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Abstract

Drug Repurposing consists on using already approved drugs to treat other diseases. This

is done by identifying new targets that the drug may have. To accelerate this long and

costly process, computational methods have been developed to predict drug-target interac-

tions (DTIs).

Recently, Machine Learning has had a tremendous impact on many scientific fields including

DTI prediction. In this project, two state-of-the-art methods named MolTrans and Hyper-

AttentionDTI are described and compared on 8 different datasets. Moreover, each dataset is

divided according to 3 different splits, so that the generalization of the methods with respect

to drugs and proteins is tested.

Graphs are a type of data structures that have nodes and edges connecting them. They can

model complex systems accurately such as DTI networks. In recent years, Graph Machine

Learning methods have been developed to improve on conventional models. Node embedding

techniques and Graph Neural Networks are introduced as ways to transform nodes into vector

embeddings to be able to make predictions on them.

While the two analyzed methods offer competitive results, Graph Machine Learning can take

advantage of the expressiveness that graphs have in order to make more accurate predictions.

xi
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Chapter 1

Introduction

Drug discovery is the process of finding a new drug molecule that is able to inhibit or activate

a target to have a therapeutic effect in a disease state [1]. A target is a biological entity, such

as proteins, genes or RNA.

The drug discovery process starts with the identification of a target. In this step, research

is done to develop a first hypothesis on which target is more likely to be inhibited. Further

validation may be required after identifying the target using either in vitro (outside a living

organism) or in vivo (within a living organism) tools.

Once the target has been validated, the next step is to develop compound screening assays.

In these assays, a number of possible drug compounds are screened against the target to

identify molecules that interact with it as desired. This search is part of the lead discovery

phase in which a drug-like small molecule is found. This will then lead to preclinical and

clinical development. If successful, the discovered molecule will become a medicine to be sold

to the market.

Drug discovery is a long and costly process. For instance, the average cost for a pharma-

ceutical company to develop a new drug molecule is estimated to be over $1-2 billion, and

it can take over 10-15 years on average from the target identification phase until the drug is

ready to be sold [2]. In recent years, many pharmaceutical companies have shifted to new

strategies such as drug repurposing to overcome the aforementioned limitations.

1.1 Drug Repurposing

Traditionally, the focus of drug discovery was based on the “one target, one drug” model [3].

Drug designers used to produce drugs that only interacted with a single target, and tried to

avoid drugs that interacted with multiple targets. However, this approach has resulted in a

decrease in productivity by pharmaceutical companies. With the increased understanding of

1
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complex diseases in recent years, the “multi-target, multi-drug” model is becoming widely

accepted. This is known as polypharmacology. Therefore, drug repurposing has received

increasing attention recently.

Drug repurposing is based on using already approved drugs as new therapies for other diseases

[4]. There are already numerous known interactions between drugs and targets available in

databases. However, the number of unseen pairs is proportionately bigger. Trying to prove

experimentally that a drug molecule interacts with a target is also an expensive and time-

consuming process.

Therefore, drug-target interaction (DTI) prediction plays a key role in accelerating this pro-

cess by screening new possible pairs effectively and reducing the costs of the drug discovery

process.

1.2 Computational methods for DTI prediction

There are three main types of computational approaches that are currently used for DTI

prediction, namely ligand-based, docking simulation and chemogenomic approaches [5].

Ligand-based approaches are based on the chemical similarity principle [6]. This principle

states that molecules that are similar usually have alike physico-chemical properties and thus,

bind to analogous targets. Therefore, these methods predict which targets a drug may have by

comparing it to already proven DTIs. An example of a ligand-based method is Quantitative

Structure Activity Relationship (QSAR) [7]. The drawback that these approaches have is

that they do not generalize well when the number of known pairs is limited.

Docking simulation approaches use the three-dimensional structure of drugs and targets to

predict their interaction [8]. Therefore, these methods rely on the availability of drug and

protein structures. Moreover, docking simulation can be inefficient in time if the structures

are complex.

Lastly, chemogenomic approaches use chemical structure data from drugs and genomic se-

quence data from proteins to perform DTI prediction [9]. Machine Learning-based methods

are a type of these approaches.

1.3 Objective and structure of the project

The main objective of the project is to evaluate 2 state-of-the-art machine learning methods

for DTI prediction to provide a fair comparison between them. Eight different datasets will be

used in order to perform this comparison. Moreover, an brief introduction to graph machine

learning methods will be provided to see how they would compare with conventional machine

learning models.
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The project is structured as follows. In Chapter 2, an introduction to some fundamental

concepts in machine learning is done. These concepts are useful to understand two state-of-

the-art methods that are explained in Chapter 3. In Chapter 4, the results obtained in each of

the methods for the eight datasets are analyzed and compared. Chapter 5 introduces graphs

and explains node embedding techniques and Graph Neural Networks as a way to improve

on conventional machine learning methods. Finally, in Chapter 6, an overall conclusion is

made on the whole project.



MACHINE LEARNING METHODS FOR DRUG REPURPOSING 4



Chapter 2

Preliminaries

To understand the machine learning methods that are going to be analyzed in this project,

a brief introduction to some fundamental concepts is needed.

2.1 Machine Learning

A machine learning algorithm is an algorithm that is able to learn from data [10]. There

are many different tasks in machine learning such as regression, classification or machine

translation.

Most machine learning algorithms are based on the concept of optimization, in which the

objective is to minimize a function f(x), by finding the optimal x. The function to be

minimized is normally referred to as the cost function.

In order to minimize the cost function, a technique called gradient descent is used. Funda-

mentally, gradient descent uses derivatives to change x in the correct direction so as to find

the global minimum of the function.

One of the most important challenges when designing a machine learning algorithm is that it

should be able to make good predictions to new input data on which it has not been trained.

This is also known as generalization.

DTI prediction is mainly modeled as a classification task. This means that the machine

learning algorithm has to predict which class the introduced input data belongs to. For

instance, given drug and protein input data, the algorithm is supposed to predict whether

the drug and protein interact or not. This is an example of a binary classification task.

5
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2.2 Feedforward Neural networks

A feedforward neural network, also known as multilayer perceptrons (MLPs) is the funda-

mental model of deep learning. The term feedforward comes from the fact that given an

input vector x, this model flows the information in one direction until the prediction is done.

An example of a neural network can be seen in Figure 1.

These models can have many hidden layers before the output layer. Each layer is formed by

a specific number of nodes. Each node has weights associated to them and the objective is

to transform the input data by multiplying it with the node’s weights. Then, a non-linear

function is applied to it such as sigmoid.The number of layers and the number of nodes in

each layer are both hyperparameters of the model and need to be optimized to the task that

is being solved.

As any machine learning models, the weights of the layers’ nodes are trained using a training

data set.

Figure 1: Feedforward neural network.

2.3 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a specific type of neural network that has com-

petitive predictive performance in various task related to images, but it can also be applied

to any data that has a grid-like structure. An example of a CNN can be visualized in Figure

2.
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Figure 2: Convolutional Neural Network [11].

These type of networks have the following layers:

• Convolutional layer: This layer is mainly based on the convolution operation. Every

convolutional layer is composed of a set of filters that have relatively small width and

height. These filters are slided through the input data and compute the dot product at

each point. Then, a nonlinear activation function such as ReLU is applied, producing

a so-called feature map. The feature map can be interpreted as the responses of the

filter at every spatial position of the data.

• Pooling layer: This layer is used after each convolutional layer in order to reduce

the dimension of the feature map. The most common type is max pooling, where the

feature map is taken in small grids and the maximum value in each grid is taken.

CNN can have many concatenated convolutional and pooling layers. In the end, a feedforward

neural network is typically applied by flattening the output of the last pooling layer, in order

to make predictions.

2.4 Transformers

Transformers have demonstrated high performance in many natural language processing tasks

[12]. They are based on the Sequence-to-Sequence (Seq2Seq) model [13], which is basically a

neural network that transforms an input sequence into another sequence.

Seq2Seq models are composed by an Encoder and a Decoder. An input sequence is fed into

the Encoder and maps it to a n-dimensional vector. This vector is taken by the Decoder and

turns it into an output sequence. For example, if the input sequence is a sentence in English,

the Encoder transforms it into a vector, and the Decoder outputs the sentence translated to

another language. Like any other machine learning model, these models need data in order

to be trained.

Moreover, transformers make use of attention. An attention mechanism models, for each of
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the elements of a sequence, the importance that the rest of the elements have on it.

Although the details of how transformer work are not necessary for this project, in Figure

3, the model architecture can be seen. It is divided into 2 parts, the left one being the

encoder and the right one the decoder. Simply put, the encoder and decoder are a stack

of attention mechanisms and feedforward neural networks, that given an input produce an

output embedding.

Figure 3: Transformer model architecture [12].



Chapter 3

Evaluation of state-of-the-art

methods

3.1 MolTrans

MolTrans [14] is a Molecular Interaction Transformer that is used for DTI prediction. The

two key points of the model are the following.

• Previous machine learning models use the whole molecular structure of drugs and pro-

teins in order to make predictions. However, it is known that the interactions between

drugs and proteins are sub-structural [15]. MolTrans decomposes drugs and proteins

into sub-structures to make more accurate predictions. Moreover, it creates a map of

interactions to understand which sub-structures interact between each other.

• Although there are relatively few confirmed drug-target pairs, there is a lot of drug and

target data available from different sources that is not labeled. MolTrans uses this data

to create high-quality sub-structures with an algorithm called Frequent Consecutive

Sub-sequence (FCS) mining. Moreover, it uses transformers to capture the complex

signals among the sequential sub-structures of drugs and proteins.

The model is summarized in Figure 4.

9
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Figure 4: MolTrans model structure [14].

The input of the model is the following:

• Drugs are represented by the Simplified Molecular Input Line Entry Specification

(SMILES) string.

• Target proteins are represented by a sequence composed of any of the 23 aminoacids.

The model first takes the input drug and target data, and passes it through the FCS mining

module. This module is first trained on unlabeled data from drugs and proteins to identify

the most common sub-structures. Then, the input drug and target data is decomposed into

a sequence of sub-structures Cd and Cp, respectively.

The next module in the model is the augmented transformer embedding module. The objec-

tive of this part is to get an embedding of the drug and the protein based on Cd and Cp.

This module is separated into two submodules: the embedding module and the transformer

module.

The first step in the embedding module is to transform Cd and Cp into Md ∈ Rk×Θd and

Mp ∈ Rk×Θp . l/k is the total number of possible drug/protein sub-structures obtained from

the FCS algorithm. Θd/Θp is the maximum length that the sequence of sub-structures can

have for drugs/proteins, respectively. Each column Md
i and Mp

j is a vector that contains a 1

in the corresponding sub-structure index for the ith sub-structure of the drug sequence and

the j th sub-structure of the protein sequence, respectively.

Two different embeddings are created and then aggregated, namely, the content embedding

and the positional embedding. The content embedding is denoted as Ed
conti

for a drug’s ith

sub-structure and Ep
contj

for a protein’s j th sub-structure. They are generated as

Ed
conti

= Wd
contM

d
i (1)

Ep
contj

= Wp
contM

p
j (2)
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Wd
cont ∈ Rϑ×l and Wp

cont ∈ Rϑ×k are dictionary lookup matrices that are used to generate the

content embeddings for drugs and proteins, respectively. These matrices are learned during

the training process of the model. ϑ is the size of the embedding.

The positional embedding Ed
posi

, Ep
posj

is obtained as

Ed
posi

= Wd
posIdi (3)

Ep
posj

= Wp
posI

p
j (4)

Wd
pos ∈ Rϑ×Θd and Wp

pos ∈ Rϑ×Θp are dictionary lookup matrices and they are learned

during the training process. Idi ∈ RΘd and Ipi ∈ RΘp contain a one in the ith and j th position

respectively.

Once the content embedding and the positional embedding are obtained, the final embedding

Ed
i , E

p
j is calculated as

Ed
i = Ed

conti
+Ed

posi
(5)

Ep
j = Ep

contj
+Ep

posj
(6)

Up to this part, the obtained embeddings are independent for each sub-structure of the drug

and the protein. The role of the transformer module is to capture the chemical relationships

between the sub-structures to augment the embedding, by using transformer encoder layers:

Ẽ
d
= TransformerDrug(E

d) (7)

Ẽ
p
= TransformerProtein(E

p) (8)

Once the embedding is achieved, the interaction prediction module comes next. It is divided

into the pairwise interaction layer and the neighborhood interaction layer.

The pairwise interaction is modeled for each sub-sequence i of the drug and j for the protein

as follows.

Ii,j = F(Ẽ
d
i , Ẽ

p
j ) (9)

F can be any function that measures the interaction between the pair of sub-structures.

MolTrans uses the dot product as this function and therefore, the output is a two-dimensional

interaction map I ∈ RΘd×Θp .

The neighborhood interaction layer is important because it models the interactions that the

nearby sub-structures may have on each sub-substructure. A CNN layer is used to model

these interactions. The output representation O is obtained as

O = CNN(I) (10)
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The last part of the model is the decoder module. The objective of this modules is to output a

probability of interaction between the input drug and protein. To do that, O is first flattened

into a vector. This vector is fed into a linear layer to output the probability of interaction

P. The linear layer is parameterized by a weight matrix Wo and a bias vector bo and P is

calculated as

P = σ(WoFLATTEN(O) + bo) (11)

σ is the sigmoid function defined as σ(a) = 1
1+exp(−a) .

All the model’s parameters are optimized using the binary classification loss L:

L = Ylog(P) + (1−Y)log(1−P) (12)

Y is the ground truth label.

3.2 HyperAttentionDTI

HyperAttentionDTI [16] proposes an end-to-end method to predict DTIs that is bio-inspired.

The model is based on CNN and the attention mechanism. Unlike other methods, Hyper-

AttentionDTI makes use of the attention mechanism to incorporates several non-covalent

interaction types, such as hydrophobic interactions and hydrogen bonds.

The model is summarized in Figure 5.

Figure 5: HyperAttentionDTI model structure [16].
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The input of the model is the following:

• Drugs are represented by the SMILES string.

• Target proteins are represented by a sequence composed of any of the 23 aminoacids.

The first part of the model is the Embedding Layer. It transforms each character in the

SMILES or aminoacid sequence string to an embedding vector. After this layer, the matrix

De ∈ RM×ed for each drug Pe ∈ RN×ep for each protein are obtained. M/N is the length of

the string of the drug/protein and ed/ep is the size of the embedding for the drug/protein.

Once the embedding is done, the next part of the model is the CNN block. There is a specific

block for drugs and another one for proteins. Each CNN block has three one-dimensional CNN

layers. The objective of these layers is to extract semantic information from the sequences.

When the embedding matricesDe and Pe are passed through their corresponding CNN blocks,

the latent feature matrices Dcnn ∈ RM×f for the drug and Pcnn ∈ RN×f for the protein are

generated. f corresponds to the number of filters that the last CNN layer has.

The Attention block comes after the CNN block. This module models the semantic inter-

dependencies both in spatial and channel dimensions between the drug and protein sub-

sequences. The input of this block is Dcnn = {d1, d2, ..., dM} and Pcnn = {p1, p2, ..., pN} and

the output is an attention matrix A ∈ RN×M×f that captures the aforementioned interactions

in spatial and channel dimensions.

The steps to obtain A are the following. First, the attention vectors dai and paj are obtained

from di and pj as

dai = F (Wd · di + b) (13)

paj = F (Wp · pj + b) (14)

F is a non-linear activation function such as ReLU. Wd ∈ Rf×f and Wp ∈ Rf×f are the

weight matrices, and b is the bias vector. These last three parameters are learned during the

training process.

The attention vector Ai,j ∈ Rf is generated as

Ai,j = F (Wa · (dai + paj) + b) (15)

Wa ∈ R2f×f is the trainable weight matrix.

Therefore, the attention matrix A is directly obtained from the attention vectors. To get the

attention matrix for drugs Ad ∈ RM×f and for proteins Ap ∈ RN×f , the following operations

are done.
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Ad = σ(MEAN(A, 2)) (16)

Ap = σ(MEAN(A, 1)) (17)

MEAN(a, b) returns the mean value of each row of the matrix a along the dimension b. σ is

the sigmoid function.

The next step is to update the latent feature matrices to Da and Pa as follows.

Da = Dcnn · 0.5 +Dcnn ⊙Ad (18)

Pa = Pcnn · 0.5 + Pcnn ⊙Ap (19)

⊙ means element-wise multiplication.

Once Da and Pa are obtained, a global-max pooling operation is applied to them in order to

get the feature vectors vdrug and vprotein. These two vectors are then concatenated.

Lastly, the concatenated vector is passed through the output block. This block is composed

of multilayer fully connected neural networks with Leaky ReLU as activation function and

dropout layers between each neural network layer, in order to avoid overfitting. the output

of the block is the probability of interaction ŷ between the input drug and protein.

Given the ground truth label y, the model is trained based on the binary cross entropy loss

defined as follows.

L = −[y log(ŷ) + (1− y) log(1− ŷ)] (20)

3.3 Evaluation methodology

Every model has been designed to be trained in a specific way. Therefore, to compare both

methods equally, the original methodology in each model should be applied.

MolTrans uses a training, validation and test scheme. This means that the dataset is divided

into 3 sets. For instance, 70% of the dataset becomes the training set, 10% becomes the vali-

dation set and 20% the test set. The validation set is useful to optimize the hyperparameters

of the model.

HyperAttentionDTI is evaluated on a 5-fold cross validation scheme. In other words, the

dataset is divided into 5 parts. Each time, one of the parts is taken as the test set and the

rest as the training set. The results are then averaged. Moreover, it takes 20% of the training

set as the validation set.
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To compare both methods, the models are evaluated on 3 different splits:

• Sp split: Every drug and target in the dataset is part of at least one interaction both

in the training and test set.

• Sd split: Some drugs only appear in interactions on the test set, so that the generaliza-

tion of the model with respect to drugs can be evaluated.

• St split: Some targets only appear in interactions on the test set, so that the general-

ization of the model with respect to targets can be evaluated

The dataset is divided using 5 different random seeds and the mean of the results is performed

for each split.
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Chapter 4

Results and discussion

4.1 Datasets

The datasets that have been used to compare the methods are the following:

• BindingDB [17]: It consists of 10665 drugs and 1413 proteins and it contains DTIs

with Kd (dissociation constant) affinity values obtained from wet lab assays. For this

project, Kd values below 30 units are considered positive interactions.

• BIOSNAP [18]: DTI network that contains drugs that are available in the U.S. market.

• Davis [19]:It consists of 68 drugs and 379 proteins and contains DTIs with Kd affinity

values obtained from wet lab assays. For this project, Kd values below 30 units are

considered positive interactions.

• DrugBank [20]: It contains drugs that are approved or soon to be approved by the U.S.

Food and Drug Administration (FDA). It has information on drugs, DTIs, drug action

and drug interaction.

• Yamanishi [21]: There are 4 different datasets depending on the target proteins classes.

For instance, enzymes (Yamanishi E), G protein-coupled receptors (GPCR), ion-channels

(IC) and nuclear receptors (NR).

The summary of the relevant features of each dataset after the preprocessing can be found

in Table 1.

17
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Dataset Drugs Proteins Positive DTI pairs

BindingDB 3085 719 5942

BIOSNAP 4643 2229 14486

Davis 65 314 1048

DrugBank 7434 4975 26419

Yamanishi E 445 663 2924

Yamanishi GPCR 223 95 635

Yamanishi IC 210 204 1476

Yamanishi NR 54 26 90

Table 1: Summary of dataset features.

Since the datasets only contain positive DTI pairs, subsampling is performed to balance them

with negative DTI pairs. The subsampling is performed by counting the number of positive

pairs that each drug and protein has, and generating the same number of negative pairs,

randomly.

4.2 Metrics

The metrics that have been used to compare both methods are the Area Under the Receiver

Operating Characteristic (ROC) curve (AUC-ROC) and the Area Under the Precision Recall

(PR) curve (AUC-PR).

To explain what each of the metrics measures, the confusion matrix needs to be defined first.

The task that is being solved is a binary classifier where a drug-target pair can interact or

not. Therefore, when a drug-target pair is passed as input to the models four outcomes can

happen, based on the ground-truth:

• A true positive is correctly predicted as positive.

• A true positive is incorrectly predicted as negative. Therefore, it is a false negative.

• A true negative is incorrectly predicted as positive. Therefore, it is a false positive.

• A true negative is correctly predicted as negative.

Therefore, the confusion matrix is defined as in Table 2.

Truth = 0 Truth = 1

Prediction = 0 True negatives (TN) False negatives (FN)

Prediction = 1 False positives (FP) True positives (TP)

Table 2: Confusion matrix.
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Given a test set, the objective is to complete the confusion matrix with the corresponding

values. Then, the Precision (P ) True Positive Rate (TPR) or Recall and the False Positive

Rate (FPR) can be calculated as in Equations 22 and 23.

P =
TP

TP + FP
(21)

TPR =
TP

TP + FN
(22)

FPR =
FP

FP + TN
(23)

The ROC curve is the plot of the TPR versus the FPR for different thresholds in the

classifier. The PR curve is the plot of the precision versus the recall for different thresholds

in the classifier. An example of both plots can be found in Figure 6.

Figure 6: PR curve (left) and ROC curve (right) [22].

The AUC-ROC and AUC-PR are simply the area under their corresponding curve, which

is a number between 0 and 1. The closer to 1 the metrics are, the better the model has

performed.

4.3 Results

After running MolTrans and HyperAttentionDTI on the 8 datasets and with 3 different splits,

the results obtained can be seen in Tables 3, 4, 5.
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Datasets
ROC-AUC PR-AUC

MolTrans HyperAttentionDTI MolTrans HyperAttentionDTI

BindingDB 0.7834 0.9165 0.6525 0.8593

BIOSNAP 0.6947 0.7905 0.5230 0.6814

Davis 0.5255 0.5542 0.3330 0.3953

DrugBank 0.7152 0.7914 0.5533 0.6845

Yamanishi E 0.5753 0.7003 0.4107 0.6113

Yamanishi GPCR 0.6623 0.7456 0.4735 0.5912

Yamanishi IC 0.6270 0.7264 0.4373 0.6374

Yamanishi NR 0.5442 0.4981 0.4211 0.3432

Table 3: Sd split results.

Datasets
ROC-AUC PR-AUC

MolTrans HyperAttentionDTI MolTrans HyperAttentionDTI

BindingDB 0.8962 0.9540 0.8026 0.9102

BIOSNAP 0.7896 0.8609 0.6298 0.7702

Davis 0.6928 0.7383 0.5294 0.5758

DrugBank 0.7917 0.8621 0.6444 0.7759

Yamanishi E 0.8834 0.9530 0.8003 0.9221

Yamanishi GPCR 0.7368 0.8042 0.5301 0.6479

Yamanishi IC 0.8752 0.9492 0.7719 0.9172

Yamanishi NR 0.5436 0.4568 0.4206 0.3264

Table 4: Sp split results.

Datasets
ROC-AUC PR-AUC

MolTrans HyperAttentionDTI MolTrans HyperAttentionDTI

BindingDB 0.7260 0.7449 0.5613 0.6174

BIOSNAP 0.7843 0.8592 0.6179 0.7737

Davis 0.6766 0.7129 0.4769 0.5478

DrugBank 0.7948 0.8632 0.6481 0.7769

Yamanishi E 0.7103 0.8449 0.6044 0.7954

Yamanishi GPCR 0.6615 0.7280 0.4883 0.5653

Yamanishi IC 0.7165 0.8688 0.5509 0.8267

Yamanishi NR 0.4064 0.3424 0.2664 0.2938

Table 5: St split results.

If the results are analyzed, it can clearly be observed that HyperAttentionDTI outperforms

MolTrans on most cases. Therefore, it can be said that HyperAttentionDTI makes better
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predictions compared to MolTrans.

However, MolTrans performs better in the Yamanishi NR dataset. As it was seen in Table

1, Yamanishi NR has relatively fewer data compared to the rest of the datasets. It can be

concluded that HyperAttentionDTI does not predict DTIs as well as MolTrans when the

dataset is small. MolTrans advantage may come from the fact that it uses a lot of unlabeled

data to divide drugs and proteins into sub-structures.

Furthermore, both models make better predictions when the datasets are split in the Sp

mode. This makes sense because, in Sp, the models are able to see all the drugs and proteins

during the training phase.

Interestingly, MolTrans generalizes targets better because it obtains better results in St splits

than Sd. On the other hand, HyperAttentionDTI makes a better generalization of drugs,

getting better results in Sd splits than St. In other words, MolTrans is more capable of

predicting DTIs with new targets and HyperAttentionDTI with new drugs.

Lastly, another important conclusion that can be obtained is that the size of the datasets are

not directly proportional to the performances of the models. DrugBank contains the most

number of interactions but there are smaller datasets such as, Yamanishi E where the models

perform better in testing.
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Chapter 5

Graph Machine Learning

The Machine Learning models that have been described up to now work well on vector or

matrix data. However, they cannot be directly applied to graphs, since they are more com-

plex data structures. Graphs have arbitrary size and their topological structure is complex.

Moreover, they can change with time. Being able to make predictions with machine learning

on these data structures would outperform conventional models due to their capability to

model complex systems more accurately.

In this chapter, a brief introduction to graphs is going to be made, as well as a description

of some fundamental Graph Machine Learning methods.

5.1 Graphs

A graph is a data structure that is useful to describe complex systems [23]. For example, the

interactions between proteins could be represented as a graph by having proteins as nodes

and their interactions as edges, as in Figure 7.

Figure 7: Human melanocortin 4 receptor (MC4R) protein-protein interaction graph [24].

Formally, a graph is formally defined as G = (V, E) where V is a set of nodes and E is a set

23
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of edges between the nodes. An edge going from node u ∈ V to node v ∈ V is denoted as

(u, v) ∈ E .

A graph can be represented through an adjacency matrix A ∈ R|V|×|V|. Every node is indexed

in a particular row and column of the matrix. An edge is represented as an entry in this

matrix as follows:

A[u, v] =

1, if (u, v) ∈ E

0, otherwise

Graphs can be classified as directed and undirected graphs. Moreover, graphs can also have

weighted edges. This means that instead of the adjacency matrix having binary values, it

can contain any real values, modeling the importance of each edge compared to the rest.

Multi-relational graphs are a type of graphs that can have different edge types. In these

cases, the graph can be represented as an adjacency matrix specific to each type of edge.

If a multi-relational graph also has nodes of different types, it is called an heterogeneous or

knowledge graph.

5.2 Graph statistics

Graphs can be analyzed and compared using various statistics. In this section, the Davis

and BindingDB datasets are going to be analyzed from a graph point of view. For this,

the NetworkX [25] Python library has been used. This library contains data structures to

represent graphs, as well as different algorithms to analyze and visualize them.

In Table 6, a summary of some graph statistics can be seen for Davis and BindingDB datasets.

The density d of an undirected graph is defined as

d = 2m
n(n−1) × 100

where n is the total number of nodes and m is the total number of edges in the graph.

The sparsity is the opposite of the density, representing the percentage of edges that do not

exist over the total number of possible edges. A connected component within a graph is a

sub-graph where every pair of nodes is connected through a path.
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Davis BindingDB

Number of drugs 65 3085

Number of proteins 314 719

Total number of nodes 379 3804

Total number of edges 1048 5938

Number of connected components 1 232

Density 1.46% 0.08%

Sparsity 98.54% 99.92%

Table 6: Graph statistics for Davis and BindingDB datasets.

In Figures 8 and 9, a visualization of the Davis and BindingDB graphs can be found. It can

be seen that in the BindingDB dataset there are a lot of drug-protein pairs that interact just

between them, whereas in Davis, drugs and targets are more connected.

Figure 8: Davis graph.



MACHINE LEARNING METHODS FOR DRUG REPURPOSING 26

Figure 9: BindingDB graph.

5.3 Node embedding

The main objective of node embedding techniques is to use low-dimensional vectors to encode

nodes. These vectors should capture the position of the nodes within the graph as well as

their local neighborhood structure. By creating vector embeddings of nodes, conventional

machine learning models could be applied to them in order to make predictions.

To create node embeddings an encoder-decoder framework is used. The steps to follow are

summarized below.

1. The encoder maps node v to an embedding zv ∈ Rd.

ENC(v) = zv

2. A node similarity function S[u, v] is defined to be able to measure the similarity between

any pair of nodes u, v in the graph.
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3. The decoder should map from the embeddings created by the encoder to the results

obtained from the similarity function by using a certain function such as the dot prod-

uct.

DEC(zu, zv) = zTu zv

4. The parameters of the encoder are optimized so that

S[u, v] ≈ DEC(zu, zv)

The most straightforward encoder is an embedding-lookup matrix.

ENC(v) = Z · v = zv

Z ∈ Rd×|V | is a matrix where each column represents a node embedding and v ∈ I|V | is a

one-hot vector representing the position of node v. |V | is the total number of nodes in the

graph.

The optimization of the encoder-decoder is done like a typical machine learning model, by

defining a loss function L over a set of node pairs D used for training.

L =
∑

(u,v)∈D

ℓ(DEC(zuzv),S[u, v])

where ℓ is a loss function that measures the difference between the two input values.

The machine learning algorithms that use this scheme to produce embeddings are called

shallow embedding methods. There are many different node embedding methods that use

approaches such as factorization [26, 27]. However, more recent random walk based node

embedding methods will be explained.

Given a graph and a starting node, a random walk is a sequence of nodes that are chosen

at random based on the structure of the graph. In random walk based methods, node

embeddings are optimized based on the fact that two nodes will have similar node embeddings

if the probability that they co-occur on a random walk is high.

Two important random walk based methods are DeepWalk [28] and node2vec [29].

The decoder in both cases is the following.

DEC(zu, zv) =
ez

T
u zv∑

vk∈V ez
T
u zvk

The loss function is defined as

L =
∑

(u,v)∈D

− log(DEC(zu, zv))
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D is the random walk training set.

The node similarity function is defined as probability of visiting a node v on a random walk

of length T starting at node u. That is, pG,T (v|u). Therefore, the objective is to learn node

embeddings so that

DEC(zu, zv) ≈ pG,T (v|u)

The main difference between the two methods is that DeepWalk defines pG,T (v|u) with uni-

form random walks. Meanwhile, node2vec makes use of hyperparameters in order to perform

biased random walks and interpolate between breadth-first search (local graph description)

and depth-first search (global graph description).

5.4 Limitations of shallow node embedding methods

Shallow node embedding methods have allowed many advances in the graph machine learning

field. However, they have several drawbacks. The main problem with shallow node embed-

dings is that they are transductive. These methods can only generate embeddings for nodes

that are seen in the training phase. If the embeddings of new nodes were needed, these meth-

ods would need to retrain the whole model again. Moreover, the described node embedding

techniques cannot make use of feature data that each node may have.

Given the possibility that graphs can be dynamic over time, inductive methods that are

able to generalize to previously unseen nodes are preferred. The most popular example of

inductive models are graph neural networks.

5.5 Graph Neural Networks

The main objective of graph neural networks (GNN) is to generate embeddings of nodes

based on the structure of the graph and feature information that each node may have. In

other words, given a graph G = (V, E) and a set of node features X ∈ Rd×|V|, GNNs generate

node embeddings zu, ∀u ∈ V.

GNNs are based on the neural message passing framework. That is, messages in the form

of vectors are passed between nodes and they are transformed and aggregated in order to

produce embeddings.

The key idea is that each node has its own computation graph based on their neighborhood

structure. In other words, each node defines its own neural network. Messages from each

node’s neighbors are aggregated, transformed and passed to the node in order to generate

the corresponding embedding vector.

In Figure 10, an example of a 2-layer GNN can be seen. If a GNN has K layers, it means



29 MIKEL CASALS BAENA

that it is capturing messages in the form of vectors from nodes that are up to K hops away

from the objective node. A layer-0 GNN simply takes the feature vector of the node and

transforms it to produce the embedding.

Figure 10: Computation graph of node A [30].

In a GNN layer two steps happen. First, the message from each node is transformed and

then, all incoming messages are aggregated, as in Figure 11.

Figure 11: Steps in a GNN layer [30].

If m
(l)
u is the message from node u at layer l, it is computed as

m
(l)
u = MSG(l)(h

(l−1)
u )

where h
(l−1)
u is the embedding of node u at layer l− 1 and MSG(l) is the message function at

layer l. The message function can be of many types, such as a linear layer or a feedforward

neural network.

Once the messages from each neighboring node are obtained, the embedding of node v at
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layer l, h
(l)
v , is obtained after the aggregation step as

h
(l)
v = CONCAT(AGG({m(l)

u , u ∈ N(v)}),m(l)
v )

The aggregation operation AGG needs to be order invariant since nodes in a graph have

arbitrary ordering. For instance, the sum or the mean of the messages. N(v) is the set of

v’s neighboring nodes. The CONCAT operation is not mandatory but it guarantees that the

information from node v is not lost.

Non-linear functions such as σ or ReLU could be applied at the message or aggregation step

so that expressiveness is added.

Three fundamental GNN layers are:

• Graph Convolutional Networks (GCN) [31]: In Equation 24, the node embedding result

of node v at layer l can be found. The message consists on transforming the embedding

of each neighbor node at the previous layer by a weight matrix W(l) and normalizing

it with respect to the total number of neighbors. The aggregation part is simply a

summation over all the messages. Lastly, the non-linear σ function is applied.

h(l)
v = σ

 ∑
u∈N(v)

W(l) h
(l−1)
u

|N(v)|

 (24)

• GraphSAGE [32]: In Equation 25, it can be seen that the message passing and aggre-

gation happen within the AGG. Then, the information of the node itself is aggregated

through a concatenation operation CONCAT .

h(l)
v = σ

(
W(l) · CONCAT

(
h(l−1)
v ,AGG

({
h(l−1)
v ,∀u ∈ N(v)

})))
(25)

• Graph Attention Networks (GAT) [33]: The particularity of GATs is the attention

weights αvu, as it can be seen in Equation (26). These weights model the importance

that node u’s message has on node v. They are computed for every connected node

pair and they are trained simultaneously as the parameter weight matrix W(l).

h(l)
v = σ

 ∑
u∈N(v)

αvuW
(l)h(l−1)

u

 (26)

One key advantage of GNNs is their efficiency, since the parameter matrices W (l) are shared

across all nodes and they are unique for each layer. Therefore, the number of parameters is

significantly decreased compared to shallow embedding methods where the encoder optimizes

the embedding for each node. Moreover, they can be trained on a graph and be applied to a

previously unseen graph, thanks to its inductive capability.
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The challenge lies in choosing the most accurate GNN architectures since there are many

choices to be made such as the depth of the model, the aggregation function, the message

transformation function, etc.
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Chapter 6

Conclusions

To summarize, in this project MolTrans and HyperAttentionDTI have been evaluated on 8

different datasets and 3 different splits to test their generalization capabilities with respect to

drugs and proteins. It can be concluded that HyperAttention performs better than MolTrans

Even though, both models offer competitive performance, after analyzing fundamental con-

cepts of Graph Machine Learning, I believe that transforming the datasets into graphs and

applying machine learning methods to them could improve substantially on current state-of-

the-art methods.

Graph Machine Learning is still an emerging field of research, so the true potential that

these methods could have is still not entirely known. From this project, the most important

outcome that can be taken is that shallow node embeddings methods are not going to be useful

for DTI prediction, due to their inherent transductivity. However, Graph Neural Networks

have the necessary characteristics to revolutionize the drug repurposing field.

Apart from this, the two analyzed models only use sequence of strings to represent drugs

and proteins. Graphs allow to make use of more features for their nodes. Therefore, apart

from developing new graph-based machine learning models, new data from drugs and pro-

teins should be considered and incorporated when performing DTI prediction. For instance,

the recently developed model AlphaFold [34] has allowed to obtain the three-dimensional

structure of most proteins very accurately. Moreover, different types of edges could be used

for the graph representation, such as protein-protein interactions or drug side effects. From

my perspective, this kind of data could be exploited to develop a more robust model.

All in all, it is clear that from this project, future work includes research on possible new

drug and protein data and the development of an innovative machine learning model based

on GNNs that outperforms MolTrans and HyperAttentionDTI.
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Budget

In this section, the total budget needed for the development of the project is going to be

explained. It is divided into:

• Equipment: it includes all the cost related to already acquired machinery. The calcula-

tion of the cost is done taking in consideration the amortization time and usage needed

for the project.

• Consumable material: it includes all the material that is consumed during the devel-

opment process of the project.

• Human resources: it includes the necessary human costs in each task of the project,

based on the hours spent.

In Tables 7, 8, 9, the costs of equipment, consumable materials and human resources can be

found, respectively.

The total cost of the project is 16224 e, as it can be seen in Table 10.

Equipment
Adquisition

price (e)

Amortization

time (years)

Monthly

amortization

cost (e)

Usage

time

(months)

Amortization

(e)

Dell Precision 7280 16,000 4 333.33 6 1999,98

Quadro RTX 4000 GPU 1152,88 4 288,22 2 576,44

Total 2576,42

Table 7: Equipment budget.
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Description
Quantity

(kWh)

Price (e)

Unitary Total

GPU power consumption 53.76 0.246 13.22

Total 13.22

Table 8: Consumable material budget.

Task
Duration

(hours)

Price (e)

Unitary Total

1. Machine Learning preliminaries 30 30 900

2. Understanding and analyzing MolTrans 10 30 300

3. Understanding and analyzing HyperAttentionDTI 10 30 300

4. Dataset collection 25 30 750

5. Dataset preprocessing 100 30 3000

6. Graph Machine Learning analysis 40 30 1200

7. Programming scripts for simulations 20 30 600

8. Redaction of project documentation 85 30 2550

Total 320 9600

Table 9: Human resources budget.

Type Price (e)

Equipment 2576.42

Consumable material 13.22

Human resources 9600

Indirect costs (10%) 1218.97

Total without taxes 13408.61

Total with taxes (21%) 16225

Table 10: Total budget.
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