cell lines 

(Figure 27A). As we expected, we observed an increased in the expression of all 

miRNA candidates following SOX2 over-expression in both cell lines (Figure 27A). 

Conversely, to down-modulate SOX2 expression, we forced the differentiation in 

GBM1A and GBM1B in a physiological context. For that purpose we plated 

neurosphere cells in FGF-neurosphere medium without EGF for 2 days, and then we 

changed the medium adding 1% FBS without EGF/FGF for 5 days. The expression of 

differentiation markers (such as GFAP, astrocytic and O4, oligo) increased. On the 

other hand, the expression of SOX2 was significantly reduced (Figure 27B). In 

summary, we observed that in response to forced differentiation induces by growth 

Approach: miScript miRNA PCR 

Array Human Brain Cancer 

(MIHS-108Z). 

Approach: TaqMan Low 

Density microRNA Array 

(TLDA) 
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factor withdrawal and serum, miRNA candidates expression was significantly down-

modulated.  

Taken together, we confirmed that these 7 miRNAs are regulated by SOX2 in 

GSCs cells, reinforcing  the robustness of the approach used. 

 

Figure 27. Analysis of the expression of common miRNAs candidates in different cell lines. (A) 

qRT-PCR analysis showing miRNA expression in A172 and HEK293FT cells after SOX2 over-

expression using a lentiviral vector coding for mCitrine-SOX2 or control vector (mock). RNA and total 

protein was extracted 72 hours after transduction and qRT-PCR and western blot analysis was performed. 

Quantification of the relative expression of miRNAs was performed using specific Taqman expression 

assay. RNU6B was used an internal control. To determine relative miRNA expressions we used the 

comparative threshold cycle method. Each bar represents the mean ± SD. SOX2 expression at protein 

level was confirmed using western blot. (B) GBM1A and GBM1B cells were subjected to forced 

differentiation protocol. Cells  were plated in FGF-neurosphere medium without EGF for 2 days, and then 

medium was changed by adding 1% FBS without EGF/FGF for 5 days. RNA was extracted and qRT-

PCR analysis was performed. Quantification of the relative expression of miRNAs was performed using 

specific Taqman expression assay and the quantification of the expression of the indicated genes was 

performed using Sybr Green gene expression assays specific for each gene. GAPDH and RNU6B were 

used as internal control for qRT-PCR analysis. To determine relative gene expression we used the 

comparative threshold cycle method. Each bar represents the mean ± SD of three independent 

experiments. 
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Based on these data (Figure 27) and in our previous results obtained in GSC-11, 

GSC-23 and LNN229 cells (Figure 21), miR-425-5p emerged as one of the top miRNA 

regulated by SOX2 and we decided to further investigate the relation between SOX2 

and this miRNA. 

 

4. SOX2 transcriptionally activates miR-425-5p  

We set to elucidate whether SOX2 could directly bind and thus transcriptionally 

control the expression of miR-425-5p. Therefore first, we performed in silico analysis 

of the miR-425-5p promoter region at 5` from the translation start site to investigate 

whether the promoter region of miR-425-5p had binding sites for SOX2, using the 

PROMO web tool (Messeguer et al., 2002). With this approach, we identified multiple 

potential binding sites for SOX2 (Figure 30A). Next, we over-expressed SOX2 in 

GBM1B cells using a lentiviral vector coding for mCitrine-SOX2 and we carried out a 

chromatin immunoprecipitation assay followed by qRT-PCR (qChIP). We designed 

primers for the region marked with blue arrows and that we designated as Region 

1(Rg1) (Figure 30A), where there is a greater concentration of SOX2 binding motifs 

sites. We observed that SOX2 was bound to the analyzed predicted sites in the putative 

miR-425-5p promoter (Figure 30B). In fact the Rg1 assayed was significantly enriched 

(25% ± 4) when compared with the control. We cannot rule out that SOX2 could bind to 

other sites in the miRNA. 
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Figure 30. SOX2 binds miR-425-5p promoter and induces miR-425-5p expression. (A) The putative 

promoter region of miR-425-5p has multiple SOX2 binding sites (red rectangles) predicted by PROMO 

search tool. Blue arrows indicate the region (Rg 1) for which primer were designed for PCR analyses.  (B) 

DNA purified from chromatin immunoprecipitation was analyzed by qRT-PCR using primer pairs 

designed to amplify fragments containing SOX2 binding sites and primers targeting promoter region 

lacking SOX2 binding sites , using SOX2 over-expressed GBM1B cells. 

 

5. Functional role of miR-425-5p in glioblastoma 

Since SOX2 can directly bind and activate miR-425-5p expression, we 

hypothesized that in turn this miRNA acts as an onco-miRNA, inhibiting the expression 

of tumor suppressor target genes (Figure 31). So with this hypothesis in mind, we 

focused on inhibit the expression of this potentially onco-miR, to subsequently enhance 

the expression of tumor suppressor target genes that could negatively regulate stemness 

and oncogenic properties of GSCs cells. 

 

Figure 31. Inhibition of miR-425-5p expression can enhance the expression of tumor suppressor 

target genes interfering ultimately with the GSC phenotype. 
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To evaluate the biological effects of miR-425-5p in GSCs, we used a lentivirus 

expressing either a scrambled RNA sequence marked with a reporter GFP gene (GFP-

sponge) or an antisense RNA oligo designed to target miR-425-5p (miR-425-5p 

sponge), and we transduced HEK293FT cells and GSC-11 and GSC-23 cells. MiR-425-

5p sponge efficiently decreased pre-miR-425-5p levels in all cell lines, as measured by 

qRT–PCR (Figure 32), demonstrating that the generation of sponges is a good approach 

to inhibit miRNA expression. 

 

Figure 32. Efficiency of miR-425-5p inhibition using a specific sponge. HEK293FT, GSC-11and 

GSC-23 cells were transduced with GFP-sponge or miR-425-5p sponge. Total RNA was extracted 72 

hours after transduction. Analysis by qRT-PCR was performed. Quantification of the relative expression 

of miR-425-5p was performed using specific Taqman expression assay. RNU6B was used an internal 

control. To determine miR-425-5p relative expression we used the comparative threshold cycle method. 

Each bar represents the mean ± SD of three independent experiments . 

  

5.1. miR-425-5p affects neurosphere formation 

Next, we wanted to evaluate the functional role of miR-425-5p in the GSC 

phenotype. Interestingly, we observed that inhibition of endogenous miR-425-5p 

decreased neurosphere formation as evidenced by a significant reduction in the number 

and size of neurospheres (Figure 33A-B). We could observed that downregulation of 

miR-425-5p overtime resulted in the disruption of neurospheres, finally leading to cell 

death. In addition, inhibition of miR-425-5p affected negatively cell proliferation 

(Figure 33C). Cells treated with the scramble-sponge showed a three fold increase 

proliferation than those treated with the miR-425-5p sponge.  
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Figure 33. Inhibition of miR-425-5p affects neurosphere formation, cell proliferation and invasion 

properties of GSCs. (A) Morphology of GBM1A, GBM1B, GSC-11 and GSC-23 cells 7 days after 

transduction with GFP-sponge or miR-425-5p-sponge. (B) Equal numbers of GBM1A and GBM1B cells 
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transduced with GFP-sponge or miR-425-sponge were cultured in neuropshere medium for 1 week and 

spheres >100 μm in diameter were quantified. (C) Equal numbers of GSC-23 and GSC-11 cells 

transduced with GFP-sponge or miR-425-sponge were dissociated into single-cell suspensions and 

cultured in neuropshere medium. Cells were counted at the ind icated intervals using Neubauer chamber. 

(D) Equal numbers of GSC-23 cells transduced with GFP-sponge or miR-425-sponge were dissociated 

into single-cell suspensions and seeded in the top of Matrigel coat chamber using Transwell invasion 

assay. After 12h invasion index was assessed. 

 

We also evaluated the impact of inhibiting miR-425-5p on the capacity of GSC-23 

cell line to invade. Inhibition of miR-425-5p completely abolished the invasion capacity 

of GSC-23 cells (Figure 33D). These data support our hypothesis that miR-425-5p acts 

as an oncogene in GSCs. 

5.2. miR-425-5p alters cell cycle progression 

To investigate the mechanism underlying the miR-425-5p mediated cell 

proliferation suppression, we analyzed cell cycle progression by flow cytometry. 

Inhibition of endogenous miR-425-5p promoted a G1/S arrest in GSC-23 cells 

transduced with GFP sponge or miR-425-5p sponge (Figure 34A).The percentage of G0 

phase cells in GSC-23-miR-425-sponge was increased (13,9%) compared with those of 

control GFP-sponge cells (3%), and no significant change was observed in S phase or 

G2/M phase (Figure 34B). These results indicated that miR-425-5p down-regulation 

inhibited GSC-23 proliferation by inducing cell arrest in the G0/G1 phase. 
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Figure 34. Inhibition of miR-425-5p caused a G0/G1 arrest in cell cycle of GSCs . (A) Equal numbers 

of GSC-23 cells transduced with GFP sponge or miR-425 sponge were cultured in neuropshere medium 

for 1 week and were analyzed using flow cytometer. (C) GSC-23 neurospheres were transduced with 

lentivirus expressing either GFP sponge or miR-425 sponge and total protein was extracted after 7 days. 

Western Blot showed decreased expression of cell cycle proteins CDK-4, CDK-6, phospho-CCND1 and 

E2F1. Normalization was performed with GRB2. 

 

We investigated the status of the cell cycle proteins CDK4/CDK6, cyclin-D1 

(CCND1) and E2F1 (Figure 34C). Inhibition of miR-425-5p decreased the expression 

of proteins involved in G1 phase transition, explaining the arrest during cell cycle in 

GSC-23 cells. 

 

5.3. Inhibition of miR-425-5p did not induce autophagic cell death 

Besides inducing cell cycle arrest, the inhibition of miR-425-5p resulted in an 

increased in cell death as shown by the increase of cells in G0 phase. Therefore, next we 

set to characterize the type of cell death induced.  

We first examined the expression of the autophagy-related biochemical marker p62 

and the conversion of LC3I to LC3II in GSC-23 cells transduced with miR-425 sponge 

compared with GFP-sponge and normal neurospheres (Figure 35). We observed that 

there is no conversion from LC3I to LC3II. Moreover, p62 protein levels remained 

unchanged in miR-425-5p knock-down GSC-23 cells.  These data clearly indicated that 

the cell death mechanism induced after miR-425-5p inhibition in GSCs is not due to an 

autophagic process. 

 

Figure 35. Inhibition of miR-425-5p does not induced autophagy cell death in GSCs . Equal numbers 

of GSC-23 cells transduced with GFP-sponge or miR-425-sponge and normal GSC neurospheres were 

cultured in appropriate neuropshere medium. Cells were collected 7 days later and total protein was 

extracted. Western blot analysis was performed using antibodies against p62, LC3 and GRB2. GRB2 was 

used as loading control protein. Shown is a representative western blot of three independent experiments. 
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5.4. Inhibition of miR-425-5p promotes DNA damage and activation of apoptosis 

Since we ruled out the induction of autophagy, next we interrogated whether the 

inhibition of miR-425-5p can induce apoptosis preceded by DNA damage. Inability to 

repair double strand breaks (DSBs) at DNA level represent a lethal type of DNA 

damage. To determine if inhibition of miR-425-5p in GSC-23 cells promote lethal DNA 

damage, we assessed the expression of P-H2A.X, which is a DSB marker (Kuo and 

Yang, 2008). As Figure 36A shows, we observed an increased in the levels of P-H2A.X 

after miR-425-5p inhibition, compared with GFP-sponge cells and normal neurosphere 

GSC-23 cells. This result illustrates that inhibition of miR-425-5p caused DNA damage 

in GSC-23 cells, while the transduction with the GFP-sponge does not cause any DNA 

damage to cells, indicating that this effect is due to the inhibition of miR-425-5p 

expression per se, and not to the plasmid used. 

We also assessed APC-AnnexinV/SYTOX Blue staining by flow cytometer (Figure 

36D) and caspase 3/7 activity in GSC-23 cells transduced with miR-425 sponge 

compared with GFP-sponge and normal neurospheres (Figure 36C). As shown in Figure 

36D, inhibition of miR-425-5p in GSC-23 cells produced a stronger pro-apoptotic effect 

as compared with that of the control (44,5% vs. 22,5 %). MiR-425-5p sponge cells 

displayed a significant 2 fold increase in Caspase-3/7 activity in GSC-23 cells (Figure 

36B). Consistent with these results, the full form of Caspase 3 was decreased, assessed 

by western blot (Figure 36C). The PI3K-AKT pathway is a signal transduction pathway 

that promotes survival and growth in response to different stimuli (Dudek et al., 1997). 

Therefore, we also assessed the expression level of AKT protein and its phosphorylated 

active form (Figure 36C). We observed a significant decrease in p-AKT expression after 

miR-425-5p inhibition in GSC-23 cells. Overall these results indicated that inhibition of 

miR-425-5p activates apoptosis process and suppress survival pathways in GSCs. 

To further confirm a possible apoptotic cell death mechanism we assessed the 

morphological changes produced in GSC-23 cells transduced with miR-425-5p sponge 

compared with GFP-sponge and normal neurospheres using transmission electron 

microscopy (Figure 36E). Apoptosis is characterized by chromatin condensation, 

internucleosomal degradation of the DNA, cell shrinkage and disassembly into 

membrane-enclosed vesicles as a consequence of caspase activation (Cotter et al., 

1996). Images from TEM showed a marked condensation of the nuclear chromatin and 

disruptionof the plasmatic membrane after miR-425-5p inhibition in GSC-23 cells. 
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Normal neurospheres and cells transduced with GFP sponge did not display these 

characteristics, illustrating the morphology of normal cells.  

Taken together these results support an apoptotic mechanism of action for miR-

425-5p in GSCs. 

 

Figure 36. Inhibition of miR-425-5p promotes apoptosis in GSCs. (A) Western blotting analysis of 

full phosphorylated H2A.X  protein. Equal numbers of GSC-23 cells transduced with GFP sponge or 

miR-425 sponge and normal GSC neurospheres were cultured in  neuropshere medium. Cells were 

collected 7 days later and total protein was extracted. Tubulin was used as control protein. Shown is a 

representative western blot of three independent experiments. (B) Assessment of Caspase 3/7 activity. 

Equal numbers of GSC-23 cells transduced with GFP sponge or miR-425 sponge and normal 

neurospheres were cultured in neuropshere medium for 1 week ans subjected to analysis. (C) Western 
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blotting analysis of full caspase 3, phosphorylated AKT, and AKT was assessed. Equal numbers of GSC-

23 cells transduced with GFP sponge or miR-425 sponge and normal GSC neurospheres were collected 7 

days later and total protein was extracted.. Tubulin was used as  control protein. Shown is a represen tative 

western blot of three independent experiments. (D) APC-AnnexinV and SYTOX Blue double staining 

analysis of cell apoptosis of GSC-23 cells. Equal numbers of GSC-23 cells transduced with GFP sponge 

or miR-425 sponge and normal GSC neurospheres were cultured in appropriate neuropshere medium and 

collected . 7 days later for analysis.  (E) Representative images of TEM using GSC-23 cells transduced 

with GFP sponge or miR-425-sponge and control neurospheres. Cells  were collected after 7 days. 

(Magnification 1000x). 

 

5.5. miR-425-5p exerts a significant anti-tumoral effect in vivo 

To determine the effect on tumorigenicity of miR-425-5p, we conducted in vivo 

experiment. GSC-11 cells were transduced with miR-425 sponge or GFP sponge 

lentivirus and we also used the parental GSC-11 cell line. After 2 days of transduction 

500 000 viable cells were injected intracranially in nude mice (8 mouse/group) as 

previously described (Lal et al., 2000). Mice were distributed in 3 different groups; one 

group of mice injected with normal NSC-11 cells, other group of mice injected with 

cells transfected with GFP sponge and the last group of mice injected with miR-425 

sponge transfected NSC-11 cells. The infusion pump used allows cell injection in up to 

6 mice. We allocated mice from the 3 different groups in each injection batch, to ensure 

that cells injected were in the same conditions during the implantation process. 

Survival curves indicated that inhibition of miR-425-5p expression exerted a 

significant increase in the overall median survival time compared with GFP sponge 

group and the control groups (Figure 37A). However, mice injected with GFP sponge 

transduced cells, have an overall median survival time greater that normal group, 

suggesting that GFP has a toxic effect to cells per se. The median survival of mice 

injected with GFP-sponge cells were 51 days, 65 days for mice injected with miR-425 

sponge cells, and 35 days for mice injected with normal GSC-11 cells (Figure 37A). 

Pathological analysis of the brain of treated mice revealed a very aggressive tumor that 

infiltrated the brain parenchyma and invaded the contralateral hemisphere in the three 

groups, confirming cells engraftment.  

All together, these results show that the inhibition of miR-425-5p resulted in a 

significant survival benefit in an aggressive glioblastoma model in vivo, highlighting the 

possibility of study  miR-425-5p as an alternative therapeutic strategy for glioblastoma. 
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Figure 37. Inhibition of miR-425-5p results in a significant antitumor effect in vivo (A) Kaplan–

Meier survival curve analysis for overall survival in nude mice after intracranial injection of GSC-11 

tumor cells that were transduced with miR-425-5p-sponge versus GFP-sponge controls. MiR-425-5p 

inhibition results in a marked increase in median survival time relative to that in the control group (51 

days and 65 days, respectively; P = 0.0002). P values were determined using a log-rank test; the values 

represent a comparison of survival rates associated with the different treated cells injected to the mice. (B) 

Hematoxylin and Eosin staining of 2 representative brains of the different groups of animals.   

 

5.6. miR-425 expression is significantly increased in glioblastoma  

We then asked if the expression of miR-425-5p could be over-expressed in 

glioblastoma patients. To this end first, we evaluated the expression levels of miR-425-

5p in 15 samples. Interestingly, miR-425-5p expression was increased in all the samples 

assessed when compared to normal brain reference RNA (Figure 38A). SOX2 
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expression was also increased in the same samples (Figure 38B). A simple regression 

analyses showed that SOX2 significantly correlated with miR-425-5p expression (R2 = 

0.7, P<0.01) in these glioblastoma samples (Figure 38C).  

 

Figure 38. Assessment of miR-425-5p expression in clinical samples. (A) Evaluation of the expression 

of miR-425-5p in 15 glioblastoma samples. Total RNA was extracted and qRT-PCR analysis was 

performed compared to normal brain reference RNA commercially available. Quantification of the 

relative expression of miR-425-5p was performed using specific Taqman expression assay. RNU6B was 

used an internal control. To determine miR-425-5p relative expression we used the comparative threshold 

cycle method. Each bar represents the mean ± SD. (B) Assessment of SOX2 expression levels in 15 

glioblastoma samples.Total RNA was extracted and qRT-PCR analysis was performed using specific 

Sybr Green gene expression assay. GAPDH was used an internal control. To determin e SOX2 relative 

gene expression we used the comparative threshold cycle method. Each bar represents the mean ± SD. 

(C) Correlation between SOX2 mRNA expression and miR-425-5p expression in 15 glioblastoma 

samples. Scatter plot and lowess line ilustrate the correlation between SOX2 and miR-301 expression 

levels . (D) Pearson correlation between SOX2 mRNA expression and miR-425-5p expression in 166 

glioblastoma samples publically available at TCGA portal, with a p value of 0.0003. 

 

To further validate these results, we analyzed data available at TCGA. We used a 

set of 166 glioblastoma samples, from which there are data from RNA-seq and a 
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miRNA-array approaches. We again interrogated these data to elucidate whether in this 

bigger set there is also a correlation between the expression of SOX2 and miR-425-5p. 

Again, we observed a significant positive correlation between this two genes (R= 0.4; 

p= 0.0003), giving robustness to our previous results. These results highlight the fact 

that miR-425-5p represents a direct target of SOX2 and that its expression is regulated 

by this transcription factor.  

 

5.7. Target genes of miR-425-5p 

Finally we decided to identify the target genes of miR-425-5p. For that purpose we 

use three different bioinformatic programs (miRDB, miRTarBase and PicTar) based on 

on the differentially combination of criteria used to predict target genes and the 

availability of predicted miR-425-5p target genes. Weselected only the genes identified 

by all the three approaches. This analysis yield a list of 5 candidate genes: BEX4, 

FOXJ3, NRAS, Rab31 and SLC16A1 (Figure 39). 

 

Figure 39. Predicted target genes for hsa-miR-425-5p. Search of predicted target genes using3 

different bioinformatic programs: miRDB, miRTarBase and TargetScan. The 5 candidates predicted by 

the 3 different approaches are listed in an underline box. 
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We next assessed the expression of the 5 predicted target genes in different cell 

lines to validate the bioinformatic prediction. We over-expressed SOX2 in HEK293FT 

and in the glioblastoma cell line A172. Levels of SOX2 expression in these cell lines 

was confirmed by Western Blot. As we expected, we observed a marked decreased in 

the predicted miR-425-5p target genes in both cell lines after SOX2 over-expression 

(Figure 40A). Conversely, we used the human glioblastoma xenograft line Mayo39 to 

down-regulate SOX2 expression, through forced differentiation, as previously 

described. Differentiation markers (GFAP and O4) were over-expressed and SOX2 

expression was inhibited after differentiation process, confirmed by qRT-PCR (Figure 

40B). We confirmed that the expression of the predicted miR-425-5p target genes was 

increased in response to the inhibition of SOX2 in a physiological context. Based on our 

results, FOXJ3 and NRAS were the most consistently regulated target genes of miR-

425-5p. Further experiments are required to establish the functional relevance of these 

targets on miR-425-5p functions in GSCs. 

Figure 40. Validation of predicted target genes of miR-425-5p following Sox2 up-regulation. (A) 

A172 and HEK293FT cells were transduced using a lentiviral vector coding for mCitrine -SOX2 or 



Results 

 

101 

 

control vector (mock). RNA and total protein were extracted 72 hours after transduction. Quantification 

of the expression of the indicated genes was performed using Sybr Green gene expression assays specific 

for each gene. GAPDH was used an internal control for qRT-PCR analysis. To determine relative gene 

expression the comparative threshold cycle method was used. Each bar represents the mean ± SD. SOX2 

over-expression at protein level was confirmed using western blot. (B) Mayo39 cells were subjected to 

forced differentiation protocol. Cells were plated in FGF-neurosphere medium without EGF for 2 days, 

1% FBS was added without EGF/FGF for 5 days. RNA was extracted after forced differentiation process 

was completed and qRT-PCR analysis was performed. Quantification of the gene expression levels was 

performed using Sybr Green gene expression assays specific for each gene. GAPDH was used an internal 

control for qRT-PCR analysis. To determine relative gene expression we used the comparative threshold 

cycle method. Each bar represents the mean ± SD of three independent experiments . 

 

We also evaluate the expression of this predicted target genes after miR-425-5p 

inhibition in HEK293FT cells and in GSC-11 and GSC-23 neurospheres. We 

transduced these cell lines with GFP-sponge or miR-425-5p sponge. As expected, we 

observed that the expression of the predicted miR-425-5p target genes was significantly 

increased in response to inhibition of miR-425-5p (Figure 41). Based on our results, 

FOXJ3 and NRAS were the most consistently regulated target genes of miR-425-5p. 

However, further experiments are required to establish the functional relevance of these 

targets on miR-425-5p functions in GSCs. 

Figure 41. Analysis of the expression of predicted miR-425-5p target genes following miR-425-5p 

inhibition. HEK293FT, GSC-11 and GSC-23 neurospheres were transduced with GFP sponge or miR-

425-5p sponge. RNA was extracted 72 hours after transduction and qRT-PCR analysis was performed. 

Quantification of the expression of the indicated genes was performed using Sybr Green gene expression 

assays specific for each gene. GAPDH was used an internal control. To determine relative gene 

expression levels the comparative threshold cycle method was used. Each bar represents the mean ± SD 

of three independent experiments . 

 

 

Taken together, these results demonstrate that miR-425-5p is a direct target of 

SOX2 in GSCs and acts as an oncogene controlling glioblastoma pathogenesis. 
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Glioblastoma is the most aggressive cerebral tumor in humans and is inherently 

associated with a dismal prognosis. At the cellular level, glioblastoma is made up of a 

heterogeneous population of tumor cells, where GSCs play essential functions. The 

GSC compartment is a constitutively  dynamic cell population, characterized for its 

unlimited capacity of self-renewal and with differentiation capacity, and multipotentcy , 

leading the tumor-propagation and contributing to therapeutic resistance and tumor 

recurrence.  

SOX2 is commonly overexpressed in GSCs, suggesting that is functionally 

involved in the generation and maintenance of the glioblastoma stem-like phenotype. 

Therefore, elucidating the specific transcriptional networks controlled by SOX2, 

could find clues regarding stemness maintenance and proliferation of GSCs with the 

potential goal to uncover potential therapeutic targets (Chew et al., 2005). In this work 

we provided a comprehensive view of the genome wide SOX2 regulated transcripts in 

GSCs, illustrating a complex scenario where SOX2 is the central player that 

orchestrates  key molecular pathways in glioblastoma.  

 

1. Coding transcriptome and pathways regulated by SOX2 are involved in stem-

like phenotype.  

We applied state-of-the art microarray technology to identify the global SOX2 

coding and non-coding RNA transcriptome in GSC cells. It is interesting to note that 

among the down-regulated genes following SOX2 knockdown, F11R has been shown to 

be overexpressed in glioblastoma cells (Alvarado et al., 2016; Lathia et al., 2014). F11R 

is necessary and sufficient for GSC maintenance and self-renewal and of clinical 

significance is associated with increased malignancy and poor patient prognosis 

(Alvarado et al., 2016; Lathia et al., 2014). CYP26A1 is another gene controlled by 

SOX2 found to be down-regulated in our microarray data. This gene has been reported 

to be necessary for proper differentiation of embryonic stem cells into neurons (Langton 

and Gudas, 2008). These previous reports reinforced the hypothesis that SOX2 controls 

genes associated with stemness properties in GSCs.  

Another candidate IGFBP5, over-expressed in our array data, significantly 

correlated with glioma histologic grade, suggesting a role in glioma progression (Wang 

et al., 2006).  On the other hand, we found several interesting over-expressed candidates 

controlled by SOX2; for example, PPP1R1B is a well-known striatal projection neuron 

signature marker (Arber et al., 2015). The fact that its expression increases following 
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SOX2 inhibition is in line with its role in neuronal differentiation. Overall these results 

highlight the link between SOX2 and GSCs biology. 

The gene-set enrichment analysis shows that SOX2 is involved in the regulation of 

“cell adhesion”, “biological adhesion”, “cell-cell signaling”, and “calcium ion binding” 

pathways, under covering key putative functions regulated by SOX2  (Dietrich et al., 

2010; Inoue et al., 2010; Liebelt et al., 2016; Reddy et al., 2011).  

The canonical pathways regulated by SOX2 related to amino-acid metabolism were 

among the most dysregulated, illustrating that SOX2 expression is critical for 

maintaining metabolic homeostasis in the GSC population, playing an important role in 

different tumor microenvironment conditions, such as hypoxic stress conditions 

(Kucharzewska et al., 2015). Other enriched pathway altered in our analysis was the 

NOTCH pathway, where HES5 and HEY1 had the most significantly down-modulated 

expression. HES5 is a marker of neural multipotent progenitors with stem cell 

properties (Basak and Taylor, 2007) where it sustains the proliferative state of 

progenitors inhibiting their differentiation into neurons (Ross et al., 2003). On the other 

hand, HEY1 has been linked to a subset of molecules directly associated with hypoxia 

in glioblastoma tumors (Irshad et al., 2015); and might be used as a marker to 

distinguish glioblastoma patients with a relative good prognosis (negative HEY1 

expression) (Gaetani et al., 2010). Furthermore, HEY1 is up-regulated in glioma 

samples with a significant correlation with tumor grade; moreover, functionally its 

down-regulation results in a lower proliferation rate (Hulleman et al., 2009), suggesting 

a role in the progression of glioblastoma.  

Thus, the canonical pathways more significantly altered after SOX2 inhibition are 

those related with intracellular signaling cascades and amino-acid metabolism pathways 

associated with tumor propagation. 

Consistent with the current knowledge regarding SOX2 biological functions, our 

data-set is enriched with genes involved in morphology determination, development and 

cellular proliferation and migration.  

Taken together, our microarray results showed a strong agreement with published 

reports regarding SOX2 role, underscoring the validity of our approach and the 

robustness for de novo discovery of SOX2 targets.  
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2. LncRNA landscape regulated by SOX2 

One of the most exciting aspects of this study involved the identification of 

lncRNAs reulated by SOX2. In this work we showed and classified the lncRNA 

landscape regulated by SOX2 in GSCs. To our knowledge, this is the first study that 

evaluates the differentially expression of lncRNAs in GSCs controlled by SOX2. Even 

though one previous study determined the differentially expressed lncRNAs between 

glioblastoma and normal brain tissues, showing 654 lncRNAs upregulated and 654 

down-regulated (Han et al., 2012).  

We found 80 up- and 181 down-regulated lncRNAs controlled by SOX2 in GSCs. 

We validated the expression of the 2 top differentially expressed lncRNAs candidates in 

GSC-11 cells. These validated transcripts are non-annotated lncRNAs and are not 

described in the literature; however their TSS is marked by histone modifications 

associated with active chromatin, suggesting that are novel lncRNAs expressed under 

our experimental conditions. Mechanistic and functional studies need to be performed 

in order to unravel their role in the context of GSCs. 

Among the transcripts regulated by SOX2 we found interesting candidates, such as 

SOX2OT and ANRIL; although more experiments are needed to elucidate its possible 

role in GSCs biology. SOX2OT is a lncRNA which harbors SOX2 gene in its intronic 

region and is transcribed in the same orientation as SOX2 (Fantes et al., 2003). Several 

studies have demonstrated a role of SOX2OT in the regulation of SOX2 gene in human 

stem cells (Amaral et al., 2009; Shahryari et al., 2014) although little is known about the 

exact role of this non-coding RNA. SOX2OT has been associated with carcinogenesis. 

For example, in breast cancer is involved in the induction and/or maintenance of SOX2 

expression (Askarian-Amiri et al., 2014).  In esophageal squamous cell carcinoma 

SOX2 is involved in tumor initiation and in the regulation of the pluripotent state of 

stem cells (Shahryari et al., 2014). In lung cancer is associated withthe maintenance of 

cell proliferation (Hou et al., 2014). Published data suggest the mediation of lncRNA 

SOX2OT in pluripotency and tumorigenesis events, probably through regulation of 

SOX2 expression (Shahryari et al., 2015). These data together with our own results 

suggest a possible role of SOX2OT in GSCs function during the malignant progression 

of glioblastoma.  

On the other hand, ANRIL is a bona-fide SOX2 transcriptional target suppressing 

the INK4b/ARF/INK4a tumor suppressor locus (Pasmant et al., 2007). ANRIL is 

involved in the recruitment of Polycomb Repressive Complex 2 (PRC2) for gene 
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silencing (Kotake et al., 2011). Interestingly, PRC2 is a key mediator of glioma stem-

like cell plasticity, which is required for the adaptation of glioblastoma cells to their 

microenvironment (Natsume et al., 2013). These results suggest that ANRIL may play 

an important role in GSCs maintenance in glioblastoma. However further functional and 

mechanistic studies will be necessary to elucidate the precise role of SOX2OT, ANRIL 

and other lncRNA candidates in the tumorigenicity of glioblastoma. 

 

3. SOX2 controls miRNAs in GSCs 

In our study we also profile the SOX2-regulated miRNAome in GSCs. It is 

interesting to note that most of the miRNAs found in our array data have been 

consistently found as dysregulated in glioblastoma in other independent studies 

(Appendix 3). highlighting the robustness of this approach and emphasizing the 

possibility to use it as a platform to identify novel SOX2-miRNAs targets. 

We analyzed the expression of the top 6 up- and down-regulated miRNAs in 3 

different glioblastoma cell lines, LN-229, GSC-11 and GSC-23 cell, following SOX2 

inhibition and validated all of them, which again reinforce the strength of our array 

platform. 

 

4. miR-301a is over-expressed in glioblastoma and regulates migration/invasion 

properties of GSCs. 

We first focused on the study of miR-301a-3p as an interesting candidate to be 

studied in glioblastoma. In silico analysis revealed the promoter region of miR-301a-3p 

has multiple binding sites for SOX2, supporting the notion that miR-301a-3p is one of 

the direct targets of SOX2, and therefore could act as an onco-miR in GSCs. In fact, 

SOX2 together with OCT-4 and NANOG co-occupy the promoter of miR-301 in 

pluripotent stem cells (Boyer et al., 2005). 

Gene-set enrichment analysis of the predicted target genes shows that miR-301a-3p 

is involved in “transcription”, “regulation of transcription” and “purine ribonucleotide 

binding” process, illustrating the relevance of miR-301a in key functions of SOX2 as a 

transcription factor. 

By means of in vitro experiments we showed that the inhibition of miR-301a-3p 

does not affect proliferation properties of GSC-23 cells, however remarkably inhibits 

the migration/invasion ability of these cells. Moreover, the down-modulation of miR-
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301a-3p in GSC-23 cells inhibits the expression of a large set of genes involved in 

motility/invasion tumoral process. For example EphA belongs to the family of receptor 

tyrosine kinases involved in tumor invasion and cytoskeleton rearrangement (Kandouz, 

2012) and might function to promote malignant progression of glioblastoma (Day et al., 

2014). RHO GTPases have important roles in regulating cytoskeletal dynamics (Ridley, 

2006) and participate in tumor vascularization through the regulation of the induction of 

HIF1a (Turcotte et al., 2003). ROCK is involved in fundamental cellular functions such 

as cell contraction, cell migration and cytokinesis (Amano et al., 2010). One of the most 

important factors involved in the angiogenesis of glioma is the VEGF growth factor 

(Kargiotis et al., 2006), promoting also cell migration and survival in endothelial cells 

(Rahman et al., 2010). TGF-β also play important roles in regulation of cell 

differentiation, extracellular matrix remodeling, angiogenesis and cell adhesion (Blobe 

et al., 2000; Govinden and Bhoola, 2003); and is a well-known mediator of glioma 

progression (Kjellman et al., 2000). MMPs members modulate cell-cell communication 

and promote tumor progression (McCawley and Matrisian, 2001; Stetler-Stevenson, 

1996). The NOTCH receptors (NOTCH1-3) are highly express in brain tumors and are 

implicated in glioblastoma cell growth (Chen et al., 2010b). Figure 42B summarizes the 

effect of inhibition of miR-301a-3p in GSCs. 

Overall these results suggests that miR-301a-3p may function as an onco-miR 

contributing to tumoral progression of glioblastoma, reinforcing the idea that miR-301a-

3p acts as an onco-miR in different tumor types (Liang et al., 2015; Lu et al., 2015; Xia 

et al., 2015). Nevertheless, more experiments are needed to address the functional and 

mechanistic implications of miR-301a in the biology of glioblastoma.  

 

5. MiR-425-5p is a direct target of SOX2 

We showed that SOX2 directly binds to the promoter region of miR-425-5p 

promoting its activation. This evidence confirmed that miR-425-5p is a functional target 

of SOX2 in GSCs, remarking its possible role as an onco-miR. Taking this into 

consideration, we decided to focus on enhancing the expression of the predicted miR-

425-5p tumor suppressor target genes, by means of inhibition of miR-425-5p 

expression, to negatively regulate the stem-cell driving genes expression. Using this 

approach, we intended to enhance the effect of tumor suppressor genes to attenuate 

GSC phenotype in glioblastoma, ultimately causing cell death. 
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6. Functional role of miR-425-5p in glioblastoma pathogenesis 

6.1. miR-425 affects neurosphere formation and cell cycle progression 

We inhibited miR-425-5p expression using a 2nd generation lentiviral vector that 

expressed an antisense RNA oligo designed to target miR-425-5p, to ensure the long-

term inhibition of miR-425-5p expression in the experiments performed. Our results 

demonstrate the efficacy and feasibility of the miR-425-5p knock-down using this 

system in GSCs. 

The down-regulation of miR-425-5p promotes a significant inhibitory effect on 

neurosphere formation, observing a significant reduction in the number and size of 

neurospheres. In addition, upon miR-425-5p knock-down, we also observed a 

significant reduction in cell proliferation and in cell invasion properties in GSCs. Since 

invasion capacity of GSCs was measured at 12h after miR-425 down-regulation, we can 

rule out that cell death was the direct cause of the decrease in the invasiveness of these 

cells. These results are consistent with the findings of a recently published study (Zhang 

et al., 2015c), showing the inhibition of cell proliferation and invasion in gastric cancer 

cells following miR-425-5p inhibition, and underscore the role of this miRNA as an 

oncogene in glioblastoma. 

Furthermore, the inhibition of miR-425-5p expression also promoted a significant 

G0/G1 arrest in cell cycle, downmodulating the expression of cell cycle related proteins, 

which also explains the decrease in cell proliferation. Notably this effect is not observed 

in GFP sponge cells, which confirms that is not due to the plasmid used or infection 

process, but the effect of miR inhibition per se. 

 

6.2. Inhibition of miR-425-5p promotes apoptotic cell death 

Inhibition of miR-425-5p resulted in cell death. We observed that inhibition of 

miR-425-5p triggers apoptosis mechanism and suppression of survival machinery in 

GSCs. These results are in agreement with an elegant study by Ahir and collegues 

where they treated triple negative breast cancer carcinoma cells with tailored-CuO-

nanowire decorated with folic acid (CuO-Nw-FA). They observed that treatment of the 

breast cancer cells with CuO-Nw-FA favoured down-regulation of miR-425 levels 

leading to induction of apoptosis and reduction of metastasis, through up-regulation of 

PTEN pathway, promoting inhibition of PI3/AKT pathway and cyclin-dependent 

kinases (Ahir et al., 2016). In another study, miR-425 emerged as a miRNA associated 

with radioresistance in glioblastoma through activation of the cell-cycle checkpoint 
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response (Moskwa et al., 2014). Moreover, the authors observed in the data sets from 

the TCGA that theses miRNA were expressed in patients with TGF-β signaling 

elevated, which in turn has been associated with a glioma stem cell signature (Penuelas 

et al., 2009; Seoane, 2009).  

In accordance with these results, the analysis of AnnexinV/SYTOX Blue double 

staining demonstrated a marked increase in early apoptotic cells following miR-425-5p 

compared with cells treated with GFP lentivirus and normal control cells (Figure 36D). 

Notably, as phosphatidylserine is normally present on the inner leaflet of the membrane, 

any disruption of the membrane can lead to Annexin V positivity. We observed that 

neurosphere disaggregation using Acutase lead to membrane permeabilization, 

promoting false Annexin V positivity in GSCs. This fact made us to use another 

viability cell surface marker (Sytox Blue) to accurately discriminate between apoptotic 

and non-apoptotic cells.  

Moreover, TEM images showed the characteristic changes in apoptotic cells, such 

as cell shrinkage, chromatin condensation, and nuclear fragmentation (Kerr et al., 

1972), after miR-425-5p inhibition in GSCs compared with control cells (Figure 36E).  

Taking the previous published reports in mind and our own results, we 

hypothesized that decreased miR-425-5p levels can promotes PTEN up-regulation, 

suppressing in turn AKT mediated pathway and inducing the expression of p27, which 

negatively regulates cyclin-dependent kinases and promotes cell cycle arrest, and thus 

cumulatively causes cell death via apoptosis (Figure 42A). 

Overall, these results demonstrated the activation of apoptotic mechanism after 

inhibition of miR-425-5p in GSCs and reinforcing our hypothesis that miR-425-5p act 

as an onco-miR. 
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Figure 42. Schematic diagram depicting our model regarding the molecular mechanism induced 

following SOX2 inhibition. Following SOX2 inhibition we observed (A) decreased levels of miR-425-

5p, which in turn activates PTEN levels. PTEN activation further leads the decreased levels of PI3/AKT 

pathway and the increased levels of p27, a known inhibitor of cyclin -dependant-kinases which causes 

G0/G1 arrest and thus cumulative causes apoptosis cell death. (B) Reduced levels of miR-301a-3p 

following SOX2 inhibition, promote a decrease in GSCs invasion capacity, down-modulating the 

expression of numerous tumoral invasion genes. 

 

6.3. MiR-425-5p inhibition results in a significant anti-tumoral effect in vivo 

Inhibition of miR-425-5p exerts a potent anti-tumor effect in nude mice, increasing 

the overall median survival time. This result allows us to suggest that miR-425-5p could 

be used into promising anticancer therapies either alone or in combination with current 

targeted therapies. 

Although one of the greatest challenges with miRNA-based therapeutics is finding 

effective delivery systems, some exciting strategies are beginning to appear. 

Convection-enhanced delivery accompanied by imaging monitoring (Laske et al., 1997; 

Mut et al., 2008); modified peptides to transfer across the blood-brain barrier (BBB), 

carrying miRNAs/anti-miRNAs into glioblastoma cells (Oh et al., 2016; Song et al., 
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2015); vectors based on modified adeno-associated viruses usefulness for prolonged 

high expression and tissue-specific tropism (Xie et al., 2015); modified nanoparticles 

which can cross the BBB accumulating within intracerebral gliomas an delivering the 

cargo (Kouri et al., 2015), and mesenchymal stem cells, which can deliver synthetic 

miRNAs to glioma cells through gap junction-dependent and independent mechanisms 

(Lee et al., 2013; Munoz et al., 2013), are among the effective delivery approaches for 

miRNA-based therapies currently in use. 

Taking advantage of the ability of miRNAs to target multiple genes/pathways, and 

based on progress in delivery miRNA systems and in our own results, we propose that 

miR-425-5p is an interesting candidates to be further used for miRNA-therapy in 

glioblastoma. Taking into account that miR-425-5p plays an important role in GSCs 

biology, we can use it for example in combination with conventional chemotherapy, 

sensitizing glioblastoma cells to chemo drugs, based on previous reports (Zhang et al., 

2016).  

6.4. Glioblastoma expressed high levels of miR-425-5p expression 

The analysis of 15 glioblastoma clinical samples revealed that expression levels of 

miR-425-5p are increased at the mRNA level, and that has a significant positive 

correlation with SOX2 expression (Figure 38C). MiR-425-5p is over-expressed (~80 

percentile) in majority of human glioblastoma, based on analysis of TCGA database 

(Moskwa et al., 2014). These data confirmed that miR-425-5p is a direct target of SOX2 

in glioblastoma. Interestingly, in the set of 166 glioblastoma specimens from TCGA 

was also found a significantly positive correlation between SOX2 and miR-425-5p. 

Regarding this data, the correlation coefficient obtained in this analysis is positive but 

low (R2=0.4), however is statistically significant (p=0.0003). These results 

demonstrated that miR-425-5p is over-expressed in all glioblastoma subtypes, which 

leads us to think that does not have any impact in overall median survival time of 

glioblastoma patients. This reinforced the idea of the usefulness of miR-425-5p for 

target therapies leading to promising future clinical trials. 

 

7. MiR-425-5p predicted target genes  

We generated a robust miRNA candidate list regulated by SOX2 in GSCs, 

combining two different arrays approaches. Of all the candidates, miR-425-5p emerged 
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as the most consistently regulated miRNA by SOX2, after being validated in different 

GSCs and human glioblastoma cell lines, where SOX2 was over- or down-regulated.  

We identified the 5 most consistently predicted target genes of miR-425-5p. We 

analyzed their expressions in different glioblastoma cell lines, validating the 

bioinformatic prediction. Based on our results, we found that FoxJ3 and NRAS emerged 

as the miR-425-5p top regulated genes. Interestingly, FOXJ3 is known to be a key 

transcription factor of mitochondrial biogenesis and was identified to regulate the adult 

skeletal muscle fiber type identity (Alexander et al., 2010; Landgren and Carlsson, 

2004); however is not very well studied,. Therefore, without further experimentation is 

unclear the role that could play in the context of glioma.  

Another, candidate target gene is NRAS,  a member of the RAS oncogene family 

involved in MAPKs and PI3K/AKT signaling pathways, and various studies have 

demonstrated recurrent aberrant activation in glioblastoma (Knobbe et al., 2004). This 

result is puzzling since downregulation of either SOX2 or miR-425 results in 

upregulation of this oncogene. NRAS is known to have an oncogenic role in melanoma 

were activating mutations of this gene renders a subset of tumors with a more 

aggressive profile associated with poor outcome (Vu and Aplin, 2016)  

These results uncover the complexity that intrinsically harbors the different 

signaling pathways and the possible crosstalk that inherently could be taking placed. It 

is clear, that more experiments are needed to understand which the targets of miR-425-

5p are and how it exerts its function in GSCs.  

 

In summary our study integrates for the first time the coding and non-coding 

transcriptome controlled by SOX2 in GSCs, defining miR-301 and miR-425-5p as 

novel oncomiRs in GSCs and gaining new insights about the molecular circuitries 

governing glioblastoma biology (Figure 43). 
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Figure 43. Summary of the results obtained in this work. SOX2 regulates the coding- and non-coding 

transcriptome in GSCs, orchestrating numerous molecules and pathways governing glioblastoma biology.  
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1. SOX2 regulates a wide spectrum of protein-coding genes, which are related to 

different biological process including cell adhesion and cell-cell signaling, and 

are involved in canonical pathways, related with intracellular signaling cascades 

and amino-acid metabolism pathways associated with GSC propagation. These 

evidence underscore the pleiotropic functions of SOX2 as a transcriptional 

factor. 

 

2. SOX2 regulates different types of non-coding RNAs differentially expressed in 

GSCs, including miRNAs and LncRNAs amongst other. 

 

3. SOX2 regulates miR-301a-3p. This miRNA is over-expressed in glioblastoma 

tissues, positively correlates with SOX2 expression and participate in the 

invasive properties of GSCs, acting as an onco-miR. 

 

 

4. SOX2 controls miR-425-5p in glioblastoma. This miRNA is significantly 

overexpressed in glioblastoma tissue. We demonstrated that SOX2 activates its 

expression by directly binding miR-425-5p promoter. 

 

5. Inhibition of miR-425-5p affects neurosphere formation, cell proliferation, cell 

invasion and promotes cell cycle arrest in GSCs, pointing to its role as an onco-

miR regulated by SOX2. 

 

6. Downregulation of miR-425-5p promotes cell death through inhibition of cell 

survival pathways and activation of the apoptotic machinery. Altogether, this 

leads to cell death in vitro and to a significant increase in overall median 

survival time of mice bearing orthotopic glioma xenografts. 
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Appendix 1 

 

Primers used for lncRNAs detection 

 

lncRNA position TCONs Forward Primer Reverse Primer 

chr19:28281401- 28284848 TCONS_00027256 GCCCAAAGTTTGATTTCTCG CGAGGTCTAACCCAGGTGTG 

chr11:121899032-121899389 TCONS_00020142 GCTGAGCCTTCCATGAAAAT  GTGCAAATCACTCCAGTCACA 

 

Primers used for gene detection 

Gene  Forward Primer (5’ to 3’) Reverse Primer (3’ to 5’) 

GAPDH AGCCACATCGCTCAGACAC GCCCAATACGACCAAATCC 

SOX2 AGCTCGCAGACCTACATGAA CCGGGGAGATACATGCTGAT 

PLP1 ACCTATGCCCTGACCGTTG TGCTGGGGAAGGCAATAGACT 

COL2A1 TGGACGCCATGAAGGTTTTCT TGGGAGCCAGATTGTCATCTC 

ATP8B1 ACGACATTTGACGAGGATTCTC GGTTTTGTTCTGGTTCAACAGC 

PPP1R1B CAAGTCGAAGAGACCCAACCC GCCTGGTTCTCATTCAAATTGCT 

CMTM5 GGAGGACCACATCCGCTAGAT CCAGGGAGTGGAAGCAGAT 

GALNT14 CACTGCTGGTGTATTGCACG CGGATCAGATGCGTAGGGG 

F11R GTGCCTACTCGGGCTTTTCTT GTCACCCGGTCCTCATAGGAA 

SYT4 ATGGGATACCCTACACCCAAAT TCCCGAGAGAGGAATTAGAACTT 

SLC18A1 GTGGTGGTATTCGTCGCTTTG CCGAGGTGCAGAGAAGAGT 

ITLN2 GCAGGGCAACAAAGCAGACTA CAGGGCGCTGTTTCTCCAA 

FoxJ3 GGAGAGCAGCCTAACGTCTAT TGGCATAACTGTATGGAGGTTTC 

NRAS ATGACTGAGTACAAACTGGTGGT CATGTATTGGTCTCTCATGGCAC 

BEX4 AAAGAGGAACTAGCGGCAAAC CCAAATGGCGGGATTCTTCTTC 

RAB31 GGGGTTGGGAAATCAAGCATC GCCAATGAATGAAACCGTTCCT 

SLC16A1 AGTAGTTATGGGAAGAGTCAGCA GTCGGGCTACCATGTCAACA 

LIMS2 GCACCGGCACTATGAGAAGAA ACGGGCTTCATGTCGAACTC 

ACIN1 CCTTAACTCGACGTTCCATTAGC TGGCCTAAAGTGAAAGGACGG 
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MPRIP CGCAGGCAAAACCCATTTATG CCGTGCTCGTAAAGGATGAAG 

RHOA GGAAAGCAGGTAGAGTTGGCT GGCTGTCGATGGAAAAACACAT 

UBQLN4 ATTCGGGTCACCGTCAAGAC GCCTTAAACCTCCGGGAGATTT 
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Appendix 2.  

List of the top non-coding transcripts upregulated or downregulated by SOX2, 

organized by B value. 

Probe GeneName Classification logFC B 

A_19_P00320471 lincRNA:chr9:2535671-2536375_R antisense -1,28 11,75 

A_19_P00315804 lincRNA:chr9:2530903-2539456_R antisense -1,15 10,77 
A_19_P00320469 lincRNA:chr9:2535671-2536375_R antisense -1,27 9,70 
A_19_P00811613 lincRNA:chr9:2452800-2552025_R antisense -1,17 7,94 

A_33_P3397743 LOC100128088 pseudogene -1,83 7,42 
A_19_P00321203 lincRNA:chr6:72126155-72129954_R    lincRNA -0,92 7,33 
A_19_P00322118 lincRNA:chr2:39745746-39826668_F antisense -0,86 6,90 

A_23_P3552 LOC730092   pseudogene -0,65 6,50 
A_19_P00322220 lincRNA:chr20:37055062-37063887_R processed_transcript -0,69 6,28 
A_33_P3392460 LOC100128077   processed_transcript -1,47 6,18 

A_19_P00322149 lincRNA:chr6:72126142-72129923_R lincRNA -0,91 6,16 
A_19_P00317793 lincRNA:chr20:37055062-37063916_R processed_transcript -0,68 6,10 
A_19_P00808846 lincRNA:chr21:17992729-18010729_F lincRNA -0,64 6,09 

A_19_P00318304 lincRNA:chr20:37050986-37063998_R processed_transcript -0,67 5,94 
A_19_P00316341 lincRNA:chr7:130600800-130606702_F lincRNA -0,86 5,93 
A_19_P00316985 lincRNA:chr6:72126162-72129969_R lincRNA -0,91 5,93 

A_19_P00322967 lincRNA:chr20:37050934-37057222_R processed_transcript -0,69 5,54 
A_19_P00802098 lincRNA:chr2:3579550-3585150_R lincRNA -0,58 5,15 
A_24_P756289 SOX2OT other -0,86 5,08 

A_33_P3613516 LOC254057 antisense -1,10 4,94 
A_19_P00318174 lincRNA:chr2:3579840-3584422_R lincRNA -0,73 4,52 
A_33_P3287710 chr10:79,686,570-79,689,583 unassigned -0,67 4,46 

A_33_P3405043 LOC100133264  unassigned -0,72 4,43 
A_32_P88349 LOC730256  pseudogene -0,48 4,36 
A_33_P3705884 chr19:28,281,401-28,284,848 lincRNA -0,89 4,27 

A_19_P00321044 lincRNA:chr16:50682543-50683160_F lincRNA 1,04 6,09 

A_19_P00315647 lincRNA:chr11:121899032-121899389_R other 0,65 5,63 
A_32_P63013 LOC283174 unassigned 1,32 5,08 
A_32_P47157 LOC92973 unassigned 0,74 4,95 

A_19_P00317484 lincRNA:chr3:112315643-112316945_R lincRNA 0,55 4,11 
A_19_P00809440 lincRNA:chr11:133765815-133774297_R other 1,23 4,06 
A_33_P3789382 chr10:65,224,989-65,226,322 antisense 0,57 3,98 

A_19_P00321420 lincRNA:chr11:133766329-133767054_R unassigned 1,34 3,74 
A_19_P00332120 lincRNA:chr3:156455706-156471081_R lincRNA 0,59 3,57 
A_19_P00320101 lincRNA:chr11:133767609-133771496_R other 1,06 3,51 

A_19_P00812924 lincRNA:chr11:121895965-121904065_R other 0,53 3,46 
A_19_P00326763 lincRNA:chr3:112308735-112318605_R lincRNA 0,48 2,73 
A_33_P3753757 LOC158402 other 0,53 2,46 

A_33_P3393679 LOC645323 lincRNA 0,47 2,24 
A_19_P00315649 lincRNA:chr11:121899032-121899389_R other 0,55 2,23 
A_19_P00809838 lincRNA:chrX:100247844-100257469_R unassigned 0,79 2,20 

A_19_P00331576 lincRNA:chr3:114043485-114052926_F unassigned 0,36 2,00 
A_33_P3259557 LOC440104 pseudogene 0,45 1,67 
A_19_P00319347 lincRNA:chr2:168149680-168414843_F lincRNA 0,77 1,67 

A_19_P00320212 lincRNA:chr9:114795825-114797203_R other 0,41 1,63 
A_24_P93703 LOC440104 pseudogene 0,40 1,50 
A_19_P00318878 lincRNA:chr1:247350513-247352101_R lincRNA 0,38 1,44 

A_19_P00316010 lincRNA:chr17:67547498-67549996_F lincRNA 0,57 1,43 
A_24_P349207 ENST00000380727 pseudogene 0,29 1,31 
A_19_P00802064 lincRNA:chr8:2522118-2527693_R lincRNA 0,38 1,04 
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