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A B S T R A C T   

Due to the expected lack of fossil fuels in near future as well as climate change produced by greenhouse effect as 
consequence of environmental emissions, renewable energy generation, and specifically solar photovoltaic 
generation, has become relevant in present energy generation challenge. Photovoltaic generators have strong 
relationship with solar irradiation and outdoor temperature in energy generation process. These meteorological 
parameters are volatile and uncertain in nature so, unexpected changes on these parameters produce variations 
on solar photovoltaic generators’ output power. While many researchers have been focused in recent years on the 
development of novel models for forecasting involved meteorological parameters in photovoltaic generation, 
they commonly do not consider an analysis step of the data before using it in the developed models. Hence, the 
aim of this study consists in assembling a wavelet based time-frequency analysis of the used data with deep 
learning neural networks to forecast solar irradiation, in next 10 min, to compute solar photovoltaic generation. 
Results of the validation step showed that the deviation of the proposed forecaster was lower than 4% in 90.60% 
of studied sample days. Final forecaster’s root mean square error was 35.77 W/m2, which was an accuracy 
improvement of 37.52% compared against persistence benchmark model.   

1. Introduction 

Along last century, and specifically in recent decades, electric power 
has been the key energy carrier to make it possible the evolution of 
modern societies at developed countries [1,2]. Although it is assumed a 
reduction of devices’ power intensity based on an efficiency improve
ment in following years, different studies claim that this reduction 
through devices efficiency improvement will not be enough to stop 
electric power demand increasing trend [3]. Electric energy carriers 
rising evolution is based on the prediction of a higher electrified society 
where new electric devices such as full electric vehicles emerge [4,5]. In 
this scenario where an electric energy carrier is expected to continue 
growing up, combined with a shortage of fossil fuels as well as the 
climate change produced by the greenhouse effect emissions [6], 
renewable energy generation, and specifically solar photovoltaic (PV) 
generation, has become relevant in present energy generation challenge 
[7,8]. Nevertheless, to meet a high penetration of PV generation in 
traditional power grids, some challenges based on the intermittency of 
involved meteorological parameters in PV generation, mainly caused by 
clouds dynamic, need to be addressed. This intermittency of PV 

generation has effects on the demand-supply balance for guaranteeing 
power systems stability [9] as well as on the operation of electricity 
markets with additional production costs [10]. Therefore, transmission 
and distribution system operators ask to reduce renewable generators 
uncertainty level before continuing increasing the penetration level, to 
ensure power systems stability [11]. 

In recent years researchers have suggested different options in order 
to reduce renewable generators’ uncertainty level. For instance, the 
combination of large-scale renewable generators with energy storage 
devices [12], the ensemble of small-scale renewable generators [13] or 
the development of better forecasters with higher accuracy [14]. Con
cerning renewable large-scale generators, power system operators sug
gest the introduction of large-scale storage systems, such as batteries, in 
order to ensure traditional grids’ stability when unexpected power 
generation situations occur [15,16]. The merge of different renewable 
technologies, giving as a result the concept of virtual power plant, relies 
on the assumption that when some generators do not produce due to 
meteorological changes, other generators will be able to do it, in such 
way that the energy demand can be ensured with higher probability 
[12,13]. Although energy storage systems and virtual power plants will 
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help to reduce renewable generators’ uncertainty level, the response of 
these systems is not immediate. This is the reason why many research 
works have support the idea of developing forecasters based on different 
techniques such as sky imagery or artificial intelligence to reduce 
renewable generators uncertainty level [17,18]. 

Developed forecasters related to meteorological parameters involved 
in solar PV generation are classified attending to two criterions: while 
first criterion examines proposed forecaster’s prediction horizon, i.e. the 
time step between present and future effective of forecast [19], second 
criterion analyses proposed forecaster’s technique. Concerning predic
tion horizon criterion, renewable forecasters are classified into 
following categories: a) intra-hour forecasters, b) intra-day forecasters 
and c) day-ahead forecasters [20,21]. Intra-hour forecasters, also noted 
in literature “nowcasting” [22,23] forecasters cover from few second to 
an hour ahead [24]. Thus, predictions obtained by these forecasters are 
used to ensure main grids stability through ancillary services dispatch
ing [25]. Intra-day forecasters usually cover from one to six hours ahead 
[26,27] and their predictions are applied to ensure traditional grid’s 
stability in zones with high penetration of renewable generators [28]. 
Finally, day-ahead forecasters cover from six to seventy-two hours 
ahead, usually with hourly resolution [29,30], and their predictions are 
applied for activities such as unit commitment or power reserve 
scheduling [31,32]. With respect to second criterion, developed fore
casters are classified into physical, statistical or deep learning models 
attending on which technique has been used to develop proposed fore
caster [21]. 

Physical models are in their turn categorised into: sky [24] or sat
ellite imagery [33] and numerical weather prediction (NWP) models 
[28]. The selection of the model is done through the analysis of which 
are forecaster’s spatial and temporal resolution parameters. For 
instance, while sky-imagery produces accurate predictions for intra- 
hour horizons and microscale spatial resolution [24], NWP is the best 
choice for day-ahead horizons and global spatial resolutions [28]. Sky 
and satellite imagery forecasters rely on the use of pictures to compute 
clouds motion-vectors, and through them predict future PV generation 
[24,33]. However, NWP forecasters are based on a depth understanding 
of the physical phenomena that takes places in the atmosphere to 
describe it through mathematical equations and combine it with nu
merical and differential computation [28,34]. Forecasters’ development 
based on physical models is usually conditioned not only by the required 
depth understating of physical phenomena but also the expensive cost of 
involved devices to obtain the pictures [35]. Although there are big 
differences between statistical forecasters such as autoregressive moving 
average [36] or autoregressive integrated moving average [37] fore
casters and deep learning models such as support vector machines [38] 
or neural networks [39], both statistical and deep learning models are 
based on time-series forecasting obtaining the relationships between 
involved features through historical databases [36-39]. Statistical and 
deep learning forecasters’ main drawback is related to the necessity of 
big databases for being able to establish relationships between fore
casters’ output and chosen features [36,38]. Statistical models’ main 
disadvantage against deep learning models rely on the fact that deep 
learning models are able to establish non-linear relationships between 
chosen features and forecasters’ output [35,39], making them more 
reliable to predict unexpected changes of meteorological parameters 
involved in renewable generation [40]. 

A literature review indicates that researchers who currently based 
their forecasters on deep learning models are focussing their studies into 
following areas: a) available data pre-processing, b) the development of 
new models, c) hybridization of different models and finally d) 
computing of prediction intervals, with the purpose of increasing cur
rent forecasters accuracy as well as provide further information to power 
system decision makers. Available data pre-processing step bases on 
analysing and extracting the highest percentage of the information from 
the values of the selected features contained in the database. For 
instance, Shireen et al. [41] developed a Gaussian iterative multi-task 

process algorithm for those situations where it is needed to extend the 
information contained in PV databases. Proposed algorithm needs da
tabases recorded under target location’s similar meteorological condi
tions for being able to establish a relationship between target location’s 
database and other locations’ databases to extend the former. Likewise, 
Lan et al. [42] and Shing et al. [36] put their effort on identifying key 
features through principal component or time-series frequency analyses 
in order to reduce the number of features and extract from them the 
maximum information. 

Concerning the development of new deep learning models, there are 
currently two main groups; while first group examines forecasters’ ac
curacy improvement through the introduction of internal loops in the 
model, second group tries to emulate human’s visual perception 
mechanism for pattern recognition and hence, increase forecasters’ ac
curacy. For instance, long-short memory [43], gate-recurrent unit [40] 
and recurrent [39] neural networks are some examples of the widest 
examined models with the introduction of internal loops, whereas 
convolutional neural network (CNN) [44] model has been recently 
started to be analysed for renewable generation forecasting purposes 
based on the emulation of humans’ visual recognition ability. CNN 
model relies on combining convolution and polling layers which contain 
kernel filters to extract patterns from databases to later compute the 
predictions [45]. Hybridization of different models relies on the 
assumption that the combination of different models will increase 
forecasters’ accuracy. Due to the combination of different models, the 
computational cost is higher than on single models, so the hybridization 
is commonly used for intra-day horizons or longer [9,40]. Although 
there are several ways for models hybridization [46], the most usual 
ones are general ensemble and cluster ensemble hybrid models. While in 
general ensemble hybridization each of the combined models forecasts 
different features to compute in a second step the final prediction 
[47,48], in cluster ensemble hybridization, a previous step is done 
where databases’ parameters with similar characteristics are previously 
clustered and then, general ensemble’s same procedure is applied 
[49,50]. Finally, some researchers such as Li et al. [51] and Liu et al. 
[52] have started claiming that those traditional forecasters that only 
forecast single prediction point values do not provide complete infor
mation. Therefore, some research studies [51,53] suggest the compu
tation through different ways of upper and lower confidence intervals 
around the prediction point to give further information to power sys
tems controllers. 

In this study, we make a pre-processing analysis of the solar irradi
ation information contained in available database throughout wavelet 
time-series frequency techniques. These techniques will provide solar 
irradiation original signal’s frequencies in order to examine whether 
forecasters’ accuracy can be improved with this information (see Fig. 1). 
Based on the microscale spatial resolution and 10 min temporal pre
diction horizon, each frequency obtained by each wavelet technique will 
be combined with a deep learning model whose parameters will be 
necessary to fix. The parameters that are involved in the input vectors of 
each deep learning model are: season, time of day and previous 24 h data 
with 10 min resolution. Therefore, 146 values are needed for each deep 
learning model to compute its prediction. Obtained solar irradiation 
predictions are used to compute solar PV generation 10 min-ahead. Key 
contributions of this study are:  

1) The key contribution of this study relies on the development of a 
nowcasting solar irradiation forecaster, 10 min ahead, to compute 
PV output power. The forecaster relies on combining each time-series 
obtained from a wavelet frequency analysis of solar irradiation 
original signal with a deep learning neural network. In a second step, 
each neural network will make a prediction with the information 
provided by its associated frequency. Finally, it will be necessary to 
ensemble all predictions done by the neural networks to obtain final 
solar irradiation prediction value (see Fig. 1). 
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2) Two different wavelet time-series frequency techniques, Haar and 
Daubechies, are examined in order to select the most accurate 
technique. Based on the results of a previous study [35] we have 
decided to combine obtained frequencies with feedforward neural 
networks whose internal parameters are necessary to fit. Moreover, 
root mean square error metric as well as other error metrics are 
computed to analyse proposed forecasters accuracy within the 
examined methods in this study, and also against results provided in 
literature. 

The remainder of this paper is organised as follows. Section 2, ex
amines wavelet time-series frequency theory and proposed forecaster’s 
methodology. Section 3, provides the performance results of optimised 
proposed model, and those results are contrasted against literature ones 
for similar forecasting horizons. Present study’s conclusions are in Sec
tion 4. 

2. Methodology 

The literature review done in above section demonstrates that, in 
recent years several nowcasting solar irradiation tools to compute PV 
output power have been examined. Due to proposed forecaster tries to 
reduce PV generators’ uncertainty level in order to address these gen
erators real-time control challenges, developed forecaster is categorized 
as intra-hour forecaster. To develop our forecaster, we first made Haar 
and Daubechies wavelet time-series frequency data pre-processing step 
analysis; then, each obtained frequency by the studied wavelet time- 
series frequency analyses is combined with a deep learning feedfor
ward neural network, whose parameters were optimized by the meth
odology proposed in [35]. In addition, it has been decided to compute 
the persistence model as a benchmark in order to examine proposed 
model’s accuracy improvement. 

2.1. Examined wavelet time-series frequency analyses 

Fourier transform (FT) is a mathematical concept which makes it 
possible to transform signals from temporal to frequency domains. Thus, 
through FT it is possible to obtain from an original temporal signal the 
decomposed frequency signals which it is made of. In the opposite way, 
through the inverse FT is possible to reconstruct from the decomposed 

frequency signals the original temporal signal. However, FT has the 
disadvantage of not reporting information about the time duration that 
each frequency is present in the original signal. In order to address this 
drawback, short time Fourier transform (STFT) was developed. STFT 
allows computing the FT in original signal’s local sections. STFT for 
continuous signals is mathematically described as, 

STFT{x(t)}(σ,w) ≡ X(σ,w) =
∫ ∞

− ∞
x(t)w(t − σ)e− jwtdt (1)  

Where, x(t) is the original function whose STFT is to be computed, X(σ,
w) is the FT of the x(t)w(t − σ), a complex function which is used to 
represent the magnitude and phase of x(t) over time and frequency, and 
finally, e− jw is Euler’s formula. Nevertheless, taking into account Hei
senberg’s uncertainty principle, there is no chance to exactly determine 
which of the decomposed frequencies are present in a specific time. In 
addition, the STFT just provide information about the bands of the fre
quencies of x(t) for an analysed lapse of time. Thus, the narrower the 
laps of time to get better time resolution of the original signal, the poorer 
the frequency resolution will be. This is the reason why time and fre
quency resolution need to be balance when STFT is decided to be 
applied. 

The wavelet time-frequency transform proposed by Daubechies [54] 
is a feasible solution for STFT’s compromise drawback to some extent. 
The calculation of continuous wavelet transform (CWT) is mathemati
cally expressed in such way that, 

CWT(a, b) =
∫ ∞

− ∞
x(t)ψab(t)dt (2)  

Where x(t) refers to the original continuous signal whose CWT is to be 
computed and ψab(t) is commonly noted in literature as mother wavelet. 
Hence, CWT(a, b) coefficient for a certain scale (a parameter) and 
translation (b parameter) expresses the level of similarity between x(t)
and scaled and translated ψab(t). Thus, the set of all CWT(a, b) co
efficients of x(t) is the wavelet representation with respect to ψab(t). 
Mother wavelet function must has time scalability and translation 
properties so it is mathematically defined as, 

ψab(t) =
1̅
̅̅
a

√ ψ
(

t − b
a

)

(3) 

Fig. 1. Proposed solar irradiation model’s flowchart.  
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The vast majority of the original signals that we can examined in the 
nature can be decomposed into low frequency components that appears 
along the full period of the signal and high frequency signals for little 
time lapses of the period. Therefore, the wavelet time-frequency trans
form was defined for being able to obtain good time and poor frequency 
resolutions for low scales and vice versa, for high scales. 

Examined CWT works when analytical analyses are done, but it must 
be taken into account that when a signal is introduced in a computer for 
its numerical resolution, it must be discretized due to the fact that 
computers are only able to calculate CWT for a finite number of samples. 
Therefore, Eqs. (1) and (2) need to be redefined from continuous to 
discrete signals, 

STFT{x[(n)] }(m,w) ≡ X(m,w) =
∑∞

n=− ∞
x[n]w[n − m]e− jwn (4)  

DWT(s, k) =
1̅
̅̅̅̅
as

0
√

∑∞

n=− ∞
x[n]ψ

(
n − kb0as

0

as
0

)

(5)  

Where x[n] refers to the discretized original signal x(t), n is the discrete 
time index of time t, w[n] represents the examined lapse of time and m 
and w are discrete and quantized parameters by the assumption that 
analysed STFT is being calculated in a computer through the fast FT. 
Moreover, k is an integer which refers to a particular point of x[n] and a 
and b parameters of Eq. (3) are taken as a function of s (a = as

0, b =

kb0as
0). For instance, in the case that we want to compute the series of 

binary wavelets, a0 = 2 and b0 = 1, in such way that Eq. (5) is expressed 
as, 

DWT(s, k) =
1̅
̅̅̅
2s

√
∑∞

n=− ∞
x[n]ψ(n − k2s

2s )s, k = 0,±1,±2,⋯. (6) 

Taking into account the following considerations: a) DWT provides 
enough information about the original continuous signal, b) examined 
discretized version of the CWT has a large computational cost and c) it is 
possible to compute wavelet coefficients by the use of algebraic 
convolutional-based equations. For this second way of computing the 
DWT, which is based on the pyramid algorithm, it is necessary to use 
high and low pass decomposition filters to separate the bands of fre
quencies present in x[n] signal. In each level of the pyramid algorithm, 
the input signal to the i th level is first passed through a low pass filter to 
obtain the approximation series, a(i), and then, same input signal is 
passed through a high pass filter to obtain the detailed series, d(i). The 
way for obtaining a(i) and d(i) for the first level of the pyramid is 
explained. 

To compute the DWT of x[n] signal, samples are passed through a low 
pass filter whose response impulse is noted by g1 obtaining the convo
lution of both signals, that is expressed in such way that, 

a1[n] = (x*g1)[n] =
∑∞

k=− ∞
x[k]*g1[n − k] (7) 

Then, same x[n] signal’s samples are passed through a high pass filter 
whose response impulse is noted by h1 obtaining the convolution of both 
signals, that is expressed in such way that, 

d1[n] = (x*h1)[n] =
∑∞

k=− ∞
x[k]*h1[n − k] (8) 

Both high and low pass filters have a quadrature mirror filter 
relationship. 

The decomposition done to obtain pyramid’s algorithm first level 
approximation and detailed series, a1 and d1, respectively can be further 
done to increase frequency resolution applying high and low pass filters 
into a1 approximation series. As it can be seen in Fig. 2, high and low 
pass filter are applied into previous levels approximation series. 

Therefore, the original signal x[n] can be reconstructed by the com
bination approximation and detailed series in such way that, 

x[n] = a(I)+
∑I

i=1
d(i) (11)  

Where a(I) is last computed pyramid’s level approximation series, I 
represents the total number of examined levels and d(i) is the detailed 
series in the ith level. Therefore, in this second way of computing the 
DWT, the high and low pass filters that applied in each level of the 
pyramid algorithm have to be defined. In this study, available solar 
irradiation database contains discrete information with 10 min resolu
tion so, for the data pre-processing step the second DWT method has 
been chosen based on its lower computational cost. In order to define 
high and low pass filters, two different strategies Haar and Daubechies 
DWT were examined. 

2.2. Examined prediction models 

2.2.1. Persistence model 
Nowcasting forecasters which are based on persistence model are 

easy to program. This is the reason why these models are usually 
computed in research studies to use them as benchmarks and examine 
novel forecaster accuracy performance. Persistence model assumes that, 
during the chosen time lapse between present moment and forecasting 
horizon time, the value of the parameter that is desired to predict will 
not change. This assumption is mathematically expressed as, 

W(t+ h) = W(t) (12)  

where t represents present moment, W(t) is predicted parameter’s real 

Fig. 2. Pyramid algorithm layout.  
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value at time t, h refers to selected prediction horizon and W(t+h) is the 
forecast done of chosen parameter at time t + h. 

Meteorological parameters involved in renewable generation have 
strong relationships between them if chosen h is small. Thus, for intra- 
hour forecasters, where the prediction horizon covers from few sec
onds to an hour ahead, the correlation gets stronger, so the accuracy of 
the model also increases. This model bases on using a present value to 
forecast the desired parameter, but its accuracy decreases when sudden 
changes must be predict. 

2.2.2. Deep learning models 
Deep learning models’ development has been based on the combi

nation of mathematical algorithms noted in literature as learning algo
rithms and the emulation of human’s brain memory or human’s visual 
perception mechanism. Feedforward, recurrent, or long-short term 
memory neural networks models rely on the emulation of human’s brain 
memory ability through a mathematical architecture. Convolution 
models rely on using a set of filters in each programmed convolution 
layer in order to extract patterns to make future prediction in such way 
to emulate human visual perception mechanism. Therefore, there is 
similarity between neural networks’ neurons and convolution models’ 
filters. Although researchers have traditionally developed forecasters 
based on neural networks for regressive forecasters [39,40,43] and 
convolutional models for image pattern recognition [54], some re
searchers have recently started to examine convolution methodology for 
regressive forecasters [45]. In a previous study with same data [35], we 
obtained, among different computed regressive forecasters, that feed
forward neural network (FFNN) model had the best accuracy for chosen 
prediction horizon, 10 min. Thus, FFNN model will be combined with 
the information obtained through the DWT analysis done in the data pre- 
processing step to examine whether the data pre-processing step in
creases the accuracy of the forecaster developed in a previous study 
[35]. 

FFNNs with recurrent and long short-term memory neural networks 
are probably the most analysed and computed models. In these models, 
there is a set of parameters that need to be selected, the common pa
rameters for all mentioned models are training algorithm, model’s 
number of layers, number of neurons per layer. FFNN model’s main 
advantages rely on easier coding, lower number of parameters that need 
to be chosen, quicker training process and robustness when there is 
missing or abnormal data. Further information of FFNNs and other type 
of neural networks can be found at [55,56]. 

2.3. Proposed model 

The nowcasting model presented in this paper consists on the com
bination of the detailed and approximation series obtained through the 
application of Haar and Daubechies DWTs to the available solar irradi
ation database with deep learning FFNN models. The main steps done to 
develop this model can be described as follow: first, Haar and Daube
chies DWT strategies were applied to the solar irradiation training 
database in order to obtain solar irradiation’s approximation a(I) and 
detailed series d(1) to d(I). Then, for the series of each DWT strategy a 
FFNN model was developed. In order to fix the parameters of each FFNN 
in the learning step, the iterative methodology proposed in [35] was 
applied. Once the FFNN models are developed, it must be kept in mind 
that each FFNN model only provides a prediction for its approximation 
or detailed series, so Eq. (11) has to be applied in order to ensemble 
single predictions of each FFNN model to obtain final solar irradiation 
prediction. Finally, obtained solar irradiation predictions through pre
sented model are applied following the methodology proposed by 
Ayvazoğluyüksel et al.’s [5] to compute PV output power generation. 
Although both Haar and Daubechies DWT strategies will be computed in 
order to examine which one obtains better accuracy on solar irradiation 
prediction, the PV output power generation prediction will only be run 
with the best strategy (see Fig. 1). 

2.4. Error metrics 

Mean absolute error (MAE), root mean square error (RMSE) and R- 
squared (R2) are the most computed error metrics in forecasters litera
ture [20,27,35,47] to compare new developed forecasters accuracy 
against literature results. While only RMSE and R2 error metrics have 
been used to compare computed models accuracy, all error metrics have 
been used to compare final forecasters’ accuracy against literature re
sults. MAE, RMSE and R2 error metric are mathematically expressed in 
such way that, 

MAE =
1
N

∑N

n=1

⃒
⃒Yn − Y ’

n

⃒
⃒ (13)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

n=1

(
Yn − Y ’

n

)2

√
√
√
√ (14)  

R2 = 1 −
∑N

n=1

(
Yn − Y ’

n

)2

∑N
n=1

(
Yn − Y

)2 (15)  

Where Yi is actual value; Y’
i is the prediction done by the forecaster, N is 

the number of examined samples and Y is the average value of the N 
predictions done. 

3. Numerical results and discussion 

In this research the database provided by Euskalmet, Basque Gov
ernment’s Meteorological Agency (http://www.euskalmet.euskadi.eus), 
has been used to compute examined models. To analyse proposed 
forecasters’ accuracy, data from Vitoria-Gasteiz, which is the capital of 
the Basque Country, has been chosen. This database contains informa
tion from years 2015 to 2017 with 10 min resolution. The information of 
years 2015 and 2016 was used to the models’ training step, while in
formation of year 2017 has been used for the validation step, in order to 
ensure that proposed models have not previously seen validation step’s 
data. Data pre-processing steps and computed models were done 
through MATLAB®. 

3.1. Results for the models presented in Section 2 

3.1.1. Persistence model 
Based on the difference between actual and predicted solar irradia

tion values, RMSE and R2 error metrics were computed for the training 
and validation steps. While the RMSE for training and validation steps 
are 59.47 W/m2 and 57.25 W/m2, respectively, R2 values are 0.9446 
and 0.9518, respectively. Although it is not very usual to obtain worse 
accuracy error metrics in training step than in validation step, this fact 
relies on the fact that the meteorological information of the training 
database has bigger variance than validation step’s database. Thus, it is 
expected that this trend where the validation results are better than 
trainings ones will be maintained through all the paper. Fig. 3 presents 
the solar irradiation evolution for actual and predicted values for a 
chosen random day of the validation dataset, June 16, 2017. While 
actual values are given by blue line, predicted values are given by orange 
one. Although it can be seen how prediction line is able to follow actual 
linés trend, the delay between both lines due to the assumption done by 
persistence model explained in Eq. (12) is demonstrated. The RMSE and 
R2 values for June 16, 2017 day are 35.90 W/m2 and 0.9903, 
respectively. 

Moreover, RMSE and R2 values computed for training and validation 
databases will be used as baseline to examine other computed fore
casters performance. New proposed models accuracy improvement will 
be computed as, 
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Improvement(%) =
RMSEbaseline − RMSEmodel

RMSEbaseline
*100 (16)  

where RMSEbaseline is the RMSE value computed through the persistence 
model, and RMSEmodel refers to proposed new models’ RMSE. This 
improvement quantification is not only done for RMSE metric but also 
for R2 metric with both databases, training and validation. 

3.1.2. Feedforward neural network 
In a previous study [35] where same database and prediction horizon 

were chosen, 10 min ahead, a 3-layer FFNN trained with Levenberg- 
Marquardt algorithm demonstrates to perform best. In the first layer, 
chosen input parameters are introduced to the model; in the second 
layer, neurons make the internal calculations; and finally, in the third 
layer, output value is obtained. In present research, same input vector as 
the one applied in [35] was used. This vector contains the following 
information: season, time of day and previous 24 h solar irradiation data 
with 10 min resolution, i.e., 146 values. Therefore, the purpose of this 
study is to follow the procedure developed in [35] to fix the neurons of 
FFNNs for each of the frequencies obtained through Haar and Daube
chies wavelet time-frequency analysis and examine accuracy’s evolu
tion. In this study, a configuration which consists of an approximation 
and three detailed series, was selected for both wavelet time-frequency 
analyses. However, in future studies forecasters’ accuracy evolution will 
be examined when these parameters are optimized. 

3.1.2.1. Haar wavelet time-frequency analysis. Table 1 to 4 show the 
optimized FFNN model for each of the time-frequency series obtained 
through Haar analysis. RMSE and R2 metrics were computed for training 
and validation datasets. 

As it can be seen in Tables 1 and 2, best accuracy error metrics are 
obtained for same number of neurons in both databases. While in 
Table 1 FFNN structure with 20 neurons in the hidden layer produces 

best error metrics for approximation series a(3), Table 2 shows that 
FFNN structure with 5 neurons in the hidden layer produces best error 
metrics for detail series d(1). However, if Tables 3 and 4 are analysed it 
can be seen that different structures get best accuracy error metrics 
depending on the examined database. For instance, for detail series d(2), 
20 neurons FFNN structure makes best predictions with training data
base but 10 neurons FFNN structure makes best predictions for valida
tion step. Therefore, taking into account that a forecaster is expected to 
work with previously unseen data, those structures that minimizes the 
RMSE and maximizes the R2 structures in the validation step will be 
chosen for the final forecaster. 

Finally, after the combination of the predictions provided by the 
optimized structures of each approximation and detail series, proposed 
forecaster’s accuracy error metrics were examined. With regards to the 
RMSE, proposed model improves from 59.47 W/m2 to 36.80 W/m2 in 
the training step and from 57.25 W/m2 to 35.81 W/m2 in the validation 
step. In terms of RMSE evolution it means an improvement of 38.12% 
and 37.47%, respectively. Concerning the R2 error metric, the evolution 
was from 0.9446 to 0.9788 and 0.9518 to 0.9812 in learning and vali
dation databases, respectively. Fig. 4 shows the evolution of solar irra
diation’s actual and forecasted values for June 16, 2017 for the proposed 
forecaster with Haar wavelet transform. While the RMSE calculated for 
this sample day was 31.70 W/m2; which means an accuracy improve
ment of 11.70% compared against the persistence model, the R2 error 
metric improves from 0.9903 to 0.9922. 

3.1.2.2. Daubechies wavelet time-frequency analysis. Table 5 to 8 show 
the optimized FFNN model for each of the time-frequency series ob
tained through Daubechies analysis. RMSE and R2 metrics were 
computed for training and validation datasets. 

As it happens in Tables 3 and 4, from Table 5 to 8 once again different 
structures get best accuracy error metrics depending on the examined 
database. Based on previously given reason that forecasters are expected 
to work with previously unseen data, those structures that minimizes the 

Fig. 3. Actual (blue) and forecasted (orange) values for June 16, 2017. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Table 1 
Model’s results for training and validation steps with approximation series a(3).  

Configuration Neurons RMSE 
train. (W/ 
m2) 

RMSE val. 
(W/m2) 

R2 train. 
(–) 

R2 val. 
(–) 

1 5  27.84  27.42  0.9871  0.9883 
2 10  27.57  27.41  0.9874  0.9884 
3 15  27.38  27.41  0.9875  0.9884 
4 20  27.31  27.32  0.9876  0.9885  

Table 2 
Model’s results for training and validation steps with detail series d(1).  

Configuration Neurons RMSE 
train. (W/ 
m2) 

RMSE val. 
(W/m2) 

R2 train. 
(–) 

R2 val. 
(–) 

1 5  29.32  28.49  0.0211  0.0059 
2 10  29.37  28.52  0.0173  0.0034 
3 15  29.41  28.59  0.0150  0.0017 
4 20  29.41  28.60  0.0151  0.0016  

Table 3 
Model’s results for training and validation steps with detail series d(2).  

Configuration Neurons RMSE 
train. (W/ 
m2) 

RMSE val. 
(W/m2) 

R2 train. 
(–) 

R2 val. 
(–) 

1 5  23.84  22.40  0.4933  0.4802 
2 10  23.71  22.38  0.4984  0.4809 
3 15  23.66  22.46  0.5001  0.4773 
4 20  23.62  22.58  0.5024  0.4717  

Table 4 
Model’s results for training and validation steps with detail series d(3).  

Configuration Neurons RMSE 
train. (W/ 
m2) 

RMSE val. 
(W/m2) 

R2 train. 
(–) 

R2 val. 
(–) 

1 5  19.72  20.02  0.7522  0.7467 
2 10  19.51  19.96  0.7576  0.7482 
3 15  19.45  20.02  0.7590  0.7468 
4 20  19.40  20.03  0.7600  0.7465  
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RMSE and maximizes the R2 structures in the validation step will be 
chosen. 

Finally, after the combination of the results provided by the opti
mized structures for each approximation and detail series, the accuracy 
of the proposed forecaster was analysed. Concerning RMSE evolution, 
proposed model improves it from 59.47 W/m2 to 36.93 W/m2 and from 
57.25 W/m2 to 35.77 W/m2 in training and validation steps, respec
tively. In terms of RMSE percentage evolution, the accuracy increases 
37.90% and 37.52% in training and validation steps respectively. Con
cerning R2 metric the evolution was from 0.9446 to 0.9786 and 0.9518 
to 0.9812 in learning and validation databases, respectively. Fig. 5 
shows the evolution of solar irradiation’s actual and forecasted values 
for June 16, 2017 for proposed forecaster with Daubechies wavelet 
transform. While the RMSE calculated for this sample day was 32.80 W/ 
m2; which means an accuracy improvement of 8.64% compared against 
the persistence model, the R2 error metric improves from 0.9903 to 
0.9916. 

3.1.2.3. Discussion between Daubechies and Haar wavelet time-frequency 
forecasters results. Although it is true that both analysed wavelet time- 
frequency transformations have increased forecasters’ accuracy, there 
is little difference between them. While Haar transform obtains 35.81 
W/m2 in the validation step, Daubechies obtains 35.77 W/m2 for same 
step. However, if the random example day is examined it can be seen 
how Haar transformation obtains 31.70 W/m2 and Daubechies trans
formation obtains 32.80 W/m2. Therefore, in order to ensure that proper 
transformation is chosen, ten random days under different meteoro
logical situations were examined. Table 9 summarizes the results of 
these tests. 

After examining the results presented in Table 9, it has been 
concluded that there is little difference between both wavelet time- 
frequency transformations. In addition, it cannot be concluded which 
of the wavelet transforms produces better predictions under each of the 
examined meteorological situations. Under any meteorological situa
tion, half of the examined random sample days get better prediction 
with one wavelet transformation and the other half of the examined 
random days with the other wavelet transformation. Finally, Daubechies 
transformation was chosen for final forecaster’s development as it per
forms slightly better than Haar transformation. Daubechies RMSE for 
the validation database was 35.77 W/m2, whereas Haar RMSE for same 
database was 35.81 W/m2. Concerning to the computational cost, the 
averaged computation time for each prediction was 0.83 ms, so taking 
into account that predictios were done for 10 min ahead, the compu
tation time can be consider quick enough. 

Fig. 4. Actual and forecasted values for June 16, 2017.  

Table 5 
Model’s results for training and validation steps with approximation series a(3).  

Configuration Neurons RMSE 
train. (W/ 
m2) 

RMSE val. 
(W/m2) 

R2 train. 
(–) 

R2 val. 
(–) 

1 5  28.03  27.63  0.9870  0.9882 
2 10  27.56  27.37  0.9874  0.9884 
3 15  27.35  27.36  0.9876  0.9884 
4 20  27.21  27.36  0.9877  0.9884  

Table 6 
Model’s results for training and validation steps with detail series d(1).  

Configuration Neurons RMSE 
train. (W/ 
m2) 

RMSE val. 
(W/m2) 

R2 train. 
(–) 

R2 val. 
(–) 

1 5  29.33  28.50  0.0198  0.0051 
2 10  29.33  28.53  0.0204  0.0032 
3 15  29.37  28.56  0.0176  0.0015 
4 20  29.37  28.62  0.0172  0.0014  

Table 7 
Model’s results for training and validation steps with detail series d(2).  

Configuration Neurons RMSE 
train. (W/ 
m2) 

RMSE val. 
(W/m2) 

R2 train. 
(–) 

R2 val. 
(–) 

1 5  23.89  22.43  0.4911  0.4785 
2 10  23.69  22.43  0.4993  0.4786 
3 15  23.56  22.48  0.5048  0.4767 
4 20  23.59  22.59  0.5038  0.4713  

Table 8 
Model’s results for training and validation steps with detail series d(3).  

Configuration Neurons RMSE 
train. (W/ 
m2) 

RMSE val. 
(W/m2) 

R2 train. 
(–) 

R2 val. 
(–) 

1 5  19.73  19.99  0.7520  0.7474 
2 10  19.56  19.95  0.7563  0.7486 
3 15  19.45  19.99  0.7588  0.7475 
4 20  19.40  20.02  0.7602  0.7467  

Fig. 5. Actual and forecasted values for June 16, 2017.  
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Figs. 6, 7 and 8 present how proposed forecaster’s solar irradiation 
predictions follow actual values under the different meteorological sit
uation presented in Table 9. 

For being able to contrast the accuracy of predictions done by the 
developed forecaster against literature’s results, MAE error metric was 
also computed. While Table 10 contains the averaged (μ), deviation (σ), 
maximum (Max.) and minimum (Min.) values of the error metrics 
computed for the random days presented in Table 9 through Daubechies 
wavelet transform, Fig. 9 contains a 3D pie chart diagram to show the 
error percentage distribution of all 2017 days. Fig. 9 shows that for 

Table 9 
RMSE calculated for different situations by each proposed model.    

Haar 
Transformation 

Daubechies 
Transformation 

Type of Day Date RMSE (W/m2) RMSE (W/m2) 
Sunny 05/01/ 

2017 
7.49 8.19 

08/01/ 
2017 

8.66 8.72 

10/03/ 
2017 

6.41 6.79 

12/04/ 
2017 

9.96 10.04 

17/06/ 
2017 

7.18 7.12 

21/08/ 
2017 

7.18 5.43 

11/10/ 
2017 

4.46 3.86 

26/10/ 
2017 

4.97 4.06 

20/11/ 
2017 

8.50 8.38 

22/11/ 
2017 

5.69 5.05 

Partially 
cloudy 

04/01/ 
2017 

10.11 10.38 

09/02/ 
2017 

24.50 24.78 

22/02/ 
2017 

16.33 16.91 

09/03/ 
2017 

14.47 14.89 

03/04/ 
2017 

20.68 20.65 

25/05/ 
2017 

20.06 19.72 

19/06/ 
2017 

14.68 14.00 

22/08/ 
2017 

21.24 20.57 

15/10/ 
2017 

18.86 19.08 

06/12/ 
2017 

10.55 11.08 

Cloudy 20/02/ 
2017 

24.21 24.85 

23/03/ 
2017 

51.70 51.17 

27/03/ 
2017 

56.51 57.69 

06/04/ 
2017 

57.72 56.35 

14/05/ 
2017 

63.28 62.80 

21/05/ 
2017 

58.31 60.05 

02/06/ 
2017 

68.48 66.83 

18/08/ 
2017 

42.65 44.62 

02/09/ 
2017 

52.94 49.19 

02/11/ 
2017 

28.93 29.09  

Fig. 6. Actual vs. forecasted values for a sunny day, August 21, 2017.  

Fig. 7. Actual vs. forecasted values for a partially cloudy day, February 
22, 2017. 

Fig. 8. Actual vs. forecasted values for a cloudy day, August 18, 2017.  
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90.60% of 2017′s days, the cumulative error between actual and fore
casted solar irradiation values is lower than 4%. In addition, only for the 
0.57% of 2017′s days, the deviation is greater than the 10%. 

Once Daubechies transformation has been chosen for the develop
ment of the final forecaster and some random sample days were 
computed under different meteorological situations, next step consists of 
contrasting obtained accuracy metric results against literature results 
[35,57,58]. Although [35] is a previous study where same database was 
used, studies [57,58] were computed with different databases. There
fore, the comparison between developed forecaster and literature fore
casters will be done analyzing computed error metrics in terms of whole 
year or by meteorological situations, i.e. sunny, partially cloudy or 
cloudy. 

In previous study [35] a spatio-temporal FFNN forecaster was 
developed. Spatio-temporal technique consists in taking into account 
not only the relevant information of target location but also surrounding 
stations information to develop the final forecaster. If the results of both 
forecasters are compared, it can be seen how the forecaster based on 
Daubechies transformation reduces spatio-temporal FFNN forecaster’s 
RMSE value from 50.80 W/m2 to 35.77 W/m2, which means an accuracy 
improvement of 25.59%. Moreover, if forecasters’ performances under 
different meteorological conditions are compared, it is demonstrated 
that Daubechies forecasters produces better predictions. For same 
examined sunny days spatio-temporal forecaster gets a RMSE range from 
5.11 to 16.93 W/m2 with an averaged and standard deviation RMSE 
values of 9.34 W/m2 and 3.83 W/m2, respectively; Daubechies fore
caster gets a range from 3.86 to 10.04 W/m2 with an averaged and 
standard deviation RMSE values of 6.76 W/m2 and 2.10 W/m2, 
respectively. For same examined partially cloudy days spatio-temporal 
forecaster gets a RMSE range from 19.50 to 39.92 W/m2 with an aver
aged and standard deviation RMSE values of 28.13 W/m2 and 5.87 W/ 
m2, respectively; Daubechies forecaster gets a range from 10.38 to 
24.78 W/m2 with an averaged and standard deviation RMSE values of 
17.89 W/m2 and 4.31 W/m2, respectively. Finally, for same examined 

cloudy days, spatio-temporal forecaster gets a RMSE range from 32.47 to 
83.89 W/m2 with an averaged and standard deviation RMSE values of 
67.40 W/m2 and 16.32 W/m2, respectively; Daubechies forecaster gets a 
range from 24.85 to 66.83 W/m2 with an averaged and standard devi
ation RMSE values of 50.26 W/m2 and 13.93 W/m2, respectively. 
Therefore, based on obtained results it can be concluded that the 
introduction of Daubechies wavelet time-frequency transformation in
creases forecaster’s accuracy. Developed Daubechies forecaster in this 
study only takes into account target location’s data, following studies 
will examine whether combining Daubechies and spatio-temporal 
forecasters final accuracy is increased. 

In other research, Caldas et al. [57] proposed a solar irradiance 
hybrid forecaster which is based on the combination of sky imagery with 
real-time values with a prediction horizon range that covers from one to 
ten minutes. This forecaster uses sky images to detect and compute 
clouds movement, and combines this information with real-time solar 
irradiation measurements obtained through a meteorological station to 
predict clouds impact on solar irradiation in a certain location. Caldas 
et al. provide error metrics information under same meteorological sit
uations studied in this paper. Hence, focusing on 10 min ahead predic
tion horizon error metrics, for sunny days Caldas et al.’s forecaster gets 
an averaged RMSE of 4.4 W/m2 and proposed Daubechies forecaster 
gets a range from 3.86 to 10.04 W/m2. For cloudy days Caldas et al.’s 
forecaster gets an averaged RMSE of 110 W/m2 and proposed Daube
chies forecaster gets a range from 24.85 to 66.83 W/m2. Finally, for 
partially cloudy days, Caldas et al.’s forecaster gets an averaged RMSE 
and MAE of 251 W/m2 and 168 W/m2, respectively and proposed 
Daubechies forecaster gets a range from 10.38 to 24.78 W/m2 for RMSE 
and from 4.78 to 11.76 W/m2 for MAE. Obtained results demonstrate 
that proposed Daubechies forecaster improve Caldas et al.’s forecaster 
for partially cloudy and cloudy days, whereas similar error metrics are 
obtained for sunny days. 

Wen et al. [58] proposed a multistep forecaster based on assembling 
several CNNs to predict solar irradiation values from 5 to 10 min ahead 
with a minute resolution. Although CNN are able to make predictions 
through the use of historical databases, Wen et al. have proposed to 
make predictions through the combination of stacked consecutive im
ages. The stacked consecutive images consist of extracting from three 
consecutive images same colour channel and stacking them maintaining 
the original order to create a new image that will be used in the fore
caster. In this study Wen et al. have demonstrated that this novel concept 
of stacking consecutive images increases the accuracy of the forecasters 
in comparison with those forecasters that did not used the stacking 
consecutive images methodology. Nevertheless, Wen et al. did not 
provide separate error metrics under different meteorological situations; 
they only provided the global RMSE of 104 W/m2 for 30 consecutive 
days including different meteorological conditions and cloud patters. 
Therefore, if global RMSEs of both forecasters are compared assuming 
that both metrics have been obtained through the inclusion of different 
meteorological conditions and cloud patters, it seems that Daubechies 
forecaster, with 35.77 W/m2 for whole validation 2017 year, makes 
slightly better predictions. 

After contrasting that proposed forecaster based on Daubechies 
transformation slightly increases literatures’ results, PV output power 
was calculated. To make this calculation, same equation proposed in 
previous study [35] has been applied, 

PPV(t) = η*S*W(t)*(1 − 0.005*(T(t) − 25 )) (18)  

Where, t represent time (s), PPV(t) refers to the power generated by PVs 
(W) at each t time, η is the efficiency of the PV panels, S is the surface of 
the PV generator (m2), W(t) is the solar irradiation value (W/ m2) at each 
t time and T(t) is the outdoor ambient temperature (◦C) at each t time. 
Although it is true that both temperature and solar irradiation vary, Eq. 
(18) shows that for generated output power parameter temperature ef
fect is lower than solar irradiation’s along the day so, it is assumed that 

Table 10 
Daubechies wavelet time-frequency forecaster’s error metrics.  

Type of Day Parameter RMSE (W/m2) R2 (–) MAE (W/m2) 

Sunny Average  6.76  0.9993  3.25 
Deviation  1.99  0.0005  0.86 
Max  10.04  0.9998  4.66 
Min  3.86  0.9984  1.93 

Partially Cloudy Average  17.21  0.9950  7.30 
Deviation  4.36  0.0020  1.80 
Max  24.78  0.9976  10.76 
Min  10.38  0.9915  4.93 

Cloudy Average  50.26  0.9630  22.63 
Deviation  13.22  0.0099  5.84 
Max  66.83  0.9832  29.67 
Min  24.85  0.9502  11.04  

Fig. 9. Cumulative error pie chart distribution of the examined days on 2017.  
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the temperature in this case can be forecasted by persistence model 
where T(t) = T(t+10 min). For being able to calculate the output power 
through Eq. (18), a commercial panel (η = 17.59% and S = 1.6767 m2) 
was chosen. Fig. 10a and 10b show the accumulated actual and fore
casted power values for sunny and cloudy days. 

Fig. 10a shows the evolution of accumulated actual and forecasted 
energy for a sunny day August 21, 2017, being the deviation at the end 
of the day 6.3 Wh which means a relative error of 0.33%. Fig. 10b shows 
the evolution of accumulated actual and forecasted energy for a cloudy 
day August 18, 2017, being the deviation at the end of the day 19.1 Wh 
which means a relative error of 1.90%. Moreover, Fig. 10a and 10b 
demonstrate the difference between sunny and cloud days, while trend 
in Fig. 10a is smoother due to absence of clouds during all day, Fig. 10b 
has some bumps due to the presence of clouds that produce sudden 
changes in PV generation. Finally, the same computation done for days 
shown in Fig. 10a and 10b has been done with the data from January to 
August 2017. The result of this analysis is shown in Fig. 11. This period 
from January to August 2017 has been chosen for being able to compare 
the results of Daubechies forecaster with the results of previous spatio- 
temporal forecaster [35]. 

While Daubechies forecaster presented in this paper gets an accu
mulated error rate lower than 2% for the 77.35% of analysed days for 
period January to August 2017, the spatio-temporal forecaster devel
oped in [35] gets to 65.81%. Moreover, the mean error percentage ob
tained in this study is 1.46%, whereas the error percentage obtained in 
[35] was 2.40%. Thus, it can be concluded that Daubechies forecaster 
produces better solar irradiation predictions than the spatio-temporal 
forecaster developed in [35]. 

4. Conclusions 

The aim of this study was to present the developed solar irradiation 
forecaster which provides predictions 10 min ahead in order to compute 
solar PV generators production. Based on obtained error metrics results 
and after contrasting them against literature results, this forecaster can 
be used to reduce PV generators’ uncertainty level to make them more 
reliable. Main contributions of this research are:  

• Two different wavelet time-frequency transformations, Haar and 
Daubechies, have been examined in order to predict solar irradiation 
parameter 10 min ahead. Both wavelet transformations produce 
similar error metrics. Finally, based on the global RMSE in the 
validation step, 35.77 W/m2, Daubechies wavelet transform has 
been chosen for the final forecaster development.  

• Proposed forecaster consists of making a Daubechies wavelet time- 
frequency transformation in order to transform original solar irra
diation data series into a combination of four series, an approxima
tion series and three detailed series. Each of these series has been 

used to develop a FFNN model whose predictions are combined to 
produce final global prediction. This model gets RMSEs of 36.93 W/ 
m2 and 35.77 W/m2 in training and validation steps, which means an 
accuracy improvement 37.90% and 37.52% when they are con
trasted with persistence benchmark forecaster.  

• Daubechies forecaster developed in this study has also been 
compared against a previously developed spatio-temporal FFNN 
forecaster [35]. It has been demonstrated that Daubechies wavelet 
transforms increases forecaster accuracy from 50.80 W/m2 to 35.77 
W/m2 in terms of RMSE in the validation step for whole 2017, which 
means an accuracy improvement of 25.59%. In addition, the mean 
error cumulative percentage obtained in this study is 1.46%, whereas 
the error percentage obtained in spatio-temporal FFNN forecaster 
was 2.40% for period January to August 2017. Developed forecaster 
has also been compared against some literature forecasters such as 
Wen et al. [58]. While the RMSE of Wen et al. forecaster was 104 W/ 
m2 for examined period of time under different weather conditions, 
developed forecaster’s RMSE was 35.77 W/m2 under different 
weather conditions. Therefore, it can be concluded that developed 
forecaster makes more accurate predictions.  

• All the calculations done and the results presented in this study are 
based on real data from a meteorological station located in Vitoria- 
Gasteiz, Spain. While data from 2015 to 2016 has been applied for 
training step, data from 2017 has been used for validation step in 
order to ensure that forecasters do not previously seen this data in 
training step. Although it has been demonstrated that Daubechies 
transformation increases forecasters’ accuracy, it will be necessary to 
fix the number of neurons of FFNNs if data of other locations is used. 
This step is relevant in order to ensure the maximum accuracy. 

Fig. 10. Actual vs. forecasted accumulated energy for a) sunny day, August 22, 2017 (left) and b) cloudy day, August 18, 2017 (right).  

Fig. 11. Cumulative error distribution for period January to August 2017  
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