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ABSTRACT  

This study aims to investigate whether heat treatment applied to cactus cladodes 

influences on the bioaccessibility of their (poly)phenolic compounds after simulated 

gastric and intestinal digestion. A total of 45 (poly)phenols were identified and 

quantified in raw and cooked cactus cladodes by UHPLC-PDA-HR-MS. Both 

flavonoids (60-68% total), mainly isorhamnetin derivatives, and phenolic acids (32-

40%) with eucomic acids as the predominant ones, significantly (p<0.05) increased with 

microwaving and griddling processes. After in vitro gastrointestinal digestion, 55-64% 

of the total (poly)phenols of cooked cactus cladodes remained bioaccessible versus 44% 

in raw samples. Furthermore, digestive conditions and enzymes higher degraded or 

retained flavonoids (37-63% bioaccessibility) than phenolic acids (56-87% 

bioaccessibility). Microwaved cactus cladodes contributed the highest amount of 

(poy)phenols (143.54 mg/g dm) after gastrointestinal process, followed by griddled 

samples (133.98 mg/g dm), showing the highest antioxidant capacity. Additionally, 

gastrointestinal digestion induced isomerizations among the three stereoisomeric forms 

of piscidic and eucomic acids. 

 

KEYWORDS: Polyphenols, cactus, Opuntia ficus-indica, heat treatment, in vitro 

gastrointestinal digestion, bioaccessibility. 
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INTRODUCTION 

Cactus (Opuntia ficus-indica) is a plant belonged to the family Cactaceae which 

produces edible seeds, fruits and stems (cladodes) with nutritional and bioactive 

compounds 
1
. In America, especially in Mexico, cladodes, known as “nopales”, are 

commonly eaten as a fresh or cooked vegetable.  

Previous studies have reported that cactus cladodes are a rich source of bioactive 

compounds including (poly)phenols, mainly flavonoids such as isorhamnetin, quercetin 

and kaempferol glycosides, as well as a minor quantity of phenolic acids such as ferulic, 

hydroxy benzoic, salicylic, chlorogenic and eucomic acids providing antioxidant 

capacity 
2,3

. 

Cooking methods such as boiling, microwaving 
4
, frying and griddling 

5
 can induce 

changes in vegetables composition, influencing the concentration of polyphenols. 

Recently, it has been shown that heat treatment impacts on total (poly)phenolic content 

of cactus cladodes depending on the cooking technique. For instance, microwaving and 

griddling processes could increase the total (poly)phenol content of cactus cladodes, 

while there is a decrease in its concentration when cactus were boiling because of 

leaching into the water 
6
. 

Several studies have revealed a positive correlation between a diet rich in plant-based 

foods and reduced risk of chronic diseases associated with oxidative stress such as 

cancer and cardiovascular and neurodegenerative diseases 
7,8

. Protective effects of fruits 

and vegetables are mainly attributed to the presence of antioxidant phenolic compounds 

9
, which are usually bound to other structures like cellulose, hemicellulose, and could be 

partially released in the gastrointestinal tract from the food matrix to be absorbed 
10

. 

Bioaccessibility is defined as the amount or fraction of a food compound, which is 

released from the food matrix in the gastrointestinal tract, becoming available for 
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absorption. In vitro digestion studies have been developed to simulate the physiological 

conditions taking place in the human gastrointestinal tract, including the mouth, 

stomach and intestine. Results reported in literature are controversial. While some 

studies have shown that in vitro gastrointestinal digestion decreases the phenolic content 

of vegetables as artichoke 
11

, pepper 
12

 and cardoon 
13

, others have reported that 

compounds are not affected by digestion process 
14

. Up to now, none studies in cactus 

cladodes have been found. 

Therefore, the aim of this work was to evaluate the bioaccessibility of (poly)phenolic 

compounds of both raw and cooked cactus cladodes monitoring them by UHPLC-PDA-

HR-MS after a simulated gastric and intestinal digestion. To our best knowledge, this is 

the first work that investigates whether heat treatment applied to cactus cladodes 

influences on the bioaccessibility of their (poly)phenolic compounds and antioxidant 

capacity. 

 

MATERIAL AND METHODS 

Chemical and reagents. Raw cactus cladodes (Opuntia ficus-indica) were obtained 

from BioArchen company located in Murcia, Spain. Olive oil and soybean oil were 

obtained from local stores. Methanol and acetone solvents were of analytical grade from 

Panreac (Barcelona, Spain). Acetonitrile and formic acid (HPLC grade) were purchased 

from Panreac (Barcelona, Spain). Potassium chloride and sodium chloride were 

obtained from Merk (Darmstadt, Germany). Human saliva α-amylase (852 U/mg 

protein), pepsin (674 U/mg), pancreatin (4xUPS), bile salts (for digestion), sodium 

hydrogen carbonate, potassium phosphate monobasic, magnesium sulfate monohydrate, 

6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (trolox), 2,2-diphenyl-1-

picrylhydrazyl (DPPH·), the pure phenolic standards used for high-performance liquid 
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chromatographic and mass spectrometry (HPLC-MS) (isorhamnetin, kaempferol, 

quercetin, rutin and ferulic acid) were purchased from Sigma-Aldrich (Steinheim, 

Germany). 

Samples preparation. Cactus cladodes were washed and the thorns were removed 

manually. Then, they were cut into small pieces, mixed well and divided into six 

portions of approximately 300 g. One portion (raw sample) was lyophilized in a freeze 

dryer Cryodos-80 (Telstar, Terrasa, Spain) and stored at −18 °C until analysis. The 

other five portions were cooked as described below. Cooking conditions were 

previously normalized by preliminary experiments. 

Boiling: 300 g of chopped fresh cactus cladodes were added to 600 g of boiling water in 

a stainless steel pan and maintained for 10 min. The samples were drained off and 

immediately cooled. 

Microwaving: 300 g of chopped fresh cactus cladodes were placed in a silicone case 

(Lékué, Barcelona, Spain) and cooked in a domestic microwave oven (Whirlpool, 

Michigan, USA) at 900W for 5 minutes. Samples were drained off and immediately 

cooled. 

Griddling: 300 g of chopped fresh cactus cladodes were submitted to heating at 150 ºC 

for 5 minutes and then at 110 ºC for 5 minutes in a non-stick griddle (Jata Electro, 

Vizcaya, Spain) without oil addition. 

Frying: 300 g of chopped fresh cactus cladodes was fried with 30 mL of olive oil and 

another 300 g with 30 mL of soybean oil at 100 ºC for 10 minutes in a non-stick frying 

pan. Then, temperature was decreased to 90 ºC for 5 minutes. 

After each heat treatment, every sample was lyophilized in a freeze dryer Cryodos-80 

(Telstar, Terrasa, Spain) and stored at -18ºC until analysis. 
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Simulated gastrointestinal digestion. A three step in vitro digestion model was carried 

out in a bioreactor according to Minekus et al. 
15

 and Monente et al. 
16

 adapted to our 

laboratory. Briefly, 2 g of each sample was weighted in a 100 mL vessel placed and 

heated in a water bath at 37 °C. The vessel was magnetically stirred and connected to a 

pH sensor. The three steps were carried out in absence of light. Simulated salivary, 

gastric and intestinal fluids (SSF, SGF and SIF) (Table 1S Supporting Information) 

were employed for each step. First, oral digestion was performed by adding 14 mL of 

the stock SSF solution, 250 µL of α-amylase solution (1.3 mg mL
-1

), 0.10 mL of 0.3M 

CaCl2, and water up to 20 mL. The sample was shaken for 30 min at 37 °C. Second, the 

gastric digestion step was carried out at pH 3 by addition 1M HCl. It was started by 

adding 15 mL of SGF, 1.19 mL of a pepsin solution (1 g of pepsin in 10 mL of 0.1 M 

HCl), 0.01 mL of 0.3M CaCl2 and water up to 20 mL. After 2 h incubation, the final 

intestinal step was carried out by adding 22 mL of SIF, 10 mL of a pancreatin solution 

(0.008 g mL
-1

), 5 mL of bile salts (0.025 g mL
-1

), 0.08 mL of 0.3M CaCl2 and water up 

to 40 mL. The pH was then adjusted to 7 with 1M NaOH and the samples were 

incubated for 2 h. Samples were taken after gastric and intestinal digestion and then 

were frozen and lyophilized in a freeze dryer Cryodos-80 (Telstar), and stored at -18ºC 

until further analysis. Each cactus sample was digested in duplicate and then the two 

repetitions were mixed and homogenized. 

Extraction of (poly)phenols. Extracts of raw and cooked cactus cladodes, both 

digested and undigested, were prepared using the method of Avila-Nava et al. 
17

 with 

some modifications. Briefly, 25 mL of a methanol/water solution (50/50, v/v) was 

added to 2 grams of lyophilized cactus cladodes samples, stirred for 2 hours and then 

vacuum filtered through Whatman 1 filter paper. The resulting filtrate was saved and 

refrigerated. The residue was subjected to a second extraction with 25 mL of 
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acetone/water (70/30, v/v) solution, agitated for 2 hours and vacuum filtered through 

Whatman 1 filter paper. The resulting filtrate was also saved and refrigerated. A third 

extraction of the residue was performed using 25 mL of demineralized water for 30 

minutes and then vacuum filtered through Whatman 1 filter paper. The resulting filtrates 

were mixed together and stored at -18ºC until analysis in less than 24 hours. 

Identification and quantification of (poly)phenolic compounds by UHPLC-PDA-

HR-MS. Qualitative and quantitative analysis of (poly)phenolic compounds in cactus 

samples were performed by UHPLC-PDA-HR-MS following the method described by 

Juániz et al. 
5
 with some modifications. The UHPLC equipment comprised with a PDA 

detector scanning from 200 to 600 nm, equipped with an autosampler operating at 4 ºC 

(Dionex Ultimate 3000 RS, Thermo Fisher Scientific, San José, USA) and an 

Exactive™ Orbitrap mass spectrometer fitted with a heated electrospray ionization 

probe (HESI) (Thermo Fisher Scientific, San José, USA). Separation was carried out 

using a column C18 5U Kinetex 100A (250 x 4.60 mm) (Phenomenex, Macclesfield, 

UK), and the volume of each sample injection was 20 µL. Chromatographic separation 

was performed at 40 ºC in 80 min using 5 to 30 % gradient of acid water with formic 

acid 0.1% (solvent A) and acetonitrile (solvent B) at a constant flow of 1 mL/min. After 

passing the PDA flow cell, the eluate was split and 0.2 mL/min was directed to the mass 

spectrometer with the HESI operating in negative ionization mode. Analysis was carried 

out in full-scan (100-800 m/z) and full-scan with In-Source Collision-induced 

dissociation (CID) (100-800 m/z; CID 25.0 eV). Capillary temperature was 300°C; 

sheath gas and auxiliary gas were 60 and 20 units/min, respectively; source voltage was 

4.0 kV. Identification was achieved by comparing the exact mass and retention time 

with pure reference standards. In absence of standards, compounds were tentatively 

identified by comparing the theoretical exact mass of the molecular ion with the 
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experimentally measured accurate mass of the molecular ion. In addition, identification 

was confirmed by the appearance of typical fragments produced from the molecular ion 

when the CID was applied. Quantification was performed at 280 nm for piscidic and 

eucomic acids and 325 nm for ferulic acid derivatives; and at 360 nm for flavonoids. 

Phenolic acids were expressed as ferulic acid equivalents, whereas isorhamnetin-, 

quercetin-, and kaempferol derivatives were quantified with their respective aglycones. 

Results were expressed as milligrams of each compound per gram of dry matter sample 

(mg /g dm). 

Antioxidant Capacity by DPPH assay. The antioxidant capacity was measured using 

2,2-diphenyl-1-picrylhydrazyl (DPPH
•
) decolorization assay 

18
 with some 

modifications. A 6.1×10
−5

 M DPPH
•
 methanolic solution was prepared immediately 

before use. The DPPH
•
 solution was adjusted with methanol to an absorbance of 0.700 

(±0.020) at 515 nm in a 3 mL capacity cuvette (1 cm length) at 25 °C (Lambda 25 UV–

VIS spectrophotometer, Perkin-Elmer Instruments, Madrid, Spain). All the extracts 

were properly diluted in demineralized water prior to analysis. Samples (50 μL) were 

added to 1.95 mL of the DPPH
•
 solution. After mixing, the absorbance was measured at 

515 nm after exactly 18 min. Calibration was performed with Trolox solution (a water-

soluble vitamin E analog). The antioxidant capacity was expressed as micromoles of 

Trolox equivalent per gram of sample dry matter (μmol Trolox/g dm). 

Statistical analysis. Each parameter was analyzed in triplicate. Results are shown as the 

mean ± standard deviation (SD). One-way analysis of variance (ANOVA) was applied 

for each parameter. A Tukey test was applied as a posteriori test with a level of 

significance of 95%. All statistical analyses were performed using the STATA v.12.0 

software package. 



9 
 

RESULTS AND DISCUSSION 

Cactus cladodes are usually consumed fresh or cooked by boiling, griddling or frying. 

In a previous work, nutritional composition and antioxidant capacity changes in cactus 

cladodes after different heat-treatments have been reported 
6
. However, the profile of 

the individual (poly)phenolic compounds, specifically in their glycoside form, of both 

raw and cooked cactus cladodes, as well as the effect of a gastrointestinal digestion on 

their bioaccessibility, remain unknown. This is of a great interest for further research in 

the claim of cactus cladodes health properties. 

Influence of heat treatment on cactus cladodes (poly)phenolic compounds. Cactus 

cladodes were submitted to boiling, microwaving, griddling and both olive and soybean 

oil frying at domestic conditions, and the identification and quantification of individual 

(poly)phenolic compounds of raw and cooked cactus cladodes was carried out by 

UHPLC-PDA-HR-MS. A total of 45 (poly)phenolic compounds were identified and 

quantified. Flavonoids were the main compounds found in all samples, accounting for 

60-68% of the total (poly)phenolic content, while phenolic acids accounted for 32-40% 

(Table 1). Details of the (poly)phenols identification are shown in the Supporting 

Information Table 2S. 

Table 2 shows the content of individual identified and quantified flavonoids present in 

raw and cooked cactus cladodes. Before gastrointestinal digestion, isorhamnetin 

derivatives were the most abundant flavonoid compounds, showing more than 50% of 

total flavonoids content. Thirteen compounds were found, being isorhamnetin rutinoside 

II the most abundant, followed by isorhamnetin rutinoside rhamnoside and isorhamnetin 

hexose pentoside in all samples, except in microwaved cactus cladodes where 

isorhamnetin rutinoside rhamnoside was the highest. The rest of the isorhamnetin 
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derivatives were minor. Five quercetin derivatives were also detected and quantified, 

being quercetin hexose dirhamnoside the most representative in all cactus cladodes 

samples. Finally, fourteen kaempferol derivatives were found, accounting for no more 

than 10% of the total flavonoids content, being kaempferol hexose pentose rhamnoside 

the main one in all samples. Similar profiles, with isorhamnetin glycosides as 

predominant flavonoids, have been reported for raw cactus cladodes of Opuntia ficus-

indica and other Opuntia cultivars, even though the limited number of identified and 

quantified flavonoids in those studies 
2,3,19,20

. 

Table 3 shows the content of each phenolic acid found in raw and cooked cactus 

cladodes. Two of the three eucomic acids identified were the most abundant, accounting 

for 50 to 60% of the total phenolic acids content; followed by three piscidic acids and 

seven ferulic acid derivatives. The 1-O-feruloylglucose compounds were the most 

representative ferulic acid derivatives in all samples. Piscidic and eucomic acids have 

been previously identified in Opuntia ficus-indica extracts 
19

 as unique compounds, but 

in the present study three stereoisomers of piscidic acid and other three of eucomic acid 

were identified and quantified. In the present study, eucomic acids were the most 

abundant, in contrast with Ginestra et al. 
19

 who reported piscidic acid as the major one. 

Piscidic acid is rarely found in nature and is restricted to those with crassulacean acid 

metabolism, being Opuntia species one of these succulent plants 
21

. Other phenolic 

acids like 3,4-dihydroxybenzoic, 4-hydroxybenzoic, salicylic, chlorogenic and gallic 

acids, as well as iso-quercitrin in raw cactus cladodes of Opuntia ficus-indica have been 

identified 
2,3,19

. However, they were not detected in the present study, most likely due to 

differences in cultivars, maturity stages, origin places, harvest seasons or environmental 

conditions. 
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The application of different cooking methods to cactus cladodes induces changes in 

their (poly)phenolic compounds profiles. The effect of heat treatment on the total 

(poly)phenolic compounds, as well as on individual flavonoids and phenolic acids, of 

cactus cladodes are shown in Tables 1, 2 and 3, respectively. All (poly)phenolic 

compounds found in raw and in boiled cactus cladodes are presented in their glycosidic 

forms; whereas isorhamnetin, quercetin and kaempferol aglycones were detected in 

traces or in low amount after microwaving, griddling and frying procedures. 

Microwaving and griddling processes significantly (p<0.05) increased 1.4-fold and 1.2-

fold the total amount of (poly)phenolic compounds, respectively. These increases were 

observed both in total flavonoids and in total phenolic acids content. Isorhamnetin 

derivatives showed a higher increment when cactus cladodes were submitted to 

microwaving, whilst quercetin and kaempferol derivatives increased higher after 

griddling (Table 2). Microwaved cactus cladodes also presented the highest amount of 

total phenolic acids, particularly in piscidic and ferulic acid derivatives (Table 3). These 

results are in agreement with those previously reported in cactus cladodes after 

microwaving and griddling 
6
. Likewise, increases in (poly)phenolic compounds have 

been found in microwaved broccoli and cauliflower 
22

 as well as in griddled onion, 

pepper and cardoon 
5
. However, the total content of (poly)phenolic compounds in 

cactus cladodes are substantially higher than in those observed in other vegetables.  

In contrast, after frying with olive and soybean oils, the total amount of (poly)phenolic 

compounds decreased, with a 0.6-fold significantly (p<0.05) lower content than in raw 

cactus cladodes. Total flavonoid compounds showed a greater decrease when olive oil 

was used, whereas total phenolic acids decreased higher when frying with soybean oil. 

Likewise, the total (poly)phenolic compounds of cactus cladodes after boiling also 

decreased, but the reduction was much lower (0.9-fold) than during the frying 
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processes. These findings are in agreement with those results previously reported in 

fried green pepper, cardoon 
5
 and potatoes 

23
, as well as in boiled cauliflower 

4
 and red 

cabbage 
24

.  

Heat treatment applied to vegetables induces several structural and chemical changes, 

which turn into (poly)phenolic compounds losses and gains depending on the cooking 

technique, technological parameters, as well as the food matrices. Increases after 

microwaving and griddling processes could be due to the release of (poly)phenolic 

compounds from the cell walls and sub-cellular compartments caused by thermal 

destruction as in other vegetables, but also due to their liberation from pectins, 

mucilages and other dietary fiber compounds 
25

. Furthermore, both cooking techniques 

are applied without the addition of water avoiding leaching into the water, or at least 

minimized in the case of microwaved cactus cladodes due to a faster cooking time (5 

min) than in boiling treatment (10 min). Additionally, high temperatures during 

griddling (110-150ºC) favor Maillard reactions and, consequently, the formation of 

melanoidins that could retain (poly)phenolic compounds into their structures. Besides, 

the inactivation of the enzyme systems (as polyphenoloxidases) lead to inhibit 

degradation of the (poly)phenolic compounds 
26

. On the other hand, losses in boiled 

cactus cladodes mainly occur because of leaching of (poly)phenolic compounds into the 

water, as previously reported 
6
. Similarly, frying process, in which oil acts as transfer 

medium for heat, induces a decrease probably due to a longer cooking time (15 min) 

than in the other heat treatments (5-10 min) making it a more deteriorative process 
27

. 

Otherwise, total antioxidant capacity evaluates DPPH scavenging ability by phenolic 

and non-phenolic (ascorbic acid, carotenoids, melanoidins, etc.) compounds of raw and 

cooked cactus cladodes (Figure 1). DPPH antioxidant capacity increased after all 

cooking methods, except in the case of fried in soybean oil cactus cladodes, which 
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showed no significant differences (p<0.05) in comparison to raw samples. This is in 

agreement with antioxidant capacity results previously reported for heat-treated cactus 

cladodes 
6
, as well as for onion, green pepper 

5
 and eggplant 

28
. 

Bioaccessibility of (poly)phenolic compounds of cactus cladodes after simulated 

gastrointestinal digestion. Up to our best knowledge, this is the first study where the 

effect of in vitro gastrointestinal digestion on the profile of individual (poly)phenolic 

compounds and antioxidant capacity of cactus cladodes has been evaluated. Simulated 

gastrointestinal digestion was developed in three steps: oral digestion with α-amylase, 

gastric digestion with pepsin at pH 3, and intestinal digestion with pancreatin and bile 

salts at pH 7. After gastric and intestinal digestion phases, individual (poly)phenolic 

compounds were identified and quantified. 

After in vitro gastric digestion, the content of both flavonoids and phenolic acids 

significantly (p<0.05) decreased (Table 1). Flavonoids showed a higher decrease than 

phenolic acids after the gastric phase. Nevertheless, both reductions were lower when 

cactus cladodes were cooked. In raw cactus cladodes gastric digesta, 48% of total 

flavonoids and 73% of phenolic acids remain bioaccessible, whereas in cooked samples 

the bioaccessibility was 68-85% for flavonoids and higher than 90% for phenolic acids, 

except in boiling which was 74%. Therefore, the bioaccessibility of total phenolic 

compounds in raw samples accounted for 58%, while 76-83% remained bioaccessible in 

cooked ones. 

Likewise, after the simulated intestinal phase, a significant (p<0.05) decrease in the 

(poly)phenolic compounds in raw and cooked cactus cladodes was also observed. 

Overall, 55-64% of the total (poly)phenolic compounds of cooked cactus cladodes 

remained bioaccessible after gastrointestinal digestion, while final bioaccessibility was 
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44% in raw samples. Furthermore, digestive enzymes and conditions higher retained or 

degraded flavonoids (37-63% bioaccessibility) than phenolic acids (56-87% 

bioaccessibility). In fact, the ratio between flavonoids and phenolic acids after the 

gastrointestinal digestion changed, accounting flavonoids for 45-60% (vs 60-68% 

before digestion) of the total (poly)phenolic content, while phenolic acids accounted for 

40-54% (vs 32-40% before digestion). 

In terms of total (poly)phenolic compounds content, microwaved cactus cladodes 

contributed the highest amount (143.54 mg/g dm) after the in vitro gastrointestinal 

process, followed by griddled samples (133.98 mg/ g dm). In contrast, digestion of 

cactus cladodes fried with soybean oil and olive oil had the lowest amount with 69.77 

and 70.87 mg/ g dm, respectively.  

Although (poly)phenolic compounds bioaccessibility after digestion might depend on 

food matrix, other authors also demonstrated a higher bioaccessibility of total 

(poly)phenolic compounds after heat treatment in boiled and steamed cauliflower (more 

than 100%) 
26

, as well as in griddled green pepper 
12

 and cardoon 
13

. The high amount of 

pectins and mucilages which include bound (poly)phenolic compounds, along with 

those attached to the melanoidins formed by Maillard reactions after intensive heat 

treatment like griddling, might favor a protective effect against enzymatic action 
12

. 

Individually, most (poly)phenolic compounds were partially, or even totally, degraded 

during gastrointestinal digestion (Table 2 and 3). Flavonoid aglycones were detected in 

traces or very low amount in cooked cactus cladodes after in vitro gastric digestion, but 

undetected after the intestinal phase. This confirms that the amylases added to simulate 

the salivary action and those present in pancreatin in the intestinal phase, which 

normally cleave α-linkages, are not able to break the β-glycosidic linkage between the 
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flavonoid aglycones and their glycosidic moieties 
29

. Actually, the deglycosilation of 

flavonoids is due to membrane-bound and cytosolic β-glycosydases found in the brush 

border cells of the mammalian small intestine 
30,31

 or by the action of gut microbiota 

12,13
. Hence, the loss of flavonoids glycosides during digestion could be mainly 

attributed to their affinity with the digestive enzymes 
29

. 

Few (poly)phenolic compounds appeared after the gastric phase, like kaempferide 3,7-

dirhamnoside in microwaved cactus cladodes (Table 2), eucomic acid I in raw, 

microwaved and griddled samples, and eucomic acid II in cactus cladodes fried with 

soybean oil an olive oil (Table 3). Other compounds as piscidic acid I, ferulic acid and 

dihydroferulic acid -O-glucuronide I increased after the gastric phase, but decreased 

during the intestinal phase. The stereoisomeric form of piscidic acid I could be favored 

by the pH acidic conditions, as well as the action of digestive enzymes, rather than 

piscidic acids II and III, which decreased. Similarly, eucomic acid I, as well as eucomic 

acid II in fried samples, enhanced by the isomerization of eucomic acids III and II due 

to gastrointestinal conditions. In addition, the acidic pH during the gastric phase might 

induce the hydrolysis of those ferulic acid moieties bound to the polysaccharides like 

pectins 
32

, and even partially from the glycosylated ones (feruloylglucoses), increasing 

free ferulic acid. Furthermore, gastric conditions favored the isomerization of 

dihydroferulic acid 4-O-glucuronide II into dihydroferulic acid -O-glucuronide I. 

DPPH radical scavenging capacity of raw and cooked cactus cladodes after in vitro 

gastric digestion (Figure 1) was significantly (p < 0.05) reduced. The lowest decrease 

was observed in microwaved cactus cladodes with a 44%, followed by griddled ones, 

decreasing 50%. The rest of the cooked samples decreased more than 50%, showing 

frying with olive oil the highest decrease with a 90%. After the intestinal phase, the 

antioxidant capacity of raw and cooked cactus cladodes further decreased remained the 
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highest values in microwaved and griddled cactus cladodes, but being undetectable in 

both fried samples. This behavior is in agreement with the remained (poly)phenolic 

compounds found after the gastrointestinal digestion. The antioxidant capacity depends 

on the affected compounds, and even though there is a decrease, its health benefits still 

remain. 

In summary, the current research confirms that heating processes may significantly 

influence the digestibility of dietary (poly)phenols of cactus cladodes from the food 

matrix. Thus, even (poly)phenols are retained by digestive enzymes or degraded by pH 

conditions during gastrointestinal digestion, most of them remain bioaccessible when 

cactus cladodes are cooked, especially by microwaving and griddling. Likewise, 

flavonoids and phenolic acids are unevenly affected, being the first more sensitive to 

gastrointestinal conditions than the latter. Additionally, isomerization reactions induce 

changes among the several stereoisomeric forms of piscidic and eucomic acids during 

gastrointestinal digestion. Nevertheless, because most (poly)phenolic compounds are 

not absorbed in the intestine and reach the colon, further investigations are needed to 

evaluate which are the main (poly)phenolic metabolites formed by the action of the 

human gut microbiota, as well as their bioavailability and biological activity in order to 

assess the health properties of cactus cladodes. 

 

ABBREVIATIONS 

DPPH, 2,2-diphenyl-1-picrylhydrazyl; SSF, simulated salivary fluid; SGF, simulated 

gastric fluid; SIF, simulated intestinal fluid; UHPLC-PDA-HR-MS, ultra high 

performance liquid chromatography photodiode array detector high resolution mass 
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spectrometry; HESI, heated electrospray ionization; CID, collision-induced 

dissociation. 

 

SUPPORTING INFORMATION  

Two supplementary tables with the concentrations of electrolytes of simulated salivary, 

gastric and intestinal fluids (Table 1S) and the mass spectrometric characteristics of 

(poly)phenolic compounds identified in this study (Table 2S) have been included. 
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Figure captions 

Figure 1. Antioxidant capacity by DPPH of raw and cooked cactus cladodes before and after in 

vitro gastric and intestinal digestion. Different letters indicate significant differences (p ≤ 0.05).  
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Table 1. Content (mg (poly)phenolic compound/g dry matter) and bioaccessibility (%) of total (poly)phenolic compounds in raw and cooked cactus cladodes before and 
after in vitro gastric and intestinal digestion. Results are expressed as mean ± standard deviation (n=3). 
 

 

Compounds 
 

            Raw           Boiled      Microwaved        Griddled Fried in olive oil Fried in soybean oil 

mg/g dm (%)  mg/g dm (%)  mg/g dm (%)  mg/g dm (%)  mg/g dm (%)     mg/g dm  (%)  

Total Flavonoids                   

Before digestion 
Gastric digestion 
Intestinal digestion 

120.40 ± 0.49 d C 
58.30 ± 2.28 b B 
44.96 ± 0.89 c A 

- 
48 
37 

 
97.79 ± 0.52 c C 
83.50 ± 1.06 c B 
61.14 ± 0.54 d A 

- 
85 
63 

 
158.21 ± 0.11 f C 
111.54 ± 0.59 d B 
64.23 ± 0.68 e A 

- 
70 
40 

 
149.43 ± 1.05 e C 
111.57 ± 0.54 d B 
63.57 ± 0.82 de A 

- 
75 
43 

 
72.77 ± 0.19 a C 

56.53 ± 0.02 ab B 
33.49 ± 0.07 a A 

- 
78 
46 

 
76.91 ± 0.48 b C 
52.62 ± 0.36 a B 
41.65 ± 0.52 b A 

- 
68 
54 

 

Total Phenolic Acids                   

Before digestion 
Gastric digestion 
Intestinal digestion 

71.42 ± 0.37 d C 
52.34 ± 0.10 d B 
39.64 ± 0.10 b A 

- 
73 
56 

 
65.45 ± 0.22 c C 
48.55 ± 0.64 c B 
44.05 ± 0.74 c A 

- 
74 
67 

 
95.11 ± 0.30 f C 
91.77 ± 0.50 f B 
76.98 ± 0.22 e A 

- 
96 
81 

 
89.40 ± 0.98 e B 
84.12 ± 1.30 e B 
70.41 ± 1.82 d A 

- 
94 
79 

 
42.89± 0.31 b C 
39.91 ± 0.05 b B 
37.38 ± 0.04 b A 

- 
93 
87 

 
34.87 ± 0.20 a C 
32.47 ± 0.38 a B 
28.11 ± 0.05 a A 

- 
93 
80 

 

Total Compounds                   

Before digestion 
Gastric digestion 
Intestinal digestion 

191.87 ± 0.86 d C 
110.64 ± 2.18 c B 
84.60 ± 0.78 b A 

- 
58 
44 

 
163.27 ± 0.30 c C 
132.07 ± 0.41 d B 
105.20 ± 0.20 c A 

- 
81 
64 

 
260.08 ± 0.40 f C 
208.84 ± 1.12 f B 
143.54 ± 0.51 e A 

- 
80 
55 

 
238.82 ± 2.03 e C 
195.70 ± 1.84 e B 
133.98 ± 1.64 d A 

- 
82 
56 

 
115.66 ± 0.49 b C 
96.44 ± 0.07 b B 
70.87 ± 0.11 a A 

- 
83 
61 

 

111.79 ± 0.67 a 
C 

85.09 ± 0.75 a B 
69.77± 0.57 a A 

- 
76 
62 

 

In each parameter, different capital letters in the same column denote significant differences (p ≤ 0.05) among digestions.  
In each parameter, different small letters in the same row indicate significant differences (p ≤ 0.05) among cooking processes. 

 
 
 
  



25 
 

Table 2. Content (mg (poly)phenolic compound/g dry matter) and bioaccessibility (%) of flavonoid compounds in raw and cooked cactus cladodes before and after in vitro 
gastric and intestinal digestion. Results are expressed as mean ± standard deviation (n=3). 
 

 
Compounds 
 

            Raw           Boiled      Microwaved        Griddled Fried in olive oil Fried in soybean oil 

mg/g dm (%)  mg/g dm (%)  mg/g dm (%)  mg/g dm (%)  mg/g dm (%)  mg/g dm  (%)  

Isorhamnetin derivates                   

Isorhamnetin                   

Before digestion 
Gastric digestion 
Intestinal digestion 

nd 
nd 
nd 

- 
- 
- 

 
nd 
nd 
nd 

- 
- 
- 

 
2.07 ± 0.03 
1.32 ± 0.00 

nd 

- 
64 
0 

 
tr 
tr 
nd 

- 
- 
- 

 
tr 
tr 
nd 

- 
- 
- 

 
tr 
tr 
nd 

- 
- 
- 

 

Isorhamnetin hexose rhamnose hexoside               

Before digestion 
Gastric digestion 
Intestinal digestion 

1.88 ± 0.02 
1.90 ± 0.03 
1.09 ± 0.00 

- 
101 
58 

 
1.48 ± 0.02 
1.37 ± 0.03 
1.16 ± 0.02 

- 
93 
78 

 
1.79 ± 0.00 
1.28 ± 0.01 
0.86 ± 0.02 

- 
72 
48 

 
2.01 ± 0.13 
1.63 ± 0.00 
1.27 ± 0.04 

- 
81 
63 

 
1.21 ± 0.01 
1.05 ± 0.00 
0.82 ± 0.00 

- 
87 
68 

 
1.28 ± 0.02 
0.94 ± 0.01 
1.08 ± 0.01 

- 
73 
84 

 

Isorhamnetin di-hexoside                   

Before digestion 
Gastric digestion 
Intestinal digestion 

1.02 ± 0.02 
0.63 ± 0.04 
0.70 ± 0.01 

- 
62 
69 

 
0.89 ± 0.01 
0.80 ± 0.02 

tr 

- 
90 
0 

 
1.25 ± 0.04 
1.01 ± 0.02 
0.96 ± 0.02 

- 
81 
77 

 
1.11 ± 0.06 
0.83 ± 0.01 
0.56 ± 0.00 

- 
75 
50 

 
0.82 ± 0.01 
0.66 ± 0.01 

tr 

- 
80 
0 

 
0.86 ± 0.01 
0.73 ± 0.00 

tr 

- 
85 
0 

 

Isorhamnetin rutinoside rhamnoside                   

Before digestion 
Gastric digestion 
Intestinal digestion 

17.17 ± 0.11 
9.41 ± 0.04 
6.33 ± 0.06 

- 
55 
37 

 
13.67 ± 0.15 
11.65 ± 0.06 
8.18 ± 0.19 

- 
85 
60 

 
35.78 ± 0.07 
26.69 ± 0.18 
14.11 ± 0.03 

- 
75 
40 

 
20.91 ± 0.07 
16.26 ± 0.12 
9.26 ± 0.11 

- 
78 
44 

 
10.38 ± 0.03 
7.90 ± 0.01 
4.53 ± 0.00 

- 
76 
44 

 
10.21 ± 0.07 
7.17 ± 0.01 
6.01 ± 0.08 

- 
70 
59 

 

Isorhamnetin hexose pentoside                   

Before digestion 
Gastric digestion 
Intestinal digestion 

15.18 ± 0.11 
6.97 ± 0.36 
5.76 ± 0.12 

- 
46 
38 

 
12.39 ± 0.19 
10.52 ± 0.08 
8.15 ± 0.14 

- 
85 
65 

 
17.52 ± 0.03 
11.95 ± 0.09 
8.30 ± 0.02 

- 
68 
47 

 
19.31 ± 0.08 
15.44 ± 0.13 
9.17 ± 0.30 

- 
80 
47 

 
8.85 ± 0.01 
7.40 ± 0.04 
4.54 ± 0.03 

- 
84 
51 

 
9.69 ± 0.00 
6.66 ± 0.11 
5.66 ± 0.04 

- 
69 
58 

 

Isorhamnetin rutinoside I                   

Before digestion 
Gastric digestion 
Intestinal digestion 

0.76 ± 0.00 
0.64 ± 0.01 

tr 

- 
84 
0 

 
0.78 ± 0.01 
0.84 ± 0.01 
0.78 ± 0.02 

- 
108 
100 

 
1.27 ± 0.01 
0.89 ± 0.01 
0.78 ± 0.03 

- 
70 
61 

 
1.05 ± 0.05 
0.81 ± 0.02 
0.53 ± 0.00 

- 
77 
50 

 
0.71 ± 0.02 
0.54 ± 0.01 

tr 

- 
76 
- 

 
0.65 ± 0.00 
0.52 ± 0.00 

tr 

- 
80 
- 

 

Isorhamnetin rutinoside II                   

Before digestion 
Gastric digestion 
Intestinal digestion 

19.09 ± 0.03 
8.27 ± 0.20 
6.57 ± 0.24 

- 
43 
34 

 
15.33 ± 0.22 
13.26 ± 0.16 
9.54 ± 0.30 

- 
87 
62 

 
26.74 ± 0.04 
17.98 ± 0.05 
10.31 ± 0.29 

- 
67 
39 

 
24.74 ± 0.12 
17.35 ± 0.15 
5.77 ± 0.26 

- 
70 
23 

 
11.76 ± 0.01 
9.23 ± 0.03 
5.55 ± 0.04 

- 
78 
47 

 
13.54 ± 0.34 
8.17 ± 0.17 
7.20 ± 0.37 

- 
60 
53 

 

Isorhamnetin 3-O-beta-(6-O-coumaroylglucoside)-7-O-beta-glucoside  I    

Before digestion 
Gastric digestion 
Intestinal digestion 

0.45 ± 0.00 
0.37 ± 0.00 

tr 

- 
82 
0 

 
0.45 ± 0.00 
0.41 ± 0.00 

tr 

- 
91 
0 

 
0.57 ± 0.00 
0.38 ± 0.00 

tr 

- 
67 
0 

 
0.57 ± 0.01 
0.48 ± 0.00 

tr 

- 
84 
0 

 
0.51 ± 0.00 
0.40 ± 0.00 

tr 

- 
78 
0 

 
0.51 ± 0.00 
0.43 ± 0.00 

tr 

- 
84 
0 

 

Isorhamnetin 3-O-beta-(6-O-coumaroylglucoside)-7-O-beta-glucoside II      

Before digestion 
Gastric digestion 
Intestinal digestion 

0.85 ± 0.01 
0.91 ± 0.02 
0.59 ± 0.00 

- 
107 
69 

 
0.83 ± 0.01 
0.80 ± 0.04 
0.77 ± 0.02 

- 
96 
93 

 
1.04 ± 0.01 
0.74 ± 0.00 
0.53 ± 0.00 

- 
71 
51 

 
1.03 ± 0.01 
0.74 ± 0.01 
0.76 ± 0.02 

- 
72 
74 

 
0.72 ± 0.00 
0.60 ± 0.01 

tr 

- 
83 
- 

 
0.83 ± 0.00 
0.57 ± 0.00 

tr 

- 
69 
- 

 

Isorhamnetin 3-O-beta-(6-O-coumaroylglucoside)-7-O-beta-glucoside III      
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Before digestion 
Gastric digestion 
Intestinal digestion 

0.49 ± 0.01 
0.40 ± 0.00 
0.46 ± 0.00 

- 
82 
94 

 
1.73 ± 0.00 
1.43 ± 0.02 
1.32 ± 0.04 

- 
83 
76 

 
2.42 ± 0.04 
1.51 ± 0.01 
0.86 ± 0.02 

- 
62 
36 

 
2.72 ± 0.17 
1.84 ± 0.01 
1.49 ± 0.01 

- 
68 
55 

 
1.42 ± 0.00 
0.98 ± 0.01 
0.87 ± 0.01 

- 
69 
61 

 
1.49 ± 0.01 
1.01 ± 0.00 
1.10 ± 0.00 

- 
68 
74 

 

Isorhamnetin 3-O-beta-(6-O-coumaroylglucoside)-7-O-beta-glucoside IV      

Before digestion 
Gastric digestion 
Intestinal digestion 

2.08 ± 0.01 
1.07 ± 0.02 
1.04 ± 0.01 

- 
51 
50 

 
0.46 ± 0.00 
0.45 ± 0.01 

tr 

- 
98 
0 

 
0.54 ± 0.00 
0.36 ± 0.00 

tr 

- 
67 
0 

 
0.46 ± 0.00 
0.41 ± 0.00 

tr 

- 
89 
0 

 
0.50 ± 0.00 
0.37 ± 0.00 

tr 

- 
74 
0 

 
0.50 ± 0.00 
0.41 ± 0.00 

tr 

- 
82 
0 

 

Isorhhamnetin 3-O-beta-(6-O-coumaroylglucoside)-7-O-beta-glucoside V      

Before digestion 
Gastric digestion 
Intestinal digestion 

0.4 ± 0.00 
tr 
tr 

- 
0 
0 

 
0.37 ± 0.00 
0.36 ± 0.00 

tr 

- 
97 
0 

 
0.54 ± 0.00 
0.33 ± 0.00 

tr 

- 
61 
0 

 
0.38 ± 0.00 

tr 
tr 

- 
0 
0 

 
tr 
tr 
tr 

- 
- 
- 

 
tr 
tr 
tr 

- 
- 
- 

 

Isorhamnetin 3-ferulylrobinobioside                   

Before digestion 
Gastric digestion 
Intestinal digestion 

0.69 ± 0.03 
tr 
tr 

- 
0 
0 

 
0.57 ± 0.00 
0.66 ± 0.01 
0.65 ± 0.00 

- 
116 
114 

 
0.76 ± 0.00 
0.49 ± 0.00 
0.41 ± 0.00 

- 
64 
54 

 
0.73 ± 0.02 
0.56 ± 0.00 
0.65 ± 0.00 

- 
77 
89 

 
0.61 ± 0.00 
0.43 ± 0.00 

tr 

- 
70 
0 

 
0.59 ± 0.00 
0.48 ± 0.00 

tr 

- 
81 
0 

 

TOTAL ISORHAMNETIN DERIVATES                   

Before digestion 
Gastric digestion 
Intestinal digestion 

60.06 ± 0.01 
30.58 ± 0.56 
22.53 ± 0.42 

- 
51 
38 

 
48.93 ± 0.17 
42.55 ± 0.17 
30.55 ± 0.02 

- 
87 
62 

 
92.29 ± 0.02 
64.92 ± 0.37 
37.20 ± 0.32 

- 
70 
40 

 
75.01 ± 0.33 
56.37 ± 0.16 
29.48 ± 0.60 

- 
75 
39 

 
37.50 ± 0.03 
29.57 ± 0.00 
16.31 ± 0.05 

- 
79 
44 

 
40.15 ± 0.43 
27.09 ± 0.29 
21.04 ± 0.48 

- 
67 
52 

 

                   

Quercetin derivates                   

Quercetin                   

Before digestion 
Gastric digestion 
Intestinal digestion 

nd 
nd 
nd 

- 
- 
- 

 
nd 
nd 
nd 

- 
- 
- 

 
tr 
nd 
nd 

- 
- 
- 

 
tr 
nd 
nd 

- 
- 
- 

 
tr 
nd 
nd 

- 
- 
- 

 
tr 
nd 
nd 

- 
- 
- 

 

Quercetin hexosyl pentosyl rhamnoside      

Before digestion 
Gastric digestion 
Intestinal digestion 

0.83 ± 0.04 
tr 
tr 

- 
0 
0 

 
0.88 ± 0.03 
0.66 ± 0.02 
0.08 ± 0.01 

- 
75 
9 

 
1.22 ± 0.05 
1.03 ± 0.01 
0.03 ± 0.00 

- 
84 
2 

 
2.19 ± 0.23 
0.62 ± 0.00 
0.03 ± 0.01 

- 
28 
1 

 
0.50 ± 0.03 
0.44 ± 0.00 

tr 

- 
88 
0 

 
0.47 ± 0.01 
0.24 ± 0.02 

tr  

- 
51 
0 

 

Quercetin hexose pentoside                   

Before digestion 
Gastric digestion 
Intestinal digestion 

0.29 ± 0.01 
tr 
tr 

- 
0 
0 

 
0.36 ± 0.01 
0.23 ± 0.01 

tr 

- 
64 
0 

 
0.42 ± 0.00 
0.22 ± 0.02 

tr 

- 
52 
0 

 
0.48 ± 0.04 
0.56 ± 0.00 

tr 

- 
117 

0 
 

0.04 ± 0.00 
0.02 ± 0.00 

tr 

- 
50 
0 

 
0.03 ± 0.00 

tr 
tr 

- 
0 
0 

 

Quercetin 3-O-rutinoside (rutin)                   

Before digestion 
Gastric digestion 
Intestinal digestion 

0.86 ± 0.05 
nd 
nd 

- 
0 
0 

 
0.83 ± 0.04 
0.37 ± 0.03 

tr 

- 
45 
0 

 
1.48 ± 0.08 
0.66 ± 0.00 

nd 

- 
45 
0 

 
0.93 ± 0.00 
0.91 ± 0.03 

nd 

- 
98 
0 

 
0.47 ± 0.01 
0.30 ± 0.01 

tr 

- 
64 
0 

 
tr 
tr 
tr 

- 
- 
- 

 

Quercetin hexose dirhamnoside                   

Before digestion 
Gastric digestion 
Intestinal digestion 

49.12 ± 0.51 
22.53 ± 1.67 
17.75 ± 0.42 

- 
46 
36 

 
37.72 ± 0.21 
32.17 ± 0.94 
23.95 ± 0.40 

- 
85 
63 

 
52.12 ± 0.11 
36.50 ± 0.25 
20.75 ± 0.47 

- 
70 
40 

 
58.89 ± 0.33 
43.47 ± 0.33 
26.57 ± 0.29 

- 
74 
45 

 
27.16 ± 0.10 
20.96 ± 0.06 
13.17 ± 0.01 

- 
77 
49 

 
28.95 ± 0.03 
20.02 ± 0.04 
15.69 ± 0.03 

- 
69 
54 

 

TOTAL QUERCETIN DERIVATES                   

Before digestion 
Gastric digestion 
Intestinal digestion 

51.11 ± 0.52 
22.53 ± 1.67 
17.75 ± 0.42 

- 
44 
35 

 
39.78 ± 0.22 
33.43 ± 0.97 
24.03 ± 0.41 

- 
84 
60 

 
55.25 ± 0.14 
38.42 ± 0.22 
20.78 ± 0.47 

- 
70 
38 

 
62.5 ± 0.59 

45.56 ± 0.36 
26.6 ± 0.28 

- 
73 
45 

 
28.17 ± 0.13 
21.72 ± 0.05 
13.17 ± 0.01 

- 
77 
47 

 
29.46 ± 0.04 
20.26 ± 0.03 
15.69 ± 0.03 

- 
69 
53 

 

                   

Kaempferol derivates                   

Kaempferol                   
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Before digestion 
Gastric digestion 
Intestinal digestion 

nd 
nd 
nd 

- 
- 
- 

 
nd 
nd 
nd 

- 
- 
- 

 
tr 
tr 
nd 

- 
- 
- 

 
tr 
tr 
nd 

- 
- 
- 

 
nd 
nd 
nd 

- 
- 
- 

 
tr 
tr 
nd 

- 
- 
- 

 

Kaempferol hexoside dirhamnoside I                   

Before digestion 
Gastric digestion 
Intestinal digestion 

1.05 ± 0.00 
0.64 ± 0.02 
0.56 ± 0.00 

- 
61 
53 

 
1.01 ± 0.04 
0.86 ± 0.01 
0.79 ± 0.01 

- 
85 
78 

 
1.26 ± 0.01 
0.99 ± 0.01 
0.80 ± 0.00 

- 
79 
63 

 
1.49 ± 0.03 
1.11 ± 0.00 
0.91 ± 0.01 

- 
75 
61 

 
0.74 ± 0.01 
0.61 ± 0.00 
0.52 ± 0.00 

- 
82 
70 

 
0.81 ± 0.03 
0.58 ± 0.01 
0.55 ± 0.00 

- 
72 
68 

 

Kaempferol hexoside dirhamnoside II             

Before digestion 
Gastric digestion 
Intestinal digestion 

1.26 ± 0.01 
0.65 ± 0.02 
0.61 ± 0.00 

- 
52 
48 

 
1.24 ± 0.02 
1.10 ± 0.07 
1.07 ± 0.01 

- 
89 
86 

 
1.43 ± 0.02 
1.10 ± 0.02 
0.81 ± 0.02 

- 
75 
55 

 
1.71 ± 0.01 
1.53 ± 0.00 
1.02 ± 0.05 

- 
89 
60 

 
0.88 ± 0.01 
0.74 ± 0.00 
0.59 ± 0.00 

- 
84 
67 

 
0.94 ± 0.01 
0.73 ± 0.01 
0.72 ± 0.00 

- 
78 
77 

 

Kaempferol hexose pentose rhamnoside            

Before digestion 
Gastric digestion 
Intestinal digestion 

1.38 ± 0.02 
0.81 ± 0.02 
0.62 ± 0.02 

- 
59 
45 

 
1.35 ± 0.10 
1.05 ± 0.03 
0.83 ± 0.10 

- 
78 
61 

 
1.47 ± 0.03 
1.20 ± 0.00 
1.06 ± 0.00 

- 
84 
74 

 
1.82 ± 0.04 
1.67 ± 0.02 
1.07 ± 0.01 

- 
92 
59 

 
0.95 ± 0.01 
0.72 ± 0.01 
0.53 ± 0.01 

- 
76 
56 

 
1.06 ± 0.03 
0.74 ± 0.01 
0.77 ± 0.00 

- 
70 
73 

 

Kaempferol hexose pentoside                   

Before digestion 
Gastric digestion 
Intestinal digestion 

1.12 ± 0.02 
0.67 ± 0.01 
0.67 ± 0.02 

- 
60 
60 

 
1.14 ± 0.00 
0.97 ± 0.00 
0.93 ± 0.00 

- 
85 
82 

 
1.21 ± 0.03 
0.83 ± 0.01 
0.65 ± 0.00 

- 
69 
54 

 
1.57 ± 0.00 
1.38 ± 0.01 
1.03 ± 0.00 

- 
88 
66 

 
0.85 ± 0.00 
0.65 ± 0.01 
0.55 ± 0.00 

- 
76 
65 

 
0.88 ± 0.00 
0.65 ± 0.01 
0.68 ± 0.00 

- 
74 
77 

 

Kaempferol rutinoside I                   

Before digestion 
Gastric digestion 
Intestinal digestion 

1.02 ± 0.00 
0.64 ± 0.00 
0.55 ± 0.01 

- 
63 
54 

 
1.26 ± 0.10 
1.02 ± 0.00 
0.80 ± 0.01 

- 
81 
63 

 
1.32 ± 0.00 
0.84 ± 0.00 
0.61 ± 0.00 

- 
64 
46 

 
1.48 ± 0.05 
1.06 ± 0.00 
0.74 ± 0.02 

- 
72 
50 

 
0.82 ± 0.01 
0.60 ± 0.02 
0.45 ± 0.00 

- 
73 
55 

 
0.74 ± 0.02 
0.63 ± 0.01 
0.61 ± 0.00 

- 
85 
82 

 

Kaempferol rutinoside II                   

Before digestion 
Gastric digestion 
Intestinal digestion 

0.34 ± 0.02 
0.24 ± 0.00 
0.26 ± 0.00 

- 
71 
76 

 
0.25 ± 0.00 
0.23 ± 0.00 

tr 

- 
92 
0 

 
0.37 ± 0.00 
0.22 ± 0.00 

tr 

- 
59 
0 

 
0.37 ± 0.01 
0.29 ± 0.00 
0.34 ± 0.00 

- 
78 
92 

 
0.30 ± 0.00 
0.23 ± 0.00 

tr 

- 
77 
0 

 
0.33 ± 0.00 
0.26 ± 0.00 

tr 

- 
79 
0 

 

Kaempferol rutinoside III                   

Before digestion 
Gastric digestion 
Intestinal digestion 

0.31 ± 0.00 
tr 
tr 

- 
0 
0 

 
0.24 ± 0.00 

tr 
tr 

- 
0 
0 

 
0.28 ± 0.00 

tr 
tr 

- 
0 
0 

 
0.28 ± 0.00 
0.22 ± 0.00 

tr 

- 
79 
0 

 
0.28 ± 0.00 

tr 
tr 

- 
0 
0 

 
0.29 ± 0.00 

tr 
tr 

- 
0 
0 

 

Kaempferol acetyl arabinopyranosyl hexoside         

Before digestion 
Gastric digestion 
Intestinal digestion 

0.42 ± 0.01 
0.29 ± 0.00 
0.34 ± 0.00 

- 
69 
81 

 
0.46 ± 0.02 
0.48 ± 0.03 
0.45 ± 0.02 

- 
104 
98 

 
0.54 ± 0.01 
0.97 ± 0.01 
0.56 ± 0.01 

- 
180 
104 

 
0.54 ± 0.01 
0.43 ± 0.00 
0.50 ± 0.00 

- 
80 
93 

 
0.44 ± 0.00 
0.34 ± 0.00 
0.33 ± 0.01 

- 
77 
75 

 
0.40 ± 0.00 
0.33 ± 0.00 
0.38 ± 0.00 

- 
83 
95 

 

Methoxy kaempferol hexoside                   

Before digestion 
Gastric digestion 
Intestinal digestion 

0.64 ± 0.02 
0.44 ± 0.01 
0.44 ± 0.01 

- 
69 
69 

 
0.72 ± 0.01 
0.43 ± 0.02 
0.43 ± 0.02 

- 
60 
60 

 
0.77 ± 0.01 
0.73 ± 0.00 
0.62 ± 0.00 

- 
95 
81 

 
0.55 ± 0.01 
0.58 ± 0.00 
0.61 ± 0.01 

- 
105 
111 

 
0.51 ± 0.00 
0.39 ± 0.00 
0.34 ± 0.00 

- 
76 
67 

 
0.41 ± 0.00 
0.33 ± 0.00 
0.37 ± 0.00 

- 
80 
90 

 

Kaempferol acetyl hexoside                   

Before digestion 
Gastric digestion 
Intestinal digestion 

0.57 ± 0.00 
0.27 ± 0.00 
0.30 ± 0.00 

- 
47 
53 

 
0.60 ± 0.01 
0.37 ± 0.00 
0.35 ± 0.00 

- 
62 
58 

 
0.68 ± 0.01 
0.40 ± 0.00 
0.37 ± 0.00 

- 
59 
54 

 
0.80 ± 0.01 
0.42 ± 0.00 
0.47 ± 0.00 

- 
53 
59 

 
0.45 ± 0.00 
0.33 ± 0.00 

tr 

- 
73 
0 

 
0.49 ± 0.00 
0.33 ± 0.00 

tr 

- 
67 
0 

 

Kaempferide 3,7 – dirhamnoside                   

Before digestion 
Gastric digestion 
Intestinal digestion 

tr 
tr 
tr 

- 
- 
- 

 
tr 
tr 
tr 

- 
- 
- 

 
tr 

0.31 ± 0.00 
0.36 ± 0.00 

- 
- 

116 
 

tr 
tr 
tr 

- 
- 
- 

 
tr 
tr 
tr 

- 
- 
- 

 
tr 
tr 
tr 

- 
- 
- 

 

Kaempferol coumaryl glucoside glucoside I         
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Before digestion 
Gastric digestion 
Intestinal digestion 

0.38 ± 0.01 
0.29 ± 0.00 
0.33 ± 0.00 

- 
76 
87 

 
0.39 ± 0.00 
0.33 ± 0.01 
0.42 ± 0.01 

- 
85 

108 
 

0.49 ± 0.00 
0.38 ± 0.00 
0.44 ± 0.00 

- 
45 
35 

 
0.47 ± 0.01 
0.36 ± 0.01 
0.35 ± 0.00 

- 
77 
74 

 
0.33 ± 0.00 
0.26 ± 0.00 
0.34 ± 0.00 

- 
79 

103 
 

0.39 ± 0.00 
0.30 ± 0.00 
0.39 ± 0.00 

- 
77 

100 
 

Kaempferol coumaryl glucoside glucoside II         

Before digestion 
Gastric digestion 
Intestinal digestion 

0.74 ± 0.00 
0.24 ± 0.01 

tr 

- 
32 
0 

 
0.64 ± 0.03 
0.48 ± 0.01 
0.47 ± 0.00 

- 
75 
73 

 
0.85 ± 0.02 
0.55 ± 0.01 
0.33 ± 0.00 

- 
65 
39 

 
0.83 ± 0.02 
0.60 ± 0.02 
0.46 ± 0.00 

- 
72 
55 

 
0.54 ± 0.01 
0.38 ± 0.00 
0.36 ± 0.00 

- 
70 
67 

 
0.58 ± 0.00 
0.41 ± 0.01 
0.45 ± 0.00 

- 
71 
78 

 

TOTAL KAEMPFEROL DERIVATES                   

Before digestion 
Gastric digestion 
Intestinal digestion 

9.23 ± 0.02 
5.19 ± 0.04 
4.68 ± 0.05 

- 
56 
51 

 
9.07 ± 0.14 
7.52 ± 0.08 
6.57 ± 0.15 

- 
83 
73 

 
10.68 ± 0.00 
8.21 ± 0.00 
6.25 ± 0.03 

- 
77 
59 

 
11.92 ± 0.12 
9.65 ± 0.02 
7.49 ± 0.06 

- 
81 
66 

 
7.09 ± 0.03 
5.25 ± 0.03 
4.01 ± 0.01 

- 
74 
57 

 
7.30 ± 0.09 
5.26 ± 0.05 
4.93 ± 0.01 

- 
72 
68 
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Table 3. Content (mg (poly)phenolic compound/g dry matter) and bioaccessibility (%) of phenolic acids in raw and cooked cactus cladodes before and after in vitro gastric 

and intestinal digestion. Results are expressed as mean ± standard deviation (n=3). 

 
Compounds 
 

            Raw           Boiled      Microwaved        Griddled Fried in olive oil Fried in soybean oil 

mg/g dm (%)  mg/g dm (%)  mg/g dm (%)  mg/g dm (%)  mg/g dm (%)  mg/g dm  (%)  

Piscidic acid derivatives                   

Piscidic acid I                   

Before digestion 
Gastric digestion 
Intestinal digestion 

13.15 ± 0.12 
17.83 ± 0.02 
14.69 ± 0.05 

- 
136 
112 

 
8.76 ± 0.17 

13.85 ± 0.21 
13.43 ± 0.52 

- 
158 
153 

 
21.44 ± 0.63 
25.19 ± 0.18 
23.49 ± 0.17 

- 
117 
110 

 
18.44 ± 0.51 
23.39 ± 0.35 
21.84 ± 1.04 

- 
127 
118 

 
10.76 ± 0.17 
12.11 ± 0.04 
11.12 ± 0.02 

- 
113 
103 

 
9.64 ± 0.02 
9.33 ± 0.08 

10.26 ± 0.14 

- 
97 

106 
 

Piscidic acid II                   

Before digestion 
Gastric digestion 
Intestinal digestion 

4.70 ± 0.17 
2.50 ± 0.14 
2.29 ± 0.00 

- 
53 
49 

 
7.76 ± 0.17 
3.92 ± 0.04 
2.25 ± 0.10 

- 
51 
29 

 
12.31 ± 0.09 
4.21 ± 0.12 
4.00 ± 0.25 

- 
34 
32 

 
9.33 ± 0.02 
3.89 ± 0.01 
2.83 ± 0.11 

- 
42 
30 

 
7.42 ± 0.08 
2.73 ± 0.02 
2.54 ± 0.00 

- 
37 
34 

 
6.62 ± 0.15 
3.08 ± 0.08 
3.38 ± 0.03 

- 
46 
51 

 

Piscidic acid III                   

Before digestion 
Gastric digestion 
Intestinal digestion 

0.06 ± 0.00 
tr 
tr 

- 
- 
- 

 
0.09 ± 0.01 

tr 
tr 

- 
- 
- 

 
0.21 ± 0.00 

tr 
tr 

- 
- 
- 

 
0.16 ± 0.01 

tr 
tr 

- 
- 
- 

 
0.12 ± 0.01 

tr 
tr 

- 
- 
- 

 
0.09 ± 0.01 
0.08 ± 0.00 
0.02 ± 0.00 

- 
89 
22 

 

TOTAL PISCIDIC ACID DERIVATIVES                   

Before digestion 
Gastric digestion 
Intestinal digestion 

17.91 ± 0.05 
20.33 ± 0.17 
16.98 ± 0.04 

- 
114 
95 

 
16.61 ± 0.34 
17.77 ± 0.17 
15.67 ± 0.62 

- 
107 
94 

 
33.96 ± 0.72 
29.40 ± 0.06 
27.49 ± 0.08 

- 
87 
81 

 
27.94 ± 0.53 
27.28 ± 0.37 
24.82 ± 1.10 

- 
98 
89 

 
18.30 ± 0.23 
14.84 ± 0.03 
13.66 ± 0.02 

- 
81 
75 

 
16.36 ± 0.17 
12.48 ± 0.16 
13.66 ± 0.17 

- 
76 
84 

 

                   

Eucomic acid derivatives                   

Eucomic acid I                   

Before digestion 
Gastric digestion 
Intestinal digestion 

nd 
2.29 ± 0.00 
2.18 ± 0.06 

- 
- 

95 
 

nd 
nd 
nd 

- 
- 
- 

 
nd 

16.65 ± 0.00 
13.87 ± 0.08 

- 
- 

83 
 

nd 
12.40 ± 0.33 
11.42 ± 0.20 

- 
- 

92 
 

nd 
nd 
nd 

- 
- 
- 

 
nd 
nd 
nd 

- 
- 
- 

 

Eucomic acid II                   

Before digestion 
Gastric digestion 
Intestinal digestion 

20.57 ± 0.14 
12.03 ± 0.91 
7.79 ± 0.35 

- 
58 
41 

 
21.66 ± 0.80 
19.63 ± 0.42 
18.01 ± 0.08 

- 
91 
83 

 
26.15 ± 0.68 
21.59 ± 0.27 
19.29 ± 0.07 

- 
83 
74 

 
26.35 ± 0.86 
22.32 ± 0.48 
20.15 ± 0.52 

- 
85 
76 

 
nd 

13.03 ± 0.02 
11.72 ± 0.03 

- 
- 

90 
 

nd 
7.71 ± 0.09 
6.80 ± 0.08 

- 
- 

88 

 

Eucomic acid III                   

Before digestion 
Gastric digestion 
Intestinal digestion 

27.80 ± 0.28 
15.07 ± 0.62 
11.43 ± 0.20 

- 
54 
41 

 
23.46 ± 0.21 
10.23 ± 0.37 
7.49 ± 0.52 

- 
44 
32 

 
28.23 ± 0.34 
18.59 ± 0.13 
13.52 ± 0.07 

- 
66 
48 

 
29.01 ± 0.63 
18.01 ± 0.11 
12.02 ± 0.01 

- 
62 
41 

 
20.85 ± 0.06 
11.20 ± 0.08 
9.37 ± 0.08 

- 
54 
45 

 
16.09 ± 0.02 
10.10 ± 0.03 
7.04 ± 0.05 

- 
63 
44 

 

TOTAL EUCOMIC ACID DERIVATIVES                   

Before digestion 
Gastric digestion 
Intestinal digestion 

48.37 ± 0.43 
27.10 ± 0.28 
19.22 ± 0.16 

- 
56 
40 

 
45.12 ± 0.60 
28.24 ± 0.46 
27.12 ± 0.10 

- 
63 
60 

 
54.39 ± 1.03 
40.18 ± 0.41 
33.28 ± 0.05 

- 
74 
61 

 
55.35 ± 1.50 
40.33 ± 0.59 
32.18 ± 0.53 

- 
73 
58 

 
20.85 ± 0.06 
22.92 ± 0.06 
22.41 ± 0.06 

- 
110 
107 

 
16.09 ± 0.02 
17.81 ± 0.14 
13.83 ± 0.13 

- 
111 
86 

 

                   

Ferulic acid derivates                   

Ferulic acid                   

Before digestion 0.11 ± 0.00 -  0.22 ± 0.00 -  0.46 ± 0.00 -  0.21 ± 0.00 -  0.14 ± 0.00 -  0.10 ± 0.00 -  
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Gastric digestion 
Intestinal digestion 

0.46 ± 0.00 
0.19 ± 0.01 

418 
173 

0.53 ± 0.00 
0.33 ± 0.00 

241 
150 

1.71 ± 0.01 
0.85 ± 0.00 

372 
185 

1.01 ± 0.00 
0.52 ± 0.01 

481 
248 

0.65 ± 0.00 
0.44 ± 0.00 

464 
314 

0.28 ± 0.00 
0.21 ± 0.01 

280 
210 

1-O-feruloylglucose I                   

Before digestion 
Gastric digestion 
Intestinal digestion 

0.05 ± 0.00 
tr 
tr 

- 
0 
0 

 
0.03 ± 0.00 
0.02 ± 0.01 
0.01 ± 0.00 

- 
67 
33 

 
0.16 ± 0.01 
0.13 ± 0.01 
0.09 ± 0.00 

- 
81 
56 

 
0.22 ± 0.00 
0.18 ± 0.00 
0.15 ± 0.00 

- 
82 
68 

 
0.13 ± 0.01 
0.09 ± 0.00 
0.07 ± 0.00 

- 
69 
54 

 
tr 
tr 
tr 

- 
- 
- 

 

1-O-feruloylglucose II                   

Before digestion 
Gastric digestion 
Intestinal digestion 

0.13 ± 0.00 
0.09 ± 0.00 
0.07 ± 0.01 

- 
69 
54 

 
0.11 ± 0.00 
0.07 ± 0.00 
0.04 ± 0.00 

- 
64 
36 

 
0.23 ± 0.00 
0.11 ± 0.00 
0.07 ± 0.00 

- 
48 
4 

 
0.24 ± 0.00 
0.12 ± 0.00 
0.07 ± 0.00 

- 
50 
29 

 
0.15 ± 0.00 
0.08 ± 0.00 
0.03 ± 0.00 

- 
53 
20 

 
0.16 ± 0.00 
0.09 ± 0.00 

tr 

- 
56 
0 

 

1-O-feruloylglucose III                   

Before digestion 
Gastric digestion 
Intestinal digestion 

3.92 ± 0.00 
1.27 ± 0.00 
0.32 ± 0.01 

- 
32 
8 

 
2.76 ± 0.00 
1.39 ± 0.01 
0.55 ± 0.01 

- 
50 
20 

 
4.87 ± 0.01 
2.63 ± 0.01 
0.78 ± 0.01 

- 
54 
16 

 
4.68 ± 0.01 
1.64 ± 0.00 
0.56 ± 0.00 

- 
35 
12 

 
3.02 ± 0.01 
1.16 ± 0.01 
0.53 ± 0.00 

- 
38 
18 

 
1.81 ± 0.00 
1.53 ± 0.08 
0.26 ± 0.00 

- 
85 
14 

 

1-O-feruloylglucose IV                   

Before digestion 
Gastric digestion 
Intestinal digestion 

0.40 ± 0.00 
0.14 ± 0.00 
0.11 ± 0.00 

- 
35 
27 

 
0.29 ± 0.00 
0.22 ± 0.01 
0.05 ± 0.00 

- 
76 
17 

 
0.46 ± 0.00 
0.36 ± 0.01 
0.15 ± 0.00 

- 
78 
33 

 
0.30 ± 0.01 
0.16 ± 0.00 
0.07 ± 0.00 

- 
53 
23 

 
0.18 ± 0.00 
0.10 ± 0.00 
0.01 ± 0.00 

- 
56 
6 

 
0.14 ± 0.00 
0.12 ± 0.00 
0.02 ± 0.00 

- 
86 
14 

 

Dihydroferulic acid -O-glucuronide I                

Before digestion 
Gastric digestion 
Intestinal digestion 

0.23 ± 0.00 
0.53 ± 0.00 
0.46 ± 0.00 

- 
227 
197 

 
0.12 ± 0.02 
0.26 ± 0.01 
0.27 ± 0.00 

- 
217 
225 

 
0.13 ± 0.00 
0.46 ± 0.01 
0.30 ± 0.00 

- 
354 
231 

 
0.21 ± 0.00 
0.25 ± 0.00 
0.25 ± 0.01 

- 
119 
119 

 
tr 

0.05 ± 0.00 
0.21 ± 0.00 

- 
- 

420 
 

0.06 ± 0.00 
0.12 ± 0.01 
0.11 ± 0.01 

- 
200 
183 

 

Dihydroferulic acid 4-O-glucuronide II                

Before digestion 
Gastric digestion 
Intestinal digestion 

0.34 ± 0.00 
0.13 ± 0.00 
0.10 ± 0.01 

- 
38 
29 

 
0.22 ± 0.01 
0.08 ± 0.01 
0.02 ± 0.01 

- 
36 
9 

 
0.45 ± 0.01 
0.14 ± 0.01 
0.09 ± 0.01 

- 
31 
20 

 
0.24 ± 0.01 
0.05 ± 0.00 
0.03 ± 0.00 

- 
21 
13 

 
0.05 ± 0.00 
0.03 ± 0.00 
0.02 ± 0.00 

- 
60 
40 

 
0.16 ± 0.00 
0.03 ± 0.00 
0.03 ± 0.00 

- 
19 
19 

 

TOTAL FERULIC ACID DERIVATIVES                   

Before digestion 
Gastric digestion 
Intestinal digestion 

5.18 ± 0.01 
2.62 ± 0.01 
1.26 ± 0.03 

- 
51 
24 

 
3.76 ± 0.03 
2.57 ± 0.02 
1.37 ± 0.01 

- 
68 
36 

 
6.76 ± 0.01 
5.53 ± 0.03 
2.33 ± 0.02 

- 
82 
34 

 
6.11 ± 0.02 
4.11 ± 0.01 
1.99 ± 0.02 

- 
67 
33 

 
3.74 ± 0.01 
2.16 ± 0.02 
1.31 ± 0.00 

- 
58 
35 

 
2.43 ± 0.01 
2.18 ± 0.08 
0.62 ± 0.01 

- 
90 
25 
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Figure 1 
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Table S1. Concentrations of electrolytes Simulated Salivary Fluid (SSF), Simulated Gastric 

Fluid (SGF) and Simulated Intestinal Fluid (SIF) 

 Stock solution SSF (250mL) SGF (250mL) SIF (250mL) 

Constituent g/50mL mol/L mL mL mL 

KCl 1.87 0.5 9.44 4.31 4.25 
KH2PO4 3.40 0.5 2.31 0.57 0.50 
NaHCO3 4.20 1 4.25 7.81 26.56 
NaCl 5.90 2 ----- 7.38 6.00 
MgCl2(H2O)6 1.53 0.15 0.31 0.25 0.69 
(NH4)2CO3 2.40 0.5 0.04 0.31 0.69 
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Table S2.  Mass spectrometric characteristics of native (poly)phenolic compounds identified in 

this study. 

Compound Chemical 
formula 

Rt 

(min) 

[M-H]¯
 

(m/z) 
δppm Fragment ions under low collision 

energy (m/z) 

Piscidic acid I C11H12O7 5.4 255.0501 0.78 193.0499 / 179.0340 / 165.0546 
Piscidic acid II C11H12O7 6.1 255.0501 0.78 193.0499 / 179.0340 / 165.0546 
Piscidic acid III C11H12O7 6.6 255.0501 0.78 193.0499 / 179.0340 / 165.0546 
Eucomic acid I C11H12O6 11.8 239.0550 -0.46 195.0658 / 179.0342 / 149.0599 / 

107. 0490 
Eucomic acid II C11H12O6 12.8 239.0550 -0.46 195.0658 / 179.0342 / 149.0599 / 

107. 0490 
Eucomic acid III C11H12O6 13.4 239.0550 -0.46 195.0658 / 179.0342 / 149.0599 / 

107. 0490 
Ferulic acid derivatives      

Ferulic acid C10H10O4 27.8 193.0497 1.04  
1-O-feruloylglucose I C16H20O9 15.1 355.1037 3.94 239.0558 / 193.0503 / 175.0391 
1-O-feruloylglucose II C16H20O9 16.4 355.1037 3.94 239.0558 / 193.0503 / 175.0391 
1-O-feruloylglucose III C16H20O9 17.5 355.1037 3.94 239.0558 / 193.0503 / 175.0391 
1-O-feruloylglucose IV C16H20O9 18.6 355.1037 3.94 239.0558 / 193.0503 / 175.0391 
Dihydroferulic acid -O-glucuronide I C16H20O10 9.4 371.0982 2.69 239.0558 / 179.0554 / 133.0135 

Dihydroferulic acid -O-glucuronide II C16H20O10 9.9 371.0982 2.69 239.0558 / 179.0554 / 133.0135 
Isorhamnetin derivatives      

Isorhamnetin C16H12O7 72.0 315.0504 1.59 151.0027 
Isorhamnetin hexose rhamnose 
hexoside 

C34H42O21 32.4 785.2152 2.29 503.1777 / 371.0984 / 315.0503 / 
151.0025 

Isorhamnetin di-hexoside C28H32O17 34.6 639.1574 2.97 477.2342 / 361.1868 / 315.0503 
Isorhamnetin rutinoside rhamnoside C34H42O20 36.4 769.2199 1.82 315.0503 / 145.0495 
Isorhamnetin hexose pentoside C27H30O16 39.1 609.1462 1.97 477.1982 / 315.0508 
Isorhamnetin rutinoside I C28H32O16 42.1 623.1627 1.76 477.2346 / 315.0501  
Isorhamnetin rutinoside II C28H32O16 43.5 623.1627 1.76 477.2346 / 315.0501 
Isorhamnetin 3-O-beta-(6-O-
coumaroylglucoside)-7-O-beta-
glucoside I 

C37H38O19 59.2 785.1940 2.16 315.0507 / 179.0554 / 145.0496 

Isorhamnetin 3-O-beta-(6-O-
coumaroylglucoside)-7-O-beta-
glucoside II 

C37H38O19 61.8 785.1940 2.16 315.0507 / 179.0554 / 145.0496 

Isorhamnetin 3-O-beta-(6-O-
coumaroylglucoside)-7-O-beta-
glucoside III 

C37H38O19 62.5 785.1940 2.16 315.0507 / 179.0554 / 145.0496 

Isorhamnetin 3-O-beta-(6-O-
coumaroylglucoside)-7-O-beta-
glucoside IV 

C37H38O19 64.4 785.1940 2.16 315.0507 / 179.0554 / 145.0496 

Isorhamnetin 3-O-beta-(6-O-
coumaroylglucoside)-7-O-beta-
glucoside V 

C37H38O19 66.1 785.1940 2.16 315.0507 / 179.0554 / 145.0496 

Isorhamnetin 3-ferulylrobinobioside C38H40O19 63.9 799.2096 2.00 315.0509 

Quercetin derivatives      
Quercetin C15H10O7 56.4 301.0354 3.98 178.9978 / 151.0027 
Quercetin hexosyl pentosyl rhamnoside C32H38O20 30.4 741.1895 3.10 301.0351 / 151.0391 
Quercetin hexose pentoside C26H28O16 31.5 595.1311 3.02 463.0881 / 433.2078 / 415.0884 

Quercetin 3-O-rutinoside (rutin) C27H30O16 35.6 609.1470 3.27 301.0353 / 145.0496 
Quercetin hexose dirhamnoside C33H40O20 36.8 755.2040 1.46 609.1467 / 301.0349 

Kaempferol derivatives      
Kaempferol C15H10O6 68.9 285.0404 3.85  
Kaempferol hexoside dirhamnoside I C33H40O19 34.3 739.2102 2.98 431.2286 / 285.0402 
Kaempferol hexoside dirhamnoside II C33H40O19 35.3 739.2102 2.98 431.2286 / 285.0402 

Kaempferol hexose pentose rhamnoside C32H38O19 35.9 725.1945 3.03 285.0401 
Kaempferol hexose pentoside C26H28O15 37.5 579.1362 3.11 496.2458 / 285.0402 
Kaempferol rutinoside I C27H30O15 41.7 593.1520 3.22 496.2455 / 285.0403 
Kaempferol rutinoside II C27H30O15 47.3 593.1520 3.22 496.2455 / 285.0403 
Kaempferol rutinoside III C27H30O15 48.0 593.1520 3.22 496.2455 / 285.0403 
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Kaempferol acetyl arabinopyranosyl 
hexoside 

C28H30O16 42.5 621.1450 2.74 503.2504 / 285.0402 

Methoxy kaempferol hexoside C22H22O12 44.6 477.1027 2.52 314.0434 / 285.0406 
Kaempferol acetyl hexoside C23H22O12 45.8 489.1039 2.46 445.1141 / 285.0406 
Kaempferide 3,7 – dirhamnoside C28H32O14 58.3 591.1708 2.37 285.0402 
Kaempferol coumaryl glucoside 
glucoside I 

C36H36O18 60.5 755.1834 2.25 285.0404 / 179.0554 / 161.0446 

Kaempferol coumaryl glucoside 
glucoside II 

C36H36O18 61.4 755.1834 2.25 285.0404 / 179.0554 / 161.0446 

Rt, retention time; m/z, mass-to-charge ratio; [M-H]¯, Negatively charged molecular ion 

 

 


