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Abstract: Inductor—capacitor (LC) passive wireless sensors are widely used for remote sensing.
These devices are limited in applications where multiparameter sensing is required, because of
the mutual coupling between neighboring sensors. This article presents two effective decoupling
techniques for multiparameter sensing, based on partially overlapped sensors and decoupling
coils, which, when combined, reduce the mutual coupling between sensors to near zero.
A multiparameter LC sensor prototype with these two decoupling mechanisms has been designed,
simulated, and measured. This prototype is capable of simultaneously measuring four parameters.
The measurements demonstrate that the changes in capacitance in one individual sensor do not affect
the measurements of the other sensors. This principle has been applied to simultaneous wear sensing
using four identical wear sensors.
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1. Introduction

Wireless sensors are useful and desirable in many emerging and industrial applications. As these
systems have no physical connections between the sensing components and the processing equipment,
they are highly versatile for operating in harsh environments, especially when physical access is
difficult. Wireless sensors can operate in an active or passive mode. Active sensors are powered with
an internal power source, whereas passive devices receive power remotely. While active sensors can be
read from longer distances, they have additional installation and maintenance costs and battery lifetime
limitations [1]. On the other hand, passive wireless sensors have limited functionality compared
with active ones, but are generally cheaper, easier to implement, and last longer. In addition to this,
the implementation of wireless multiparameter passive sensors would increase the density of sensing,
and simplify monitoring and processing, which are key issues in the Internet of Things (IoT) world.

There are many types of wireless passive sensors, and a wide range of them are powered
magnetically or electromagnetically. An inductor—capacitor (LC) wireless sensor is one of these
passive devices, which can remotely sense the parameters of interest, such as humidity, temperature,
and pressure [2—4]. These sensors use an LC resonant tank to remotely measure a parameter. The sensing
principle is usually based on changes in the capacitance as well as in the inductance, which cause
a variation in the resonant frequency. The frequency shift is wirelessly measured using an external
magnetically coupled coil. LC sensors show some of the advantages of capacitive sensors, such as
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low power consumption, low temperature drift and good long-term stability, but they also have other
drawbacks, like a reduced read range.

Conventional LC sensors are limited in cases of multiparameter sensing [5]. In these cases,
more than one LC sensor and readout coil are required. However, an array of separated LC sensors
would occupy a large area and could need an individual readout coil for each sensor [6]. Several efforts
have been made to achieve compact LC multiparameter sensors. Using only a readout coil and some
LC sensors with stacked inductors to reduce the sensing area [7], or dividing the inductor in the sensor
into two or more stacked resonant sections [8], results in a shifting or even loss of the individual
resonant frequencies as a result of the strong magnetic coupling between the stacked inductors. An LC
sensor formed by two partially overlapped embedded inductors with a high overlapping area has also
been proposed [9], but the crosstalk among the two inductors is non-ignorable.

The real and imaginary parts of the input impedance in a single LC tank have been employed to
simultaneously measure two magnitudes [10], but this method is not feasible with multiple parameters.
Additionally, a decoupling scheme for algorithmically solving the crosstalk between two sensors
has been proposed by the authors of [11]. This method is limited to two parameters and makes the
readout system more complicated. Furthermore, a special inductor structure for stacked inductors
based on the partial inductance theory has also been proposed [7,12] in order to minimize magnetic
coupling between stacked inductances. This concept achieves a compact design, but the magnetic
coupling between each individual LC sensor and the readout coil antenna is drastically reduced; thus,
its sensitivity and read range are shortened. Another option is to integrate a switch into the LC sensor
system [13], and then making a time-domain measurement. The switch is desirable as a passive
element, but this makes the readout and the sensing part more complicated. Recently [14], a branched
inductor structure with a sensitive capacitor connected to each branch has been proposed, but the
measured magnitudes have to still be analytically decoupled.

In this paper, a configuration of multiple partially overlapped LC sensors is proposed (Figure 1).
With this configuration, it is possible to design a specific overlap in order to achieve zero magnetic
coupling between adjacent overlapped LC sensors. Furthermore, the use of a decoupling coil as
a method for decoupling sensors when partial overlapping is not possible has also been applied.
Therefore, a multiparameter sensor with no shifting between the resonant frequencies has been
designed. The proposed configuration allows for reading multiple sensors using the same readout
coil antenna.
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Figure 1. Proposed structure for (a) reader coil and (b) four partially overlapped rectangular
inductor—capacitor (LC) sensors. The reader coil and sensors are printed in a Printed Circuit Board
(PCB). Dotted lines correspond to the bottom layer.

2. Working Principle

In an LC-type passive multiparameter wireless sensor system, coils form the inductors, and each
capacitive sensor is connected to its corresponding inductor, forming a set of LC resonant circuits.
The resonant frequencies of a two parameter LC-passive wireless sensor can be determined through its
equivalent circuit (Figure 2), taking into account the mutual coupling between coils. Mutual coupling
can be described using the coupling coefficients (k;;) between coils i and j.

j = = M)

;

where L; and L; are the self-inductances of coils i and j, respectively, and M;; is the mutual inductance
between coils i and j. From Figure 2, for a two coupled sensor system, an approximate solution can be
obtained for the two resonant frequencies of these sensors [9], as follows:
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where ky; is the coupling coefficient between the two sensors, and L1 and L, and C; and C, are the
inductances and capacitances, respectively. For two strong-coupled LC sensors (i.e., stacked coils),
the coupling coefficient (k;;) tends to be 1. In this case, according to Equation (2), the two resonant
frequencies tend to be infinite [9], and the following equation is thus used:
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Figure 2. Equivalent circuit and magnitudes for two magnetically coupled LC sensors with a readout
coil antenna.

However, for two weakly-coupled LC sensors, there are two different resonances. When k; is
near zero, the two resonant frequencies of the readout coil tend to be independent, as follows:

_ 1 . _ 1
M= 7 270G @

The coupling coefficient (k1) between the sensors depends on the geometry of the coils and
the relative position between them. There are different ways to have null coupling between two
coils [15,16]. In particular, the most effective and simple method for multiparameter sensing is partial
overlapping (Figure 3a). A null coupling coefficient between two adjacent coils results in a certain
overlap between them. This overlap depends on factors such as the geometry, the thickness of the coil
wire, the relative position, and the axial distance between the overlapped coils. When the overlap is
not possible, another alternative and simple way is by using an additional decoupling coil [16-19] that
transfers and inverts a small portion of the magnetic flux from one LC sensor to the other (Figure 3b).
This inverted flux is able to cancel the magnetic coupling between sensors. Voltage cancellation is
possible when an opposite voltage is induced by the decoupling coil, as follows:

Mp-w-j iy =My -w-j iy &)

where My, is the mutual inductance between LC coils 1 and 2, i; is the electric current in LC coil 1,
My, is the mutual inductance between LC coil 2 and decoupling coil p, and i, is the electric current in
decoupling coil p. Neglecting the resistance of the decoupling coil, the electric current in the decoupling
coil can be calculated as follows:

p=———"1 6)

where My, is the mutual inductance between LC coil 1 and decoupling coil p, and Ly, is the inductance
of coil p. Consequently, from Equation (5), the following equations are achieved:

Mp = ——— @)
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Figure 3. Using (a) partially overlapped coils and (b) a decoupling coil to achieve zero coupling
between two LC sensors.
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This condition must be satisfied in order to achieve null coupling using this method.

The partial overlapping and decoupling coil dimensions can be analytically adjusted using
the partial inductance theory [20], but can also be determined using an electromagnetic simulator.
Although in practice it is difficult to adjust the magnetic coupling exactly to zero, it can be drastically
reduced by these methods. In addition to this, as the resistance of the decoupling coil has been
neglected, it will have a small effect in magnetic decoupling, especially at higher frequencies.

®)

3. Simulation

To demonstrate how the magnetic mutual coupling can be suppressed, an electromagnetic
simulation using the software CST Studio Suite was carried out. First, a structure of four rectangular
sensors without decoupling coils, as described in Figure 3a, was simulated, with d; = 40 mm and
dy = 20 mm, in an 0.8-mm thick FR4 substrate. The trace width was fixed to 1 mm. The inductance
matrix was obtained as a result. The coupling coefficients between the LC sensors could be easily
determined from the inductance matrix using Equation (2). Simulations were carried out in order to
determine the optimum overlapping x, which achieved a zero-coupling coefficient between the LC
sensors. Hence, an optimum overlap of 11.8 mm was determined (Figure 4). Then, two decoupling
coils, p1 and p; (Figure 1), were added to the same sensor structure for the simulation. The dimension
of s = 0 was fixed (Figure 3b). For these decoupling coils, dimensions a; and a; and the trace width
were determined between the non-overlapped coils, in order to satisfy Equation (8). Table 1 shows the
final parameters of the four LC sensors and the two decoupling coils.



Sensors 2019, 19, 5183 60f 13

0,20
X
£ o6
Q
%)
E 0,12
E’ 0,08
]
§ 0,04

0,00

2 4 6 8 10 12 14 16 18
X (mm)

Figure 4. Simulated (CST Studio Suite) coupling coefficient (k) between two overlapped LC sensors as
a function of its overlapping x. The x (mm) magnitude is described in Figure 3.

Table 1. Dimensions of rectangular coils (LC sensors Sy, S, S3, and S4) and decoupling coils (p; and
p2). All of the dimensions are defined in Figure 3. As a result of the symmetry, the four rectangular
coils and the two decoupling coils have equal inductive parameters.

Rectangular Coils Decoupling Coils p; and p;
d; (mm) 40 a; (mm) 18
dp (mm) 20 a, (mm) 5.5
X (mm) 11.8 s (mm) 0
Self-inductance of coil i L; (nH) 91 Self-inductance ofndli;ouplmg coll pLp 73.4
Mutual inductance between overlapped 51 Mutual inductance between coil i and 78
coils i and j Mj; (pH) decoupling coil p Mjp, (nH) ’
Mutual inductance between . . -
non-overlapped coils i and j M; (pH) 825 Coupling coeff1c1.ent befween coil i and 0.0954
. - ) decoupling coil p ki,
Coupling coefficient between
e . 0.0091
non-overlapped coils i and j kj
Trace width (mm) 1 Trace width (mm) 0.6
Substrate FR4 Substrate FR4
Subtrate thickness (mm) 0.8 Subtrate thickness (mm) 0.8

4. Experiments

Two sensor structures (four coils in each) were implemented in a double-sided 0.8 mm-thick
FR4 substrate, according to the values in Table 1. One structure had no decoupling coils (Figure 5a),
while the other did (Figure 5b). Each coil could be connected to one port of the network analyzer by
means of a coaxial cable.
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(a) (b)

Figure 5. Structure of a four partially overlapped rectangular LC sensors for measuring the
sp1 transmission scattering parameter between them: (a) without decoupling coils and (b) with
decoupling coils.

The magnetic coupling between two generic coils, coils 1 and 2, from one structure was
characterized by means of an Agilent 8714ET RF Network Analyzer, by measuring the scattering
transmission parameter, sp1, between them (Figure 6). If the magnetic coupling decreased between the
two coils, the voltage and power transfer between these coils also decreased; and consequently, the sp;
parameter should decrease.

-30
-40
-50
a -60
= 70
& - 821 between two overlapped coils without decoupling coil
80 — s21 between two overlapped coils with decoupling coil
90 -=-521 between two non-overlapped coils without decoupling coil
521 between two non-overlapped coils with decoupling coil
-100
10 20 30 40 50 60

Frequency (MHz)

Figure 6. A comparison of the obtained sj; transmission scattering parameter between two generic
sensors (1 and 2) using partial overlapping and decoupling coils.

Figure 6 shows the s, parameter for two non-overlapped coils without a decoupling coil. Its value
remained small (below —40 dB), but higher than the corresponding value for the overlapped coils.
Figure 6 also shows that the coupling coefficient between two non-overlapped coils can be reduced
to a value comparable to that of two partially overlapped coils, by means of a decoupling coil.
Flux cancellation became more difficult at higher frequencies, because of the self-resonance of the coils.
Furthermore, the decoupling coil had a small effect in the sp; parameter of the overlapped coils at
higher frequencies because of its resistance.

After this experiment, a set of discrete SMD ceramic capacitors, with values of C; = 100 pF,
C, =118 pE, C3 = 150 pE, and C4 = 182 pFE, were separately connected to the four designed inductors
(Figure 1b), forming four LC resonant circuits. A readout coil with a structure as shown Figure 1a
was fixed at 20 mm from the four LC resonant circuits. The resonances of the four-sensor system were
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simultaneously measured by means of an Agilent 8714ET RF Network Analyzer connected to the
readout coil (Table 2). As an example, Figure 7 shows the changes in resonant frequencies when Cs
changed from 150 to 190 pF in the corresponding LC resonant coil.

Table 2. Measured resonant frequencies (from the minimum of sj;) changing C; and Cj values.

The values of C, and Cy4 have also been changed, with identical results.

G G G Cs f f fs f
(pP) (23] (23] (pF) (MHz) (MHz) (MHz) (MHz)
100 118 150 182 53.67 48.92 43.60 39.62

110 118 150 182 51.17 48.90 43.62 39.62

133 118 150 182 46.15 48.95 43.67 39.65

140 118 150 182 45.05 48.92 43.65 39.60

168 118 150 182 40.72 48.87 43.7 39.55

100 118 160 182 53.65 48.90 42.20 39.62

100 118 172 182 53.72 48.90 40.68 39.58

100 118 190 182 53.80 48.92 38.55 39.60

100 118 218 182 53.75 48.90 35.92 39.57

Si1 (dB)

Figure 7. Measured resonant frequencies in the four-parameter LC sensor. The coils are separately

connected to four discrete sets of SMD ceramic capacitors (Cq, Cp, C3, and Cy4). Capacitors Cy, Cp,

and C,4 remain unchanged; and consequently, the resonant frequencies (f;, f;, and f4), respectively,

remain unchanged. Capacitor Cs is changed to values of (a) C3 = 150 pF, (b) C3 = 172 pE

and (c) C3 = 190 pF, changing the resonant frequency (f3).
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5. Application to a Wear Sensor

Finally, four capacitive wear sensors were designed to simultaneously measure the wear in
four different positions of abradable blades. As a wired resistive wear sensor has already been
implemented [21-23], a capacitive analogous version would allow for wireless measurement.

5.1. Capacitive Wear Sensor

The working principle of the designed capacitive wear sensor is shown in Figure 8. This sensor
was located on a 0.5 mm thick FR4 Printed Circuit Board (PCB), with closely spaced interconnected
conductive strips. Each strip was connected to a discrete SMD capacitor, forming a set of capacitors
connected in parallel. As shown in Figure 8, six capacitors were connected in parallel. The sensors
were rigidly fixed on the surface of an abradable blade. Many materials could be used for the
abradable blade, depending on the application. In this case, a carbon fiber abradable blade was
used. Furthermore, each individual capacitive sensor was connected from the metal pad to one
individual partially overlapped coil (Figure 1b), forming four LC resonant wear sensors. When wear
occurred in the blade as a result of contact or friction with another piece, each individual sensor
also suffered similar wear. Then, the strips were progressively removed along the wear direction
(Figure 8b), causing a smaller parallel capacitance. As a result, the resonant frequency of this particular
LC sensor changed.

.Wea.r broken
direction strips Wear
strips

/

Discrete
SMD
Capacitory

Metal pad
PCB

surface

a) b)
Figure 8. Structure of the capacitive wear sensor: (a) before wear occurs and (b) when wear occurs.

5.2. Wear Measurement

Four capacitive wear sensors were calibrated to provide the same resonant frequency without
wear. Assuming that the strips break instantaneously from wear, the resolution of a sensor depends
on the center-to-center spacing between the strips. In this case, the distance between the traces was
fixed at 1 mm. The discrete capacitor values of each sensor were selected so that the variation of the
resonant frequency would be linear with wear. The wear sensitivity was adjusted to 4.5 MHz/mm in
order to be robust in front of the discrete capacitor tolerances, parasitic inductance, and resistance as
a result of the strips and cabling, as well as the possible interactions between the capacitive sensors
when placed close together.

Unlike the previous case in Section 4, the resonant frequencies of all of the sensors without
wearing were adjusted to 22 MHz. As the resonant frequencies were equal in all of the sensors,
each individual sensor was expected to be more sensitive to magnetic coupling with another sensor.
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The wear measurement was done in a laboratory using a carbon fiber blade with four sensors (S1, Sy,
S3, and Sy) fixed on the blade (Figure 9), and the blade was cut to simulate wear. The distance between
the readout coil and the partially overlapped coils was fixed at 6 mm.

Figure 9. Measurement setup. The four capacitive wear sensors are fixed on the blade and connected
with cables to four partially overlapped coils with decoupling coils.

Figure 10 shows the peak resonances obtained for the different values of wear in each sensor,
and their corresponding wear. Before the wear occurred (S;—0 mm, S;—0 mm, S3—0 mm, and S;4—0
mm), the sensors had the same peak resonance at 22 MHz, and consequently, only one peak resonance
was measured by the readout coil. When a sensor suffered (S;) wear, its respective resonant peak would
suffer a frequency shift, but the other sensors provided the same resonant frequency peak at 22 MHz.
Then, the readout coil simultaneously read the two resonant peaks. For example, the measured peak
resonance was 22.15 MHz with no wear (black solid curve in Figure 10), and the measured peak
resonances were 22.02 and 26.5 MHz with 1 mm of wear in sensor S; (black dotted curve in Figure 10).
Two similar resonance peaks were observed when comparing one single sensor (S1) with 1 mm of wear
(black dotted curve in Figure 10, peak resonances at 22.02 and 26.5 MHz) and two sensors (51 and S)
with 1 mm of wear (red curve in Figure 10, peak resonances at 21.975 and 26.725 MHz).
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Figure 10. Measured resonant frequencies with four capacitive wear sensors (S, Sy, S3, and Sy) for
different wears. The actual wear values for each sensor are defined in the legend. The resonant
measured frequencies are associated with a wear (shown at the top of the figure).

In general, for small wear values, minimal differences were observed between the peak resonances
when one or more sensors had the same wear. In any case, this frequency shift should not only be
attributed to the magnetic coupling, but also to the tolerance of the SMD capacitors and the parasitic
inductance of the cables.

The frequency shift between one or more sensors with the same wear became, relatively,
more relevant for higher wearing values (about 2 mm). For example, the peak resonance changed
from 31.125 MHz when S; experienced a wear of 2 mm (blue solid curve in Figure 10), to 30.35 MHz
when S3 experienced a wear of 2 mm (green solid and dotted curves in Figure 10). At these frequency
values, the individual sensor capacitance was small; and the parasitic effects due to the inductance of
the cable in each individual sensor become more relevant. However, the difference observed between
the resonant peaks for the same wear was much smaller than the sensitivity (4.5 MHz/mm).

The read range was short because of the parasitic cable resistance and small coupling coefficient
between the four sensors and the readout coil. Therefore, a balance between the number of parameters
to be measured and the read range has to be taken into account, as the number of sensors reduces the
read range. Other conventional capacitive sensors have to be studied in the future.

6. Conclusions

A novel structure of multiple planar LC sensors with partial overlapping and a decoupling coil is
presented in this article. These two techniques allow for relative compactness and multiparameter
measurement, allowing for a smaller area in the integration of multiple LC sensors. In addition,
they also allow for maintaining near zero coupling between sensors, simplifying the readout system
and the sensing system.

Partial overlapping has been determined using an electromagnetic simulator, in order to minimize
coupling. A very low magnetic coupling has been achieved, obtaining an s,; parameter below —45 dB,
in the range 10-60 MHz. This technique can be used with other geometries, after first carefully
determining the appropriate partial overlap.

The geometry for decoupling coils has also been fixed by using an electromagnetic simulator.
Decoupling coils have allowed for a reduction of between 2 and 14 dB in sp; for two weakly-coupled
coils. Other decoupling geometries can be designed.

A balance between the number of parameters to be simultaneously measured and the magnetic
coupling between the readout coil and each individual sensor has to be taken into account, as the
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more parameters that are measured, the less area each sensor has; thus, reducing the sensitivity and
read range.

This system has been applied to four different simultaneously-measuring LC sensors.
The experimental results show that the resonant frequencies of non-active LC sensors remain unchanged
when the sensing capacitance of an active LC sensor is changed.

This configuration has also been used to successfully monitor wear using four identical capacitive
wear sensors. In this case, the parasitic effects due to cabling had to be taken into account, especially
at higher frequencies. Therefore, it is preferable to directly mount the capacitive sensors as near as
possible to LC coils.
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