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Abstract 25 

Pennisetum glaucum is an important fodder and may be a potential feedstock for fuel 26 

ethanol production in dry areas. Our objectives were to assess the effect of elevated 27 

CO2 and/or reduced irrigation on biomass production and levels of sugars and proteins 28 

in leaves of P. glaucum and to test if mycorrhizal inoculation could modulate the 29 

effects exerted by these abiotic factors on growth and metabolism. Results showed 30 

that mycorrhizal inoculation and water regime were the factors that most influenced 31 

biomass of shoots and roots; however, their individual effects were dependent on the 32 

atmospheric CO2 concentration. At ambient CO2, mycorrhizal inoculation helped 33 

alleviating effects of water deficit on P. glaucum without significant decreases in 34 

biomass production, which contrasted with the low biomass of mycorrhizal plants 35 

under restricted irrigation and elevated CO2. Mycorrhizal inoculation enhanced water 36 

content in shoots while reduced irrigation decreased water content in roots. The triple 37 

interaction between CO2, arbuscular mycorrhizal fungi (AMF) and water regime 38 

significantly affected the total amount of soluble sugars and determined the 39 

predominant soluble sugars in leaves. Under optimal irrigation, elevated CO2 increased 40 

the proportion of hexoses in pearl millet non-inoculated with AMF, thus improving the 41 

quality of this plant material for bioethanol production. In contrast, elevated CO2 42 

decreased the levels of proteins in leaves thus limiting the quality of pearl millet as 43 

fodder and prime matter for cattle feed. 44 

 45 

 46 

Additional keywords: arbuscular mycorrhizal fungi, biomass, climatic change, 47 

carbohydrates, Pennisetum glaucum, proteins. 48 
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Introduction 49 

 50 

Pearl millet (Pennisetum glaucum) (L.) R. Brown belongs to the Poaceae family and has 51 

its origins as a cereal crop adapted to the harshest growing conditions in sub-Saharan 52 

African. Nowadays is a major staple food crop in the drier parts of Africa and Asia 53 

(Purseglove 1972) because it is highly tolerant to drought and salt (Maiti and Wesche-54 

Ebeling 1997). According to FAOSTAT (FAO Statistics Division) 2012, millet was grown 55 

over 31 million ha area worldwide and the total production of P. glaucum accounts for 56 

approximately 50% of the total world production of millets (Borde et al. 2011). Pearl 57 

millet was introduced in Brazil in the 1960s and its cultivation has become more 58 

widespread in no tillage crop farming systems in central regions of the country (de 59 

Carvalho et al. 2006). Moreover, it is an important fodder and prime matter for cattle 60 

feed, in the rainy or dry season, in Brazil (Netto 1998). According to Andrews et al. 61 

(1996) feeding tests in cattle, swine, laying hens, ducks, and catfish showed that pearl 62 

millet is either superior to, or as good as, feed corn. In addition, in a study performed 63 

to test the potential of different genotypes of pearl millet as raw material for fuel 64 

ethanol production, Wu et al. (2006) concluded that pearl millets could be a potential 65 

feedstock for fuel ethanol production in areas too dry to grow corn or grain sorghum. 66 

Arbuscular mycorrhizal fungi (AMF) are soil inhabitants belonging to the phylum 67 

Glomeromycota, with a presumed origin at least 460 million years ago (Schüβler et al. 68 

2001). These fungi colonize the roots of over 80% of plant species (including millet) 69 

mostly to the mutual benefit of both the plant host and the fungus. The association 70 

between AMF and plant roots develops in two functional phases (Smith and Read 71 

2008): the extraradical phase extending from the root into the soil and the intraradical 72 

 3 



 

phase with intercellular hyphae and specialized intracellular structures called 73 

‘arbuscules’. Arbuscules are the structures where exchanges of carbon to the fungus 74 

and nutrients to the host plant take place. In a recent work, Borde et al. (2011) 75 

concluded that mycorrhizal association can help P. glaucum to perform better under 76 

moderate salinity levels by enhancing the antioxidant activity and proline 77 

accumulation as compared to non-mycorrhizal plants. 78 

Levels of atmospheric CO2 have been constantly increasing since the industrial 79 

revolution due to anthropogenic activities, including burning of fossil fuels, 80 

deforestation and intensive animal husbandry. The enhanced CO2 concentration 81 

increases the potential net photosynthesis in C3 plants (Drake et al. 1997) and 82 

therefore can improve yield (Oliveira et al. 2010) over short-term exposures. In 83 

contrast, net CO2 assimilation rates in C4 species should not be directly stimulated by 84 

elevated CO2 under optimal conditions of temperature, water availability and nutrient 85 

supply (Ghannoum et al. 2000). However, C4 plants in natural and agricultural 86 

ecosystems frequently grow in conditions of limiting water availability and/or limiting 87 

nitrogen (N) supply. In this context of rising atmospheric CO2, AMF are predicted to be 88 

important in defining plant responses to elevated CO2 concentrations. In fact, lower 89 

concentrations of phosphorus (P) in tissues of plants when grown under elevated CO2 90 

can be alleviated by the formation of AMF and any improvements in plant N nutrition 91 

resulting from the formation of AMF may be also important in determining plant 92 

responses to atmospheric CO2 enrichment (Cavagnaro et al. 2011). In alfalfa cultivated 93 

under elevated CO2, Baslam et al. (2014) found that AMF increased levels of glucose 94 

and fructose in stems of inoculated plants compared with non-mycorrhizal plants, 95 

which may result in enhanced potential for bioethanol conversion in mycorrhizal 96 
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alfalfa cultivated under elevated CO2. In arid and semiarid areas (i.e, Mediterranean 97 

regions), rising atmospheric CO2 concentrations may increase the severity of drought 98 

conditions under future climate change scenarios (Gregory et al. 2003). Kholer et al. 99 

(2009) found that the contribution of AMF (together with the plant-growth-promoting 100 

rhizobacterium Pseudomonas mendocina) to soil aggregate stability under elevated 101 

atmospheric CO2 was largely enhanced by soil drying. However, the role that AMF play 102 

in ecosystems responding to global climatic change is not still well understood (Mohan 103 

et al. 2014). 104 

The objectives of our study were (1) to assess the effect of climate change 105 

scenarios (elevated CO2 and/or restricted irrigation) on biomass production, sugars 106 

accumulation and proteins levels in leaves of P. glaucum and (2) to test if mycorrhizal 107 

inoculation could modulate the effects exerted by elevated CO2 and/or restricted 108 

irrigation on growth and metabolism of P. glaucum. 109 

 110 

Materials and methods 111 

 112 

Plant material and growth conditions 113 

 114 

Seeds from pearl millet (Pennisetum glaucum) (L.) R. Brown were germinated on a 115 

mixture of light peat (Floragard, Vilassar de Mar, Barcelona, Spain) and siliceous sand 116 

(on 26th March 2013). Peat had a pH of 5.2-6.0, 70-150 mg L-1 of nitrogen, 80-180 mg L-117 

1 P2O5 and 140-220 mg L-1 K2O and it was previously sterilized at 100ºC for 1 h on three 118 

consecutive days. After sowing (on 8th April 2013), seedlings were transferred to 48 119 

pots of 13 L (three plants per pot) filled with a mixture of vermiculite- siliceous sand- 120 
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light peat (2.5:2.5:1, v:v:v) and divided into eight groups (six pots per group, three 121 

plants per pot) for an experimental design 2 × 2 × 2 as explained below. Main factors 122 

were ‘mycorrhizal inoculation, AMF’ (inoculated, +M or non-inoculated, -M, plants); 123 

‘water regime, W’ (well watered, WW, or water regime equivalent to ½ of well 124 

watered conditions, ½ WW); and ‘CO2 concentration in the atmosphere, CO2’ (ambient, 125 

ACO2, or elevated, ECO2, carbon dioxide concentration in the air). 126 

 127 

a) Mycorrhizal inoculation, AMF 128 

At transplanting, half of the plants (72 plants in 24 pots) were inoculated with the 129 

mycorrhizal inoculum ‘Glomygel Intensivo’ (Mycovitro S.L., Pinos Puente, Granada, 130 

Spain) (+M plants). The concentrated commercial inoculum derived from an in vitro 131 

culture of the AMF Rhizophagus intraradices (Schenck and Smith) Walker & Schüβler 132 

comb. nov. (Krüger et al., 2012) and contained around 2,000 mycorrhizal propagules 133 

(inert pieces of roots colonized by AMF, spores and vegetative mycelium) per mL of 134 

inoculum. In order to facilitate its application, the concentrated commercial inoculum 135 

was diluted with distillate water until obtaining a resultant mycorrhizal inoculum with 136 

around 250 propagules per mL. Each +M plant received 8 mL of the diluted mycorrhizal 137 

inoculum close to the roots thus making a total of 2,000 propagules. A filtrate was 138 

added to plants that did not receive the mycorrhizal inoculum (-M plants, 72 plants in 139 

24 pots) in an attempt to restore other soil free-living microorganisms accompanying 140 

AMF. The filtrate was obtained by passing diluted mycorrhizal inoculum through a 141 

layer of 15-20 µm filter papers (Whatman, GE Healthcare, UK) and each –M plant 142 

received 8 mL of filtrate close to the roots.  143 

 144 
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b) Water regime, W 145 

Two different irrigation regimes were imposed at transplanting. Twelve pots with 146 

plants inoculated with AMF (36 +M plants in total) and 12 pots with plants non-147 

inoculated with AMF (36 –M plants in total) were always maintained under optimal 148 

irrigation and kept as well-watered (WW) controls. Well-watered plants received 2 L of 149 

Hoagland nutrient solution (Arnon and Hoagland 1939) and 4 L of distilled water per 150 

pot and week. Distilled water was added in order to avoid excessive salt accumulation. 151 

Other 12 pots with plants inoculated with AMF (36 +M plants in total) and 12 pots with 152 

plants non-inoculated with AMF (36 –M plants in total) were grown under an irrigation 153 

regime equivalent to 1/2 of optimal irrigation (1/2 WW) and received 2 L of Hoagland 154 

nutrient solution and 1 L of distilled water per pot and week.  155 

 156 

c) CO2 concentration in the atmosphere, CO2 157 

At transplanting all pots were transferred to four [CO2] controlled greenhouses 158 

located at the University of Navarra campus (42.80 N, 1.66 W; Pamplona, Spain). The 159 

design of the greenhouses was similar to that described by Sanz-Sáez et al. (2012) and 160 

based on Aranjuelo et al. (2005). Inside the greenhouses, the pots were placed in holes 161 

made in the soil in order to provide for natural temperature fluctuations, thus 162 

simulating the temperature differences observed between shoots and roots under 163 

field conditions (Rawson et al. 1995). In the two ambient CO2 (ACO2) greenhouses no 164 

CO2 was added and [CO2] in the atmosphere was maintained at ambient conditions 165 

(~360 μmol mol-1). In the two greenhouses with elevated CO2 (ECO2), [CO2] was 166 

increased to ~700 μmol mol-1 by injecting pure CO2 (purity up to 99.99%) from cylinder-167 

gases (34 L of CO2 per cylinder) at the two inlet fans during the light hours. Injection of 168 
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CO2 to greenhouses began when light intensity was equal or superior to 5 watts m-2 as 169 

measured by a Silicon Pyranometer PYR-S (APOGEE Instruments, Inc., Logan, UT, USA) 170 

making a total of 13-15 h of high CO2 a day from April to June. The CO2 was provided 171 

by Air Liquide (Bilbao, Spain). The [CO2] was continuously monitored using a Guardian 172 

Plus gas monitor (Edinburgh Instruments Ltd, Livingston, UK). The monitor’s signal was 173 

fed into a proportional integrative differential controller that regulated the opening 174 

time (within a 10 s cycle) of a solenoid valve that injected CO2 into both inlet fans. Six   175 

–M WW pots (18 plants), six –M ½ WW pots (18 plants), six +M WW pots (18 plants) 176 

and six +M ½ WW pots (18 plants) were placed either at ACO2 or ECO2 greenhouses 177 

thus making a total of eight different treatments: –M WW ACO2; –M ½ WW ACO2; +M 178 

WW ACO2; +M ½ WW ACO2; –M WW ECO2; –M ½ WW ECO2; +M WW ECO2; +M ½ WW 179 

ECO2. In order to prevent the CO2 effect being confounded with greenhouse effects 180 

(De Luis et al. 1999), we used two ACO2 greenhouses and two ECO2 greenhouses and 181 

the six pots belonging to the same treatment were divided into the two greenhouses 182 

with equal atmospheric CO2 concentration (three pots, nine plants in every 183 

greenhouse). Data obtained for the same treatment from the two equivalent 184 

greenhouses were then mixed for statistical analyses.  185 

 186 

Growth and water status parameters and mycorrhizal analyses 187 

 188 

Plants were harvested at tillering on 12th June 2013, 65 days after transplanting to 189 

pots, when they had main shoot and three tillers (growth stage 23 according to Zadoks 190 

scale, 1974). Number of leaves and tillers per plant were recorded. Then shoots and 191 

roots from all plants (18 plants per treatment) were immediately separated in order to 192 
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estimate their fresh weight (FW). Afterwards, shoots of ten plants randomly chosen 193 

per treatment were frozen (-20ºC) pending analyses of proline, proteins and starch; 194 

roots of these ten plants were kept fresh and then cleared and stained according to 195 

Phillips and Hayman (1970) for visualizing mycorrhizal structures. The other eight 196 

plants of each treatment were used for estimating biomass and water content in 197 

shoots and roots and sugars in leaves. Dry matter (DM) of shoots and roots was 198 

determined after drying plant material in the oven at 80ºC until weight was constant. 199 

Water content (WC) was calculated as shoot or root FW – shoot or root DM/shoot or 200 

root DM and results were expressed as grams of water per gram of shoot or root DM. 201 

 202 

Biochemical analyses 203 

Four samples (each one equivalent to 0.2 g DM of leaves from a pool of eight plants) 204 

for soluble carbohydrate analyses were freeze crushed and polar compounds were 205 

extracted into 1 mL aqueous 80% ethanol at 80ºC, in three steps, each lasting 20 min 206 

(Jiménez et al. 2011). The mixture of each step was centrifuged for 5 min at 14,000 x g 207 

and slurries were pooled. Ethanol was evaporated under vacuum in a speed vac 208 

system (Thermo Fisher Scientific Inc., Waltham, MA, USA) and dry extracts were 209 

solubilized in 500 μL double-distilled water. The soluble carbohydrates of the samples 210 

were purified using about 3.5 g g-1 plant material ion exchange resins (Bio-Rad AG 50 211 

W-X8 Resin 200-400 mesh hydrogen form, Bio-Rad AG 1-X4 Resin 200-400 chloride 212 

form). The samples were concentrated to 200 μL, filtered through a 0.22 μm filter and 213 

20 μL were injected and analyzed by high-performance liquid chromatography (HPLC), 214 

using Ca-column (Aminex HPX-87C 300 mm x 7.8 mm column Bio-Rad) flushed with 0.6 215 

mL min-1 double distilled water at 85ºC with a refractive index detector (Waters 2410, 216 
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Milford, MA, USA). Concentrations of the main carbohydrates, raffinose, sucrose, 217 

galactinol, glucose, xylose, fructose and sorbitol were calculated for each sample using 218 

mannitol as an internal standard since it was not present in pearl millet samples. 219 

Carbohydrate quantification was performed with the Empower Login software, Waters 220 

(Millford, Mass, USA) using standards of analytical grade from Panreac Química S.A. 221 

(Barcelona, Spain) and Sigma-Aldrich (Schnelldorf, Germany). Concentrations of 222 

carbohydrates were expressed as mg g-1 DM. 223 

Starch, proline and total soluble proteins were quantified in potassium phosphate 224 

buffer (KPB) (50 mM, pH = 7.5) extracts of leaves (1 g FW, ten samples per treatment). 225 

These extracts were filtered through four cheese cloth layers and centrifuged at 38,720 226 

x g for 10 min at 4ºC. The pellet was used for starch determination (Jarvis and Walker 227 

1993). The supernatant was collected and stored at 4ºC for protein and proline 228 

determinations. Total soluble proteins were measured by the protein dye-binding 229 

method of Bradford (1976) using bovine serum albumin (BSA) as standard. Free proline 230 

was estimated by spectrophotometric analysis at 515 nm of the ninhydrine reaction 231 

(Irigoyen et al. 1992). Results were expressed as mg of starch or total soluble proteins 232 

per gram of DM and μmol of proline per gram of DM.  233 

 234 

Statistical analysis 235 

 236 

Data were subjected to a three-factor ANOVA (factorial 2 x 2 x 2) (SPSS v. 15.0). The 237 

variance was related to the main treatments (atmospheric CO2 concentration, CO2, 238 

water regime, W, and AMF inoculation, AMF) and to the interaction between them 239 

(CO2 × W, CO2 × AMF, W × AMF, CO2 × W × AMF). Means ± standard errors (SE) were 240 
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calculated and, when the F ratio was significant (P ≤ 0.05), a Duncan Multiple Range 241 

Test was applied. Tests were considered significant at P ≤ 0.05. 242 

 243 

Results 244 

 245 

Growth and water status parameters and mycorrhizal analyses 246 

 247 

When cultivated at ACO2 and optimal irrigation (WW), the inoculation of AMF (+M) 248 

decreased dry matter production in both shoots and roots in comparison with the non-249 

inoculated controls (-M) (Table 1). Limited irrigation (½ WW) strongly decreased shoot 250 

FW of -M millet plants compared with the well-watered controls, being the reduction 251 

in shoot FW a consequence of decreased shoot biomass; the accumulation of water in 252 

aerial tissues was similar under optimal and restricted irrigation (Table 1). However, 253 

limited irrigation did not have a significant negative effect on plant biomass when 254 

millet was inoculated with AMF (+M plants). Inoculated plants subjected to limited 255 

water supply (+M, ½ WW) achieved similar development of shoots and roots than the 256 

well-watered non-inoculated (-M, WW) plants (Table 1). 257 

The exposition of -M plants to ECO2 under optimal irrigation (WW) decreased the 258 

number of leaves per plant and reduced the root FW in comparison with the non-259 

inoculated well-watered plants (-M, WW) grown at ACO2 (Table 1). When exposed to 260 

ECO2, mycorrhizal inoculation (+M) caused decreases in both shoot and root biomass 261 

under either well-watered or restricted water supply conditions compared to the non-262 

inoculated (-M) controls (Table 1).  263 
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Microscopic observations of cleared and stained roots revealed that there were 264 

very few fungal structures (vesicles) colonizing root tissues (Fig. 1). 265 

 266 

Non-structural sugars in leaves 267 

 268 

Table 2 shows the concentrations of individual soluble sugars, total soluble sugars 269 

(TSS) and starch determined in leaves of P. glaucum. Raffinose, sucrose, glucose, 270 

xylose, fructose and sorbitol were present in leaves of pearl millet plants, regardless 271 

they were (+M) or not (-M) inoculated with AMF, the water regime and the 272 

concentration of CO2 in the atmosphere.  273 

At ACO2 and optimal irrigation (WW), the levels of non-structural sugars (soluble 274 

sugars and starch) were significantly lower in plants inoculated with AMF (+M) than in  275 

-M plants. Restricted water supply (½ WW) caused a significant decrease in the levels 276 

of soluble sugars in –M plants, being reductions especially strong in sucrose and 277 

glucose. In contrast, +M plants accumulated higher quantities of TSS when subjected 278 

to water deficit and increases mainly affected to the levels of sucrose. 279 

ECO2 modified the proportion of most individual sugars. Under full irrigation (WW), 280 

-M plants accumulated similar amounts of TSS at ambient (25.68 mg g-1 DM) and 281 

elevated (25.32 mg g-1 DM) CO2; however, ECO2 strongly decreased sucrose 282 

concentrations and sharply enhanced fructose levels. In well-watered inoculated 283 

plants (WW, +M), ECO2 favoured the accumulation of TSS (20.48 mg g-1 DM under 284 

ECO2 compared with 11.40 mg g-1 DM at ACO2). The application of  limited irrigation (½ 285 

WW) to -M millet plants under ECO2 increased the concentration of TSS in leaves 286 

(33.28 mg g-1 DM) in comparison with well-watered –M plants (25.32 mg g-1 DM), 287 
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being such enhancement mainly due to the significant increase in sucrose (12.63 mg g-1 288 

DM under ECO2 and 3.79 mg g-1 DM at ACO2). In inoculated plants (+M) cultivated 289 

under ECO2, water restriction (½ WW) induced the accumulation of starch and the 290 

reduction of TSS (10.84 mg starch g-1 DM, 11.58 mg TSS g-1 DM) in comparison with 291 

well-watered inoculated (WW, +M) plants (3.67 mg starch g-1 DM, 20.48 mg TSS g-1 292 

DM). 293 

 294 

Proline and total soluble proteins in leaves 295 

 296 

Reduction of water amount induced the accumulation of proline in shoots of both non-297 

inoculated (-M) and inoculated (+M) pearl millet plants when grown at ACO2 (Fig. 2a) 298 

(Table 3); under these conditions (ACO2 and ½ WW) +M plants had higher levels of 299 

proline in leaves than –M plants. Under ECO2, +M plants always accumulated higher 300 

amount of proline than –M plants (Fig. 2a), although the levels were lower than those 301 

measured in +M plants subjected to restricted irrigation at ACO2. Non-inoculated –M 302 

plants grown at ECO2 showed lower proline leaf concentration than –M plants 303 

cultivated at ACO2. 304 

Total soluble proteins in leaves of –M plants decreased as a consequence of the 305 

interaction between reduced water supply and ECO2 (Fig. 2b)(Table 3). In +M plants, 306 

ECO2 was the factor that caused reductions in the levels of proteins under either 307 

optimal or restricted irrigation (Fig. 2b) (Table 3).  308 

 309 

 310 

 311 
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Discussion 312 

 313 

Water deficit is one of the major factors limiting crops production in the world and it 314 

also affects forage yield and biomass production of millet (Winkel et al. 1997, 2001), 315 

which is in accordance with the strong decreases in both shoot and root DM and 316 

number of leaves observed in –M millet plants grown at ACO2 and subjected to 317 

restricted irrigation in comparison with plants cultivated under optimal water regime. 318 

Our results also demonstrated the beneficial influence of mycorrhizal inoculation on 319 

plant growth when millet was subjected to water deficit at ACO2 conditions. This 320 

positive effect was not only a consequence of improved water content in aerial tissues 321 

of +M plants but was also due to enhanced biomass in +M plants. It has been 322 

described that the beneficial effect of AMF on the development of host plants is more 323 

evident under adverse than under optimal growth conditions (Goicoechea et al. 2004). 324 

Enhanced water uptake by fungal hyphae and/or improved whole plant, soil-to-root or 325 

root–to-leaf hydraulic conductance have been found to favour water status in plants 326 

associated with AMF and subjected to drought (Augé 2001). In addition, mycorrhizal 327 

symbiosis can help plants to maintain levels of mineral nutrients in tissues under water 328 

deficit (Goicoechea et al. 1997). The increased biomass in +M than in –M plants 329 

subjected to limited water supply at ACO2 could also be a consequence of improved 330 

photosynthesis as suggested by the higher concentration of TSS in pearl millet plants 331 

inoculated with AMF (Sánchez-Díaz et al. 1990). This accumulation of TSS together 332 

with increased proline concentrations in shoots of +M millet could help these plants to 333 

store greater amount of water in tissues than –M plants grown at ACO2 and exposed to 334 

reduced irrigation (Seki et al. 2007). Increased proline accumulation in P. glaucum 335 
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associated with AMF has also been reported by Borde et al. (2011) in plants grown 336 

under salinity stress condition. In addition, +M plants showed higher concentrations of 337 

proteins in shoots than –M plants when cultivated under restricted irrigation and 338 

ACO2, which indicates greater quality of +M pearl millet to be used as forage for cattle 339 

(Lara and Andreo 2011). Reduced protein contents have been found in plants 340 

undergoing water stress and cultivated either at ambient or under elevated CO2 341 

(Irigoyen et al. 1992; De Luis et al. 1999; Baslam and Goicoechea 2012) and such 342 

decreases can be alleviated by mycorrhizal symbiosis (Baslam and Goicoechea 2012).  343 

The abovementioned positive effects of AMF on growth and physiology of plants 344 

undergoing water deficit at ACO2 occurred without being the roots highly colonized by 345 

AMF at harvesting. Vesicles were the main fungal structures observed in pearl millet 346 

roots suggesting that mycorrhizal symbiosis in our plants was at final stages of its 347 

development. Some authors have reported that, in cereals, the percentage of 348 

mycorrhizal colonization can strongly vary according to the phenological stage of the 349 

host plant (Mohammad et al. 1998). In addition, Krishna et al. (1985) reported that 350 

percentage of root colonized by mycorrhizal fungi strongly differed between different 351 

genotypes of Pennisetum americanum and so did phosphorus uptake and growth 352 

responses of host plants to mycorrhizal symbiosis. Moreover, the mere presence of 353 

AMF in the rhizosphere may have affected rooting patterns of inoculated pearl millet 354 

as well as the supply of available nutrients to plants, thereby modifying the quality and 355 

quantity of root exudates, which may have affected fungal and microbial activity 356 

(Barea et al. 2005). However, the beneficial effect of mycorrhizal inoculation on 357 

growth, water status and contents of sugars and proteins in leaves of pearl millet 358 

plants subjected to water restriction disappeared when plants were exposed to ECO2 359 
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in the atmosphere. Baslam et al. (2012), working with lettuces grown either at ambient 360 

or under elevated CO2, noted that AMF increased the levels of some secondary 361 

metabolites in the edible part of lettuces only when plants were cultivated at ACO2 and 362 

suggested that carbon partitioning between primary and secondary metabolism in 363 

mycorrhizal plants was conditioned by the level of CO2 in the atmosphere. Plants 364 

frequently allocate more resources to mycorrhizal fungi under increased CO2, which 365 

may lead to greater extraradical hyphal growth and increased mycorrhizal respiration 366 

(Mohan et al. 2014), presumably in detriment of plant growth and accumulation of 367 

carbohydrates and other primary metabolites in host plant tissues. 368 

Hamerlinck et al. (1997) found that photosynthetic rates increased in the C4 grass 369 

Andropogon gerardii exposed to ECO2 but only when plants were also subjected to 370 

drought. Cody Markelz et al. (2011), working with maize, did not observe any 371 

stimulation of photosynthetic rates by ECO2 when water availability was high; 372 

however, ECO2 delayed and relieved both stomatal and non-stomatal limitations to 373 

photosynthesis during water deficit. Likewise, the review by Lara and Andreo (2011) 374 

mentions several scientific works in which C4 plants grown under Free-Air Carbon 375 

dioxide Enrichment (FACE) exhibited increased photosynthetic rates only during 376 

drought or under conditions of atmospheric vapour pressure deficits. In our study, the 377 

highest concentrations of TSS (together with high levels of starch) were found in –M 378 

pearl millet plants simultaneously exposed to ECO2 and limited water supply, 379 

suggesting improved photosynthesis in these plants in comparison with –M plants 380 

grown at ACO2 or under both ECO2 and optimal irrigation. However, when determined 381 

the individual carbohydrate composition of –M plants grown under ECO2 and different 382 

water regimes, we found that amount of sucrose accounted 38% of TSS in plants 383 
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subjected to restricted irrigation whereas the contribution of glucose and fructose to 384 

TSS was 44%; in well-watered plants, only 15% of TSS corresponded to sucrose and 385 

more than 70% of TSS corresponded to glucose (21%) and fructose (52%). The larger 386 

concentration of monosaccharides (glucose and fructose) in leaves of -M pearl millet 387 

exposed to ECO2 under high water availability might be advantageous for a more 388 

efficient bioethanol production because hexoses can be converted at higher yields to 389 

ethanol than most other carbohydrates (Dien et al. 2006, 2011). In contrast with 390 

findings of Baslam et al. (2014) in the forage legume alfalfa (a C3 species), mycorrhizal 391 

symbiosis did not enhance the potential of pearl millet for bioethanol conversion in 392 

plants cultivated under high atmospheric CO2 concentration, irrespective of irrigation 393 

regime. 394 

 395 

Conclusions 396 

 397 

Our results demonstrate that biomass production and biochemical characteristics of P. 398 

glaucum foliage can be modulated by biotic and abiotic factors applied to plants thus 399 

affecting the quality of this crop for different applications. When plants are cultivated 400 

at ACO2, inoculation of AMF in the substrate helped alleviating effects of water deficit 401 

on P. glaucum without any significant decrease in biomass production and leaf protein 402 

content, being this effect significant even without achieving high mycorrhizal 403 

colonization of roots. However, this beneficial effect of AMF inoculation disappeared 404 

under ECO2. Under optimal irrigation, ECO2 in the atmosphere can enhance the 405 

proportion of monosaccharides in leaves of pearl millet non-inoculated with AMF (-M 406 

plants), thus improving the quality of this plant material for bioethanol production.  407 
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Table 1 Growth and water status in Pennisetum glaucum non-inoculated (-M) or inoculated (+M) with arbuscular mycorrhizal fungi (AMF), cultivated 
either under well-watered conditions (WW) or limited irrigation (½ WW), and grown either at ambient (ACO2) or under elevated (ECO2) CO2. Values are 
means (n = 18 for FW, leaves per plant and tillers per plant, n = 8 for DM and WC) ± SE separated by Duncan Multiple Range Test (P ≤ 0.05); different 
letters indicate significant differences within treatments as affected by the main factors ‘atmospheric CO2, CO2, ‘water regime, W’ and ’mycorrhizal 
inoculation, AMF’ and their interactions. ns = not significant; * and ** = significant at P ≤ 0.05 and P ≤ 0.01, respectively. FW = fresh weight; DM = dry 
matter; WC = water content. 

Treatments Shoot FW Shoot DM Root FW Root DM Leaves per 
 plant 

Tillers per 
plant Shoot WC Root WC 

g plant-1   g H2O g-1 DM 
ACO2  

 
WW -M 68.37 ± 2.40 ab 6.03 ± 0.22 ab 20.02 ± 0.88 a 1.56 ± 0.07 a 10.77 ± 0.12 a 3.50 ± 0.06 a 11.20 ± 0.38 ab 11.90 ± 0.51 bc 

+M 56.41 ± 1.12 bc 4.41 ± 0.07 cd 16.73 ± 0.63 ab 1.03 ± 0.05 cd   8.62 ± 0.36 b 2.91 ± 0.10 ab 12.04 ± 0.35 a 14.91 ± 0.69 ab 
½ WW -M 45.55 ± 1.54 c 3.61 ± 0.11 e 10.89 ± 0.32 c 0.71 ± 0.02 ef   8.75 ± 0.11 b 2.75 ± 0.10 ab 11.53 ± 0.23 ab 14.07 ± 0.64 b 

+M 63.14 ± 1.19 ab 5.20 ± 0.18 ab 17.97 ± 1.01 ab 1.18 ± 0.05 bc 10.85 ± 0.12 a 2.91 ± 0.05 ab 11.11 ± 0.39 ab 14.04 ± 0.53 b 
ECO2  

 
WW -M 76.26 ± 1.30 ab 6.35 ± 0.13 a 12.79 ± 0.33 bc 1.28 ± 0.03 ab   8.89 ± 0.27 b 3.16 ± 0.10 a   9.85 ± 0.34 b   9.01 ± 0.41 c 

+M 56.36 ± 1.46 bc 5.04 ± 0.17 bc 12.97 ± 0.31 bc 0.85 ± 0.02 de   7.72 ± 0.13 b 2.25 ± 0.07 b 10.69 ± 0.28 ab 14.87 ± 0.61 ab 
½ WW -M 70.17 ± 1.43 ab 6.45 ± 0.09 a 19.75 ± 0.65 a 1.47 ± 0.03 ab   9.60 ± 0.15 ab 3.08 ± 0.02 a 10.13 ± 0.31 b 12.33 ± 0.55 bc 

+M 49.13 ± 1.00 c 3.82 ± 0.07 de   8.50 ± 0.22 c 0.44 ± 0.22 f   8.56 ± 0.26 b 2.91 ± 0.09 ab 12.40 ± 0.37 a 18.03 ± 0.76 a 
Main effects 
CO2         

ACO2  59.12 ± 1.93  4.87 ± 0.17 16.77 ± 0.60 1.16 ± 0.07   9.65 ± 0.18 2.92 ± 0.08 11.47 ± 0.27 18.56 ± 2.97 
ECO2  62.42 ± 1.40 5.50 ± 0.15 14.03 ± 0.46 1.06 ± 0.05   8.59 ± 0.20 2.75 ± 0.07 10.77 ± 0.33 13.56 ± 0.92 

W         
WW 64.55 ± 1.98 5.58 ± 0.19 15.74 ± 0.33 1.21 ± 0.07   8.90 ± 0.22 2.85 ± 0.08 10.94 ± 0.28 17.51 ± 2.02  

½ WW 56.99 ± 1.23 4.79 ± 0.13 15.06 ± 0.74 1.00 ± 0.05   9.34 ± 0.16 2.81 ± 0.07 11.29 ± 0.34 14.62 ± 0.72  
AMF         

-M 64.36 ± 1.83 5.69 ± 0.19 16.22 ± 0.62 1.30 ± 0.06   9.40 ± 0.16 3.02 ± 0.07 10.68 ± 0.30  11.83 ± 0.48 
+M 57.18 ± 1.42 4.68 ± 0.29 14.59 ± 0.47 0.92 ± 0.04   8.84 ± 0.22 2.64 ± 0.08 11.56 ± 0.30  20.30 ± 2.95 

         
CO2 ns ns * ns * ns ns ns 
W * * ns * ns ns ns * 

AMF ** ** ns ** ns * * ** 
CO2 × W ns ns * ns ns * ns ns 

CO2 × AMF ** ** ** ** ns ns ns * 
W × AMF * ns ns ** * * ns ns 

CO2 × W × AMF ** ** ** ** * ** ns ns 



 

Table 2 Carbohydrates in leaves of Pennisetum glaucum non-inoculated (-M) or inoculated (+M) with arbuscular mycorrhizal fungi (AMF), cultivated 
either under well-watered conditions (WW) or limited irrigation (½ WW), and grown either at ambient (ACO2) or under elevated (ECO2) CO2. Values 
are means (n = 4) ± SE separated by Duncan Multiple Range Test (P ≤ 0.05); different letters indicate significant differences within treatments as 
affected by the main factors ‘atmospheric CO2, CO2, ‘water regime, W’ and ’mycorrhizal inoculation, AMF’ and their interactions. ns = not 
significant; * and ** = significant at P ≤ 0.05 and P ≤ 0.01, respectively. DM = dry matter; TSS = total soluble sugars. 

Treatments Raffinose Sucrose Glucose Xylose Fructose Sorbitol TSS Starch 
mg g-1 DM 

ACO2  
 

WW -M 2.08 ± 0.20 a 12.59 ± 1.46 a   4.06 ± 0.71 a 1.09 ± 0.21 b   5.81 ± 1.11 c 0.12 ± 0.02 a 25.68 ± 3.59 b 11.54 ± 1.39 ab 
+M 1.25 ± 0.30 c   5.72 ± 1.29 c   1.64 ± 0.16 d 0.51 ± 0.08 c   2.02 ± 0.21 d 0.13 ± 0.01 a 11.40 ± 1.98 e   8.39 ± 1.10 b 

½ WW -M 1.61 ± 0.61 c   6.74 ± 3.23 c   2.58 ± 0.35 cd 0.67 ± 0.10 bc   3.71 ± 0.73 cd 0.13 ± 0.01 a 14.81 ± 4.90 d   9.35 ± 1.34 b 
+M 2.08 ± 0.33 a 10.79 ± 1.89 b   2.59 ± 0.38 cd 0.69 ± 0.10 bc   3.63 ± 0.60 cd 0.11 ± 0.01 ab 20.96 ± 2.70 c   8.46 ± 1.04 b 

ECO2  
 

WW -M 0.65 ± 0.05 d   3.79 ± 0.43 d   5.43 ± 1.11 a 2.05  ± 0.40 a 13.12 ± 2.89 a 0.13 ± 0.04 a 25.32 ± 4.79 b 10.54 ± 1.33 ab 
+M 1.59 ± 0.28 b   9.65 ± 2.22 b   3.44 ± 0.81 bc 1.04 ± 0.22 b   4.63 ± 1.34 cd 0.08 ± 0.02 b 20.48 ± 4.74 c   3.67 ± 0.47 c 

½ WW -M 1.64 ± 0.65 b 12.63 ± 3.42 a   5.69 ± 1.66 a 1.79 ± 0.48 a   9.10 ± 2.67 b 0.14 ± 0.03 a 33.28 ± 6.47 a 13.89 ± 1.84 a 
  +M 0.57 ± 0.29 d   2.94 ± 0.95 d   1.79 ± 0.24 d 0.72 ± 0.14 bc   3.10 ± 1.57 d 0.12 ± 0.01 a 11.58 ± 2.18 e 10.84 ± 0.31 ab 

Main effects         
CO2         

ACO2 1.76 ± 0.10 9.01 ± 0.77 2.72 ± 0.24 0.74 ± 0.07 3.80 ± 0.36 0.13 ± 0.01 18.21 ± 1.47 9.44 ± 0.49 
ECO2  1.12 ± 0.14 7.26 ± 1.07 4.09 ± 0.44 1.41 ± 0.16 7.49 ± 1.13 0.12 ± 0.01 22.67 ± 2.09 9.74 ± 1.25 

W         
WW 1.40 ± 0.14 7.94 ± 0.89 3.65 ± 0.37 1.18 ± 0.15 6.40 ± 1.09 0.12 ± 0.01 20.72 ± 1.56 8.54 ± 0.83 

½ WW 1.48 ± 0.15 8.32 ± 1.02 3.17 ± 0.41 0.97 ± 0.15 4.89 ± 0.78 0.13 ± 0.01 20.16 ± 2.18 10.64 ± 0.99 
AMF         

-M 1.50 ± 0.14 8.94 ± 1.03 4.45 ± 0.35 1.41 ± 0.16 7.94 ± 1.00 0.13 ± 0.01  24.78 ± 1.77 11.33 ± 0.91  
+M 1.38 ± 0.14 7.32 ± 0.83 2.37 ± 0.22 0.75 ± 0.07 3.35 ± 0.40 0.12 ± 0.01  16.11 ± 1.25  7.85 ± 0.76 

         
CO2 ** ** ** ** ** ns ** ns 
W ns * * ns * ns ns * 

AMF ns ** ** ** ** * ** ** 
CO2 × W * ns ns ns * * ns ** 

CO2 × AMF * ns ** ** ** ns ** ns 
W × AMF * ** ns ns * ns ns ns 

CO2 × W × AMF ** ** ** ns ns ns ** ns 



 

Table 3 Significance of the main factors ‘atmospheric CO2, CO2, ‘water regime, W’ and ’mycorrhizal inoculation, AMF’ and their interactions 

(Duncan Multiple Range Test, P ≤ 0.05) on proline and protein concentrations in leaves of Pennisetum glaucum non-inoculated (-M) or 

inoculated (+M) with arbuscular mycorrhizal fungi (AMF), cultivated either under well-watered conditions (WW) or limited irrigation (½ WW), 

and grown either at ambient (ACO2) or under elevated (ECO2) CO2. ns, not significant; * and **, significant at P ≤ 0.05 and P ≤ 0.01, respectively.  

 

 Treatments 
 

Proline  
 

 
Proteins  

 
 

Main effects    
CO2    

ACO2 3.03 ± 0.45   176.92 ±   8.38  
ECO2  2.09 ± 0.40   146.49 ± 10.84  

W    
WW 2.01 ± 0.27   165.97 ±   9.68  

½ WW 3.11 ± 0.53   157.44 ± 11.07  
AMF    

-M 2.13 ± 0.35   158.87 ± 11.23  
+M 2.99 ± 0.50   164.54 ±   9.55  

    
CO2 ** **  
W ** ns  

AMF ** ns  
CO2 × W ** **  

CO2 × AMF ns *  
W × AMF * ns  

CO2 × W × AMF ns ns  



 

Figure captions 551 

 552 

Figure 1 Microscopic images (× 100) of roots belonging to plants inoculated (+M) with 553 

arbuscular mycorrhizal fungi (AMF). Fungal structures: v = vesicle.  554 

 555 

Figure 2 Concentrations of proline (μmol g-1 DM) (a) and total soluble proteins (mg g-1 556 

DM) (b) in leaves of Pennisetum glaucum inoculated (+M, black bars) or not (-M, white 557 

bars) with arbuscular mycorrhizal fungi (AMF), cultivated under either well-watered 558 

(WW) or restricted irrigation (½ WW) conditions, and grown at either ambient (ACO2) 559 

or under elevated (ECO2) CO2. Values are means (n = 10) ± SE. Within each graph, 560 

histograms with the same letter indicate that values did not differ significantly (P ≤ 561 

0.05).  562 
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