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Abstract 
The future of mobility will be connected, cooperative and autonomous. All 

vehicles on the road will be connected to each other as well as to the 

infrastructure. Traffic will be mixed and human-driven vehicles will coexist 

alongside self-driving vehicles of different levels of automation. This 

mobility model will bring greater safety and efficiency in driving, as well as 

more sustainable and inclusive transport.  

For this future to be possible, vehicular communications, as well as 

perception systems, become indispensable. Perception systems are capable 

of understanding the environment and adapting driving behaviour to it 

(following the trajectory, adjusting speed, overtaking manoeuvres, lane 

changes, etc.). However, these autonomous systems have limitations that 

make their operation not possible in certain circumstances (low visibility, 

dense traffic, poor infrastructure conditions, etc.). This unexpected event 

would trigger the system to transfer control to the driver, which could 

become an important safety weakness. At this point, communication 

between different elements of the road network becomes important since the 

impact of these unexpected events can be mitigated or even avoided as long 

as the vehicle has access to dynamic road information. This information 

would make it possible to anticipate the disengagement of the automated 

system and to adapt the driving task or prepare the control transfer less 

abruptly. 

In this thesis, we propose to develop a road monitoring system that, installed 

in vehicles travelling on the road network, performs automatic auscultation 

of the status of the infrastructure and can detect critical events for driving. 

In the context of this research work, the aim is to develop three independent 

modules: 1) a system for detecting fog and classifying the degree of visibility; 

2) a system for recognising traffic signs; 3) a system for detecting defects in 

road lines. This solution will make it possible to generate cooperative 

services for the communication of critical road events to other road users. It 
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will also allow the inventory of assets to facilitate the management of 

maintenance and investment tasks for infrastructure managers. In addition, 

it also opens the way for autonomous driving by being able to better manage 

transitions of control in critical situations and by preparing the infrastructure 

for the reception of self-driving vehicles with high levels of automation.
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Resumen 
El futuro de la movilidad será conectada, cooperativa y autónoma. Todos los 

vehículos de la carretera estarán conectados entre sí, así como con la 

infraestructura. El tráfico será mixto y vehículos tripulados por humanos 

convivirán junto con vehículos de diferentes niveles de automatización. Este 

modelo de movilidad traerá consigo una mayor seguridad y eficiencia en la 

conducción, así como un transporte más sostenible e inclusivo.  

Para que este futuro sea posible, las comunicaciones vehiculares, así como 

los sistemas de percepción, se vuelven imprescindibles. Los sistemas de 

percepción son capaces de entender el entorno y adaptar la conducción al 

mismo (seguir la trayectoria, adecuar la velocidad, maniobras de 

adelantamiento, cambio de carril etc.). Sin embargo, estos sistemas 

autónomos tienen limitaciones que hacen que en ciertas circunstancias su 

funcionamiento no sea posible (baja visibilidad, tráfico denso, 

infraestructura en malas condiciones etc.). Este imprevisto haría que el 

sistema transfiera el control al conductor, lo que puede convertirse en un 

problema de seguridad vial. En este punto, la comunicación entre los 

distintos elementos de la red de carreteras cobra especial importancia, ya que 

el impacto de estos imprevistos puede mitigarse o incluso evitarse si el 

vehículo tiene acceso a información dinámica de la carretera. Esta 

información permitiría anticipar la desconexión del sistema automatizado y 

adaptar la tarea de conducción o preparar la transferencia de control de 

forma menos brusca.  

En esta tesis, se propone desarrollar un sistema de monitorización de la 

carretera que, instalado en vehículos que recorran la red viaria, realice una 

auscultación automática del estado de la infraestructura y pueda detectar a 

su vez eventos críticos para la conducción. En el contexto de este trabajo de 

investigación se pretende desarrollar tres módulos independientes: 1) un 

sistema de detección de niebla y clasificación del grado de visibilidad; 2) un 

sistema de reconocimiento de señales de tráfico; 3) un sistema de detección 
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de defectos en las líneas de la carretera. Esta solución permitirá generar 

servicios cooperativos para la comunicación de eventos críticos de la 

carretera al resto de usuarios. Del mismo modo permitirá realizar el 

inventariado de activos para facilitar la gestión de tareas de mantenimiento 

e inversiones a los gestores de la infraestructura. Además, abre camino 

también a la conducción autónoma pudiendo gestionar mejor las 

transiciones de control en situaciones críticas y poniendo a punto la 

infraestructura para la acogida de vehículos con niveles de automatización 

elevados. 
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Laburpena 
Etorkizuneko mugikortasuna konektatua, kooperatiboa eta autonomoa 

izango da. Errepideko ibilgailu guztiak elkarren artean konektatuta egongo 

dira, baita azpiegiturarekin ere. Trafikoa mistoa izango da, eta gizakiek 

gidatutako ibilgailuak hainbat automatizazio-mailatako ibilgailuekin batera 

biziko dira. Mugikortasun-eredu horrek segurtasun eta eraginkortasun 

handiagoa ekarriko du gidatzean, bai eta garraio jasangarriagoa eta 

inklusiboagoa ere. 

Etorkizun hori posible izan dadin, ibilgailu-komunikazioak eta pertzepzio-

sistemak ezinbestekoak dira. Pertzepzio-sistemak gai dira ingurunea 

ulertzeko eta gidatzeko modua horretara egokitzeko (ibilbideari jarraitzea, 

abiadura egokitzea, aurreratzeko maniobrak, errei-aldaketa, etab.). Hala ere, 

sistema autonomo horiek mugak dituzte, eta, horren ondorioz, zenbait 

egoeratan ezin dute funtzionatu (ikuspen urria, trafiko handia, baldintza 

txarreko azpiegitura, etab.). Ezusteko horren ondorioz, sistemak kontrola 

gidariari transferituko lioke, eta hori bide-segurtasuneko arazo bihur 

daiteke. Puntu horretan, errepide-sareko elementuen arteko komunikazioa 

bereziki garrantzitsua da, ezusteko horien eragina arindu edo saihestu egin 

baitaiteke ibilgailuak errepideari buruzko informazio dinamikoa eskura 

badu. Informazio horri esker, sistema automatizatuaren deskonexioa 

aurreikusi ahal izango litzateke, eta gidatze-lana egokitu edo kontrol-

transferentzia hain zakarra izan gabe prestatu. 

Tesi honetan, errepidea monitorizatzeko sistema bat garatzea proposatzen 

da. Sistema horrek, ibilgailuetan instalatuta, bide-sarea zeharkatzen du, 

azpiegituraren egoeraren auskultazio automatikoa eginez, eta, aldi berean, 

gidatzeko kritikoak diren gertaerak hautemanez. Ikerketa-lan honen 

kontextuan, hiru modulu ezberdin garatu nahi dira: 1) lainoa detektatzeko 

eta ikuspen-maila sailkatzeko sistema bat; 2) trafiko-seinaleak ezagutzeko 

sistema bat; 3) errepide-lerroetan akatsak detektatzeko sistema bat. 

Konponbide horri esker, zerbitzu kooperatiboak sortu ahal izango dira 
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errepideko gertaera kritikoak gainerako erabiltzaileei jakinarazteko. Era 

berean, aktiboen inbentarioa egiteko aukera emango du, azpiegituraren 

kudeatzaileei mantentze-lanen eta inbertsioen kudeaketa errazteko. 

Gainera, bide ematen dio gidatze autonomoari, egoera kritikoetan kontrol-

trantsizioak hobeto kudea ditzan eta automatizazio-maila altuak dituzten 

ibilgailuak hartzeko azpiegitura prest jar dezan. 



 

 

 

xiii 

  

Acknowledgements 
Hace ya siete años que comencé mi recorrido en Ceit, y no mucho menos que 

Alfon vió en aquella chica testaruda una futura doctora, incluso antes de 

tener los estudios que me permitieran siquiera inscribirme. Pero como él 

dice, a ese “no” sólo le hacían falta pequeños empujoncitos para labrar el 

camino al sí. Y aunque en muchas ocasiones no lo hubiera hecho, hoy me 

toca darle las gracias por todos esos empujoncitos que me han traido hasta 

aquí. Por toda la confianza depositada en mí en todo este recorrido para 

llevarme siempre más allá de lo posible.  

Del mismo modo tengo un enorme gracias reservado para Diego, por aceptar 

dirigirme la tesis, acogerme en estos años, acompañarme en el camino y tener 

muchas veces la pregunta o frase acertada. Por abrirme las puertas al mundo 

de la visión artificial, por las discusiones técnicas, por los correos express sin 

asunto y por los ¿qué tal? rutinarios de primera hora, muchas veces 

oportunos.   

Extender las gracias también a Ceit por confiar en esta tesis doctoral y 

preparar el camino para que alce su vuelo en el futuro. Y a Gertek por darme 

soporte con las imágenes y aterrizar la tesis en el mundo real.  

En estos años, incluso en plena época de distanciamiento social, no puedo 

estar más agradecida de haber tenido la suerte de cruzarme con tantas 

personas dentro de esta particular “casa”. A los TMS, visionarios/robóticos, 

diseño, ferrocarril y otros con los que he compartido grupos burbuja y 

muchas conversaciones. Por aceptar mis idas y venidas de arriba a abajo y 

hacerme sentir acogida en todas ellas.  

Y como no, gracias a mis mayores apoyos que han seguido esta tesis y todos 

sus altibajos muy de cerca:  

A mi ama, asesora particular 24h. A mi aita, piloto y escuchador diario. A los 

dos por acompañarme en todas las decisiones, sean buenas, malas o 

regulares.  



 

 

Acknowledgements 

xiv 

 

A Borja, por atreverse con la estación intermodal de trenes, coches, y 

montañas rusas. Por ser revisor, colaborador, público, tribunal, animador, 

equipo y hogar.  

Y a Leire, mi bioquímica de cabecera, mi mitad y compañera de vida desde 

antes de nacer. Por estar antes que nadie, ante todo y para todo siempre.



 

 

 

xv 

  

 

Table of contents 
Abstract ................................................................................................................ vii 

Resumen ................................................................................................................ ix 

Laburpena .............................................................................................................. xi 

Acknowledgements .......................................................................................... xiii 

Table of contents ................................................................................................. xv 

List of figures ...................................................................................................... xix 

List of tables ....................................................................................................... xxv 

Glossary ............................................................................................................. xxix 

Chapter 1 Introduction ......................................................................................... 1 

1.1. Future mobility roadmap .......................................................................... 3 

1.1.1. Vision 2050......................................................................................... 3 

1.1.2. CCAM impact ................................................................................... 4 

1.1.3. Main challenges ................................................................................ 4 

1.1.4. Main enablers .................................................................................... 6 

1.2. Smart Road Classification ........................................................................ 10 

1.3. Environmental perception ....................................................................... 12 

1.3.1. Why computer vision? ................................................................... 13 

1.3.2. Computer vision techniques ......................................................... 16 

1.3.3. CCAM trends .................................................................................. 18 

1.4. Motivation.................................................................................................. 20 

1.4.1. CCAM impact ................................................................................. 20 

1.4.2. CCAM limitations .......................................................................... 20 



 

 

Table of contents 

xvi 

 

1.4.3. Context ............................................................................................. 21 

1.5. Objectives ................................................................................................... 24 

1.6. Document structure .................................................................................. 26 

Chapter 2 Weather Conditions Monitoring: fog detection ......................... 27 

2.1. State of the art ............................................................................................ 28 

2.1.1. Classical computer vision techniques .......................................... 28 

2.1.2. Deep learning techniques .............................................................. 31 

2.2. Materials and Methods ............................................................................ 33 

2.2.1. Existing Datasets ............................................................................. 33 

2.2.2. Our datasets .................................................................................... 35 

2.2.3. Developments ................................................................................. 37 

2.2.4. Evaluation parameters ................................................................... 45 

2.3. Results ........................................................................................................ 46 

2.3.1. Rule-based method data visualization ........................................ 46 

2.3.2. Models comparison ........................................................................ 47 

2.4. Discussion .................................................................................................. 52 

Chapter 3 Traffic Signs Monitoring: asset inventory ................................... 53 

3.1. State of the art ............................................................................................ 54 

3.1.1. Classical computer vision techniques .......................................... 54 

3.1.2. Deep learning techniques .............................................................. 55 

3.2. Materials and methods ............................................................................ 58 

3.2.1. Existing datasets ............................................................................. 58 

3.2.2. Our dataset ...................................................................................... 59 

3.2.3. Used datasets .................................................................................. 61 

3.2.4. Developments ................................................................................. 61 

3.2.5. Evaluation parameters ................................................................... 67 

3.3. Results ........................................................................................................ 68 

3.3.1. Traffic Sign detection ..................................................................... 69 

3.3.2. Traffic Sign classification ............................................................... 72 



 

 

Table of contents 

xvii 

 

3.4. Discussion .................................................................................................. 77 

Chapter 4 Road Damage Monitoring: road lines .......................................... 79 

4.1. State of the art ............................................................................................ 80 

4.1.1. Data adquisiton systems ................................................................ 80 

4.1.2. Road condition monitoring ........................................................... 81 

4.2. Materials and Methods ............................................................................ 86 

4.2.1. Existing datasets ............................................................................. 86 

4.2.2. Used datasets .................................................................................. 88 

4.2.3. Developments ................................................................................. 91 

4.3. Results ........................................................................................................ 99 

4.3.1. Classical computer vision approach ............................................ 99 

4.3.2. Deep learning approach .............................................................. 101 

4.4. Discussion ................................................................................................ 108 

Chapter 5 Application in Connected, Cooperative and Automated 

Mobility .............................................................................................................. 109 

5.1. Context ..................................................................................................... 110 

5.1.1. ITS value chain .............................................................................. 110 

5.1.2. Data exchange via cooperative V2X communication .............. 112 

5.2. Message handling ................................................................................... 115 

5.2.1. C-ITS standard .............................................................................. 115 

5.2.2. DATEX II standard ....................................................................... 122 

5.3. Discussion ................................................................................................ 130 

Chapter 6 Conclusions and Future Research Directions ........................... 131 

6.1. Conclusions ............................................................................................. 132 

6.2. Future research directions ..................................................................... 135 

Bibliography ...................................................................................................... 137 

Publications ........................................................................................................ 155 

Appendix ............................................................................................................ 159 

A. Appendix – Smart Road Classification framework ........................... 160 



 

 

Table of contents 

xviii 

 

B. Appendix – Colour spaces ..................................................................... 161 

C. Appendix – TSR confusion matrixes .................................................... 164 

D. Appendix – C-ITS messages .................................................................. 168 



 

 

 

xix 

  

 

List of figures 
Figure 1-1. Machine Learning vs. Deep Learning feature extraction approach.

 ................................................................................................................................ 12 

Figure 1-2. Artificial intelligence (AI) data journey or capabilities applied for 

the self-driving use case. ..................................................................................... 13 

Figure 1-3. Camera view and LiDAR view of the KITTI validation dataset. 

Image extracted from [9]. .................................................................................... 16 

Figure 1-4. Object detection and multi-class classification example. ............ 17 

Figure 1-5. Object segmentation example. Both semantic segmentation and 

instance segmentation are shown. In the second example, each car is 

differentiated. ....................................................................................................... 17 

Figure 1-6. Car identification and object tracking examples. ......................... 18 

Figure 1-7. Data acquisition system installed in a road maintenance vehicle 

of Provincial Council of Bizkaia and managed by Gertek. ............................ 23 

Figure 2-1. Ceit-Foggy dataset. Sample images showing the annotated four 

different classes. Three fog levels and the category containing negative 

images, this is, no fog. ......................................................................................... 35 

Figure 2-2. Class distribution of the Ceit-Foggy dataset. ............................... 36 

Figure 2-3. The five selected samples of attenuation coefficient per class for 

the construction of the Foggy Cityscapes DBF – extended dataset. ............. 38 

Figure 2-4. Implemented fog detection workflow for the rule-based method 

classifier. ................................................................................................................ 40 



 

 

List of figures 

xx 

 

Figure 2-5. Studied XYZ features in three different weather scenes. From up 

to down sunny, cloudy and foggy sample scenes. .......................................... 42 

Figure 2-6. Model comparison trained on ImageNet ILSVR2012 top-1 

Accucary vs. Training Time. Image extracted from [54] ................................ 43 

Figure 2-7. Transfer learning architecture designed for the new fog classifier

 ................................................................................................................................ 44 

Figure 2-8. Image features representation for each ground truth label in the 

Ceit-Foggy dataset ............................................................................................... 46 

Figure 2-9. Fog detection models' confusion matrix comparison for the Ceit-

Foggy and Foggy Cityscapes DBF - extended datasets. ................................. 49 

Figure 2-10. Fog tone comparison of the two datasets. Synthetic fog presents 

a colder colour than the real foggy scenes. ....................................................... 50 

Figure 2-11. Off-line video analysis and model comparison for a light-fog 

scenario with a moderate-fog bank that disappears in the last frames ........ 51 

Figure 3-1. Sample images for TSR challenges: lighting or weather 

conditions, artefacts, low-resolution signs, motion blur, rotation, occlusion, 

damage, inconsistencies and intra-class variation (The vast majority of the 

samples are extracted from Ceit-TSR dataset). ................................................ 57 

Figure 3-2. Ceit-TSR dataset. Sample images showing some of the 

challenging conditions: low contrast, fog, reflections, shadows, and heavy 

rain. ........................................................................................................................ 59 

Figure 3-3. CVAT tool that shows the labelling task for Ceit-TSR dataset .. 61 

Figure 3-4. Implemented Traffic Sign Recognition workflow. ...................... 62 

Figure 3-5. ACF features. In the first row from left to right: original image, 

LUV channels, the gradient magnitude and individual representation of 

HOG features in different angles, of a sample sign. ....................................... 63 

Figure 3-6. Traffic sign samples of the ETSDB dataset. There are 164 different 

classes grouped into 9 categories: danger, regulatory (priority, prohibitory, 

mandatory and special regulation) informative (information, direction and 

additional panels) and others. ............................................................................ 64 



 

 

List of figures 

xxi 

 

Figure 3-7. Traffic sign samples of GTSRB dataset. There are 43 different 

classes..................................................................................................................... 65 

Figure 3-8. The pre-processing phase before applying the corresponding 

classifiers. V channel normalization, mean image subtraction and random 

cropping tasks are presented. ............................................................................. 66 

Figure 3-9. Example of false-negative detections due to the small size of the 

traffic sign. Table 3-4 shows detailed information. ......................................... 70 

Figure 3-10. Traffic sign classes were there is more missed samples than 

detected for GTSRB dataset. ............................................................................... 71 

Figure 3-11. Visual analysis of complex situations in Ceit-TSR dataset where 

the classifier fails. The left side shows the complete scene and the right side 

shows the cropped detection before and after pre-processing. ..................... 75 

Figure 4-1. Sensors and data acquisition platforms schema for Road 

Condition Monitoring (RCM). Image extracted from [113] ........................... 81 

Figure 4-2. Sample of Road Damage Dataset 2019 (RDD2019) from (a) to (h) 

the nine different defects are represented. ....................................................... 88 

Figure 4-3. Examples of Ceit Road Damage dataset in different light and 

weather conditions. Top right sunny with shadows, bottom right rain, top 

left sunrise and bottom left cloudy. ................................................................... 89 

Figure 4-4. Applied crop correction for keeping the resolution of the input 

image in Ceit Road Damage dataset. ................................................................ 91 

Figure 4-5. Flow chart of the classical computer vision-based approach for 

road lanes quality assessment. ........................................................................... 92 

Figure 4-6. Machine learning-based lane condition assessment. Step 1, lane 

detection. ............................................................................................................... 92 

Figure 4-7. Machine learning-based lane condition assessment. Step 2, mask 

generation. ............................................................................................................. 93 

Figure 4-8. Machine learning-based lane condition assessment. Step 3, 

day/night scene classifier. ................................................................................... 93 



 

 

List of figures 

xxii 

 

Figure 4-9. Machine learning-based lane condition assessment. Step 4, 

analysis of the mask's features. .......................................................................... 94 

Figure 4-10. Example of the applied six different transformations without 

combination for the data augmentation. .......................................................... 95 

Figure 4-11. Visual results of the ML-based road paint damage detection 100 

Figure 4-12. F1-score summary results for the models and datasets 

considered in this chapter ................................................................................. 104 

Figure 4-13. Comparison of the detection bounding boxes for a mixed and 

efficientdetv1_d0_spain (V1) pure model in CRDD dataset sample. ......... 105 

Figure 4-14. Difficult labels of CRDD dataset where the detector has missed 

the defect. ............................................................................................................ 106 

Figure 4-15. Samples from the RDD2019 (D44) dataset. ............................... 107 

Figure 5-1. ITS value chain representation. It contains all involved actors and 

domains with its leading standards. ............................................................... 112 

Figure 5-2. V2X communication ecosystem diagram plus the communication 

with the Traffic Control Centre. ....................................................................... 113 

Figure 5-3. Table extracted from ISO 14823:2017(E) where general category 

codes are defined [154]. ..................................................................................... 117 

Figure 5-4. Representation of the traffic sign that is codified in the IVIM 

message example. ............................................................................................... 118 

Figure 5-5. DATEX II standard's components schema. Extracted from [155].

 .............................................................................................................................. 123 

Figure 5-6. Road marking damage detected in  GI-636 exit branch road. . 127 

Message 5-7. DATEX II message example for road in poor conditions event.

 .............................................................................................................................. 127 

Figure A-1. Representation of (a) RGB and (b) HSV colour spaces. ........... 162 

Figure A-2.The CIE XYZ standard observer colour matching functions. .. 163 

Figure A-3. Confusion matrix of ensemble classifier in Ceit-TSR dataset. 164 



 

 

List of figures 

xxiii 

 

Figure A-4. Confusion matrix of ensemble classifier in GTSRB dataset. ... 165 

Figure A-5. Confusion matrix of ensemble classifier in GTSDB dataset. ... 166 

Figure A-6. Confusion matrix of ensemble classifier in ETSDB dataset. ... 167 





 

 

 

xxv 

  

 

List of tables 
Table 1-1.Summary of the main future mobility challenges in different fields.

 .................................................................................................................................. 5 

Table 2-1. Summary of the existing datasets for fog detection and its principal 

characteristics. ...................................................................................................... 34 

Table 2-2. Definition of fog classes following the definition of AFNOR norm 

NF P99-320. Road fog is differentiated into three different levels, light fog, 

moderate fog and dense fog ............................................................................... 37 

Table 2-3. The proposed rule-based method for fog detection and fog level 

estimation. This method analyses RGB and XYZ colour spaces. .................. 40 

Table 2-4. Foggy Cityscapes BDF-extended distribution for training, 

validation and testing of a deep learning-based classifier. ............................ 44 

Table 2-5. Fog detection models’ evaluation parameters comparison for the 

Ceit-Foggy and Foggy Cityscapes DBF - extended datasets. ........................ 48 

Table 3-1. Summary of the publicly available TSR datasets. ......................... 60 

Table 3-2. Summary of the used datasets for TSR in Chapter 3. ................... 61 

Table 3-3. Detection and classification results of the pure and ensemble 

models tested in the four different datasets used in this chapter. ................ 68 

Table 3-4. Ground truth of the example shown in the figure above. A sign is 

considered small when its width and height are below 15 pixels. ............... 70 

Table 3-5. Image size comparison between GTSRB detected traffic signs and 

missed traffic signs............................................................................................... 71 



 

 

List of tables 

xxvi 

 

Table 4-1. Road damage types and definitions proposed by Maeda et al. [122]

 ................................................................................................................................ 83 

Table 4-2. Table extracted from [122]. Detection and classification results for 

each class using the SSD Inception and SSD MobineNet. SIR: SSD Inception 

V2 Recall, SIP: SSD Inception V2 Precision, SIA: SSD Inception V2 Accucary, 

SMR: SSD Mobilenet Recall, SMP: SSD Mobilenet Precision, SMA: SSD 

Mobilenet Accuracy ............................................................................................. 84 

Table 4-3. Existing publicly available datasets for road defects monitoring.

 ................................................................................................................................ 87 

Table 4-4. Distribution of used datasets: RDD2019 for D44 defect, Ceit 

Damage Dataset and its simplified subset. ...................................................... 90 

Table 4-5. Resulting used datasets' partition after data augmentation process.

 ................................................................................................................................ 96 

Table 4-6. Summary of the properties of the studied different object detection 

models. ................................................................................................................... 97 

Table 4-7. Results of the machine learning approach for road paint 

assessment in RDD2019 (D44) dataset and CRDD dataset. ........................... 99 

Table 4-8. Summary of the hyperparameters used on the different object 

detection models trained in this section. ........................................................ 101 

Table 4-9. F1-score and mAP (mean average precision) for the white line blur 

detection and each used dataset. ..................................................................... 103 

Table 5-1. Breakdown of the codes defining the speed limit sign according to 

ISO 14823:2017 (E) [154]. ................................................................................... 118 

Table 5-2. Fog levels are defined by the DATEX II standard for 

PoorEnvironmentType events. ........................................................................ 124 

Table 5-3. Road surface condition definitions of DATEX II standard for Road 

Damage type events........................................................................................... 126 

Table A-1. Road categories in terms of automation and connectivity support 

[6] .......................................................................................................................... 160 



 

 

List of tables 

xxvii 

 

Table A-2. DENM message’s cause and subcause codes summary that covers 

all possible use cases for Road Hazard Warning (RHW) service. ............... 168 





 

 

 

xxix 

  

Glossary 
ACDC Adverse Conditions Dataset with Correspondences 

ACF Aggregated Channel Features 

ADAS Advanced Driving Assistance Systems 

ADS Autonomous Driving System 

AI Artificial Intelligence 

ANN Artificial Neural Network 

AS Assistedway 

AT Automatedway 

AU Autonomousway 

AUC Area Under the Curve 

BDF Dual-reference cross-Bilateral Filter 

BiFPN Bi-directional Feature Pyramid Network 

CA Content Aggregator 

CATERED Carla Traffic Sign Recognition Dataset 

CAV Connected Autonomous Vehicles 

CCAM Connected Cooperative Autonomous Mobility 

CCTSD Changsha university of science and technology Chinese 

Traffic Sign Detection benchmark 

CEDD Colour and Edge Directivity Descriptor 

CFD Crack Forest Dataset 

C-ITS Cooperative Intelligent Transport System 

CNN Convolutional Neural Network 

CRDD Ceit Road Damage Dataset 

CRDDC Crowdsensing-based Road Damage Detection Challenge 

CTSD (Carla) Carla Traffic Sign Detection Dataset 

CTSD (Chin.) Chinese Traffic Sign Dataset 

CTSD (Comp.) Complex Traffic Sign Dataset 



 

 

Glossary 

xxx 

 

CVAT Computer Vision Annotation Tool 

CVPR Computer Vision and Pattern Recognition Conference 

DCNN Deep Convolutional Neural Network 

DCT Discrete Cosine Transform 

DENM Decentralized Environmental Notification 

DITS Dataset of Italian Traffic Signs 

DL Deep Learning 

DNN Deep Neural Network 

DT Digital Twin 

EHD Edge Histogram Descriptor 

ERTRAC European Road Transport Research Advisory Council 

ETSD European Traffic Sign Dataset 

FA Full Automatedway 

FCTH Fuzzy Color and Texture Histogram 

FN False Negative 

FOH Fuzzy Opponent Histogram 

FOV Field Of View 

FRIDA Foggy Road Image Database 

FROSI Foggy ROad Sign Images 

GAN Generative Adversarial Network 

GAP German Asphalt Pavement Distress 

GIV General IVI Container 

GLC General Location Container 

GLCM Gray Level Co-occurrence Matrix 

GPU Graphics Processing Unit 

GTSDB German Traffic Sign Detection Benchmark 

GTSRB German Traffic Sign Recognition Benchmark 

HIS Hue, Saturation and Intensity 

HLM CAD High Level Meeting on Connected and Automated Driving 

HMI Human Machine Interface 

HOG Histogram Oriented Gradients 

HSV Hue, Saturation and Value 

HU Humanway 



 

 

Glossary 

xxxi 

 

HW Hardware 

ICF Integral Channel Feature 

IJCNN International Joint Conference on Neural Networks 

IoU Intersection over Union 

ISAD Infrastructure Support for Automated Driving 

IT Information Technology 

IVIM Infrastructure to Vehicle Information message 

IVS In-Vehicle Signage 

JHD Joint Histogram Descriptor 

KTSD Korean Traffic Sign dataset 

LiDAR Laser Imaging Detection and Ranging 

LOSAD Level Of Service for Automated Driving 

ML Machine Learning 

MOR Meteorological Optical Range 

MTSD Mapillary Traffic Sign Dataset 

NAP National Access Point 

NAS Neural Architecture Search 

ODD Operational Design Domain 

OOM Out Of Memory 

ORS Operational Road Section 

OTA Over The Air 

PID Pavement Image Dataset 

RCM Road Condition Monitoring 

RDD Road Damage Dataset 

RF Random Forest 

RGB Read Green and Blue 

RHW Road Hazard Warning 

RSU Road Side Unit 

RTSD Russian traffic Sign Dataset 

SAP Service Access Point 

SCD Scalable Color Descriptor 

SCH Simple Color Histogram 

SDD Single Shot Detector 



 

 

Glossary 

xxxii 

 

SIFT Scale Invariant Feature Transform 

SP Service Provider 

SRIA Strategic Research and Innovation Agenda 

STM Sustainable Transportation and Mobility 

SURF Speed Up Robust Features 

SVM Support Vector Machine 

SW Software 

ToC Transition of Control 

TP True Positive 

TSR Traffic Recognition System 

 



 

 

 

Chapter 1 

Introduction 
  



 

 

Chapter 1 Introduction 

2 

 

In this introduction, the first section presents a vision of what the mobility of 

the future could look like and what its impact will be. It then looks at the 

current main challenges and enablers. This analysis is supported by the 

“Connected, Cooperative and Automated Mobility Roadmap” recently 

defined by the European Road Transport Research Advisory Council 

(ERTRAC) working group [1] and by the “Strategic Research and Innovation 

Agenda (SRIA)” established by the Connected, Cooperative and Automated 

Mobility (CCAM) European Partnership [2].  

Since the thesis is especially focused on the perception of the environment 

employing computer vision techniques, the second section presents the 

justification of these techniques and selected sensors as well as a summary 

of the current trends.  

Finally, the motivation and objectives of the thesis are presented. 
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1.1. Future mobility roadmap 

Mobility is crossing a new – digital – frontier, allowing vehicles to 

communicate with each other, with the road infrastructure and with other 

road users. This will enable the coordination and cooperation between road 

users, and the management of traffic and mobility at an entirely new level 

(e.g. warning messages not limited by line-of-sight or congestion 

management using real-time information). 

Current road vehicles already provide Advanced Driving Assistance 

Systems (ADAS) that can help the driver and take control of some functions 

in specific situations. Future systems will have a 360° vision of the 

surrounding environment, significantly reduced reaction times and will be 

able to control the vehicle for extended periods and, at some point in the 

future, will no longer rely on human intervention. 

CCAM is expected to reshape the way we travel and move, not only in 

Europe but around the world. 

1.1.1. Vision 2050  

The community of researchers who are members of ERTRAC propose a long-

term goal for CCAM [1] and have drawn a hypothetical scenario where in 

2050: 

Users and usage are at the centre of development where technology needs 

are derived from societal goals.  

Automation domain costs decrease and mature technology allows working 

on complex scenarios such as inner city use cases allowing a more efficient 

last mile transport of people and goods.  

Transport modes, road, rail, maritime or air have their role and cooperate to 

complement their high capacity, to decrease the overall environmental 

footprint of transportation.  

Vehicles have 100% real-time connectivity and all newly registered vehicles 

will have automation at different levels depending on their nature. 

 A vast majority of shuttles, buses and delivery vehicles in cities 

operate autonomously 
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 Nearly all vehicles on highways can operate without immediate 

driver intervention 

 All cars and trucks on all roads have sophisticated supporting 

systems installed such as reaction on traffic lights etc. which 

contribute significantly to road safety 

In 2050, mixed traffic exist in some areas where autonomous vehicles 

coexist with human-driven vehicles.  

1.1.2. CCAM impact 

The transformational change in mobility will have a huge impact on all road, 

traffic and driving situations.  

The development of the CCAM should benefit all citizens. With the full 

integration of the CCAM into the transport system, the Partnership expected 

the following positive impacts on society: 

 Safety: reducing road fatalities and accidents caused by human error; 

 Environment: reducing transport emissions and congestion by 

optimising capacity, smoothing traffic flow and avoiding 

unnecessary journeys; 

 Inclusion: ensuring inclusive mobility and access to goods for all. 

This impact expected to be generated by the implementation of the CCAM 

is compromised by the current mobility challenges. 

1.1.3. Main challenges 

The next decades confront society with the need for fundamental mobility 

changes, with ambitious goals to meet climate and vision zero objectives.  

Although the EU has made enormous progress in improving road safety and 

halved the number of fatalities on European roads since 2000, progress has 

stagnated and still 25000 people die on road every year and more than 

135000 are seriously injured. EU’s Road Safety Policy Framework 2021-2030 

aims to reduce road fatalities and serious injuries by 50% by 2030 and make 

them disappear by 2050 (Vision Zero) [3]. In addition, today, road transport 

emissions represent around 25% of the EU’s total greenhouse gas emissions, 
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and these have increased over recent years. The European Green Deal 

established the goal of being climate-neutral by 2050 and achieving a 90% 

reduction in transport-related greenhouse gas emissions by 2050 [4].  

To this end, multiple complex challenges need to be addressed and solved at 

a societal, human, technical, regulatory, economic and operational level (see 

Table 1-1). 

Table 1-1.Summary of the main future mobility challenges in 

different fields. 

Societal 

 challenges 

A society 

ready to 

accept, adopt 

and demand 

CCAM 

solutions. 

Provide shared, on-

demand and 

personalised 

transportation 

available to all. 

Provide safe and 

reliable CCAM 

solutions with few 

Transition of 

Control (ToC) 

events. 

 

Infrastructure 

challenges 

Mature CCAM 

solutions for a 

wide market 

take-up 

Handle all driving 

scenarios. Extend 

Operational Design 

Domains (ODDs) by 

extending 

Infrastructure 

Support for 

Automated Driving 

(ISAD). 

Cooperation 

between vehicles' 

stakeholders, 

infrastructure and 

connectivity 

sectors for the pre-

deployment 

developments. 

 

Validation  

challenges 

Innovation-

friendly 

frameworks 

with effective 

and efficient 

ways to 

validate 

CCAM 

solutions. 

Update the 

verification and 

validation systems 

to gather realistic 

and relevant test 

cases that will be 

constantly evolving. 

Reflectthe 

connectivity 

context in which 

CCAM systems 

will operate as it 

influences safety-

critical functions. 

The complexity of 

emerging 

technologies and 

their safety 

criticality requires 

a huge amount of 

data for validation 

testing1. 

                                                      

 

1 It has been estimated by RAND corporation [157] that CAVs need to be driven 450 million 

failure-free kilometers (11,000 times around the world) to assure a similar rate of reliability 

(ie. 95% confidence) as existing human-driven cars. To gather this data with a fleet of 100 

autonomous vehicles driving 24 hours a day, 365 days a year, at an average speed of 40km/h 

will take 12.5 years. And to demonstrate that their failure rate is 20% better than the human 

driver failure rate, 18 billion kilometers and 500 years will be necessary. 
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Policy  

challenges 

Right legal 

framework at 

international, 

EU and 

national level 

to prevent 

patchwork 

regulations. 

Collaborate on the 

compatibility of 

safety requirements, 

liability issues, 

communication 

systems and 

services. 

   

AI  

challenges 

AI-based 

predictive 

system state 

awareness. 

Design of advanced 

levels of AI with 

reduced energy use 

and computational 

efforts. 

   

Data 

 challenges 

A joint and 

acknowledged 

data exchange 

framework 

Improve the quality 

of the datasets in 

order to represent 

all possible 

scenarios. 

   

 

The main challenges facing the mobility of the future are the acceptance of 

CCAM solutions by society, which requires solving another important 

question: ensuring that these solutions are mature enough to be safe and 

reliable in any situation. This also implies other essential points such as the 

constant evolution and updating of validation systems and databases for all 

possible scenarios and new ones as they arise. In the same way, this will also 

require increasingly complex algorithms, but controlling the energy use and 

computational effort. And last but not least, the regulation and 

standardisation of these systems, data and communications so that CCAM 

solutions are global. 

The technological challenges of automated driving are reliable sensing of the 

vehicle's environment using different sensors, localisation solutions so that 

the self-driving car knows exactly where it is, the development of a safe and 

secure driving strategy, safe driving strategy, data safety and security, 

including secure and resilient approaches for over-the-air updates, 

validation and verification of systems. 
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1.1.4. Main enablers 

In order to address all these challenges, there are some essential enablers to 

take into account. To achieve global and implementable CCAM solutions 

that can change the mobility paradigm, there is a clear need to leverage the 

cooperation models of different types of data feeds in a suitable 

environment. In the same way, effective, profitable and transparent 

cooperation among local and regional public authorities and the private 

sector involving a multitude of highly diverse stakeholders is mandatory. A 

harmonised European framework is a key enabler for this cooperation, 

sharing and expanding knowledge on connected and automated driving. So 

is standardisation to address the many common and safety-critical use cases 

for Connected and Automated Vehicles (CAVs) and relevant infrastructure, 

communications, data management and privacy, cybersecurity and vehicle 

technology. In addition, a new hardware concept for sensors and computing 

units is key to provide sufficient computing power with low energy 

consumption, reduced size and affordable integration costs. 

However, while all are critical, this thesis focuses on the enablers detailed 

below. 

1.1.4.1. ODD and ISAD 

According to the SAE definition ODD are “Operating conditions under which a 

given driving automation system or feature thereof is specifically designed to 

function, including, but not limited to, environmental , geographical, and time-of-

day restrictions, and/or the requisite presence or absence of certain traffic or roadway 

characteristics”[5]. These ODDs are very important for the automation levels 

since the limitations of the ODD decrease as the automation level increase 

reaching level 5 for unlimited ODD functioning. The environmental 

perception of automated vehicles is limited by the range and capability of 

onboard sensors, however, the impact of some factors potentially exceeding 

the ODD can be mitigated and even prevented by infrastructure-related 

actions.  

For this aim, the ISAD classification has been proposed. Assigning ISAD 

levels to network sections provides the automated vehicles with information 

about the infrastructure support that can be expected.  
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ODDs will evolve along with the evolution of the onboard sensors, software 

and AI technologies. However the roadside infrastructure investment are 

very costly and hence, ISAD level evolution will likely focus on the digital 

infrastructure aspects and the physical infrastructure investments in “no-

regret” measures. 

1.1.4.2. Functional safety 

Functional safety aims to protect the correct operating of the autonomous 

driving system in response to its inputs or failure in a fail-safe manner. For 

this aim, sensor fusion on the edge and Cooperative Intelligent Transport 

System (C-ITS) technologies are key.  

Road infrastructure can provide and disseminate safety-relevant 

information about perceived objects, allowing vehicles to manage difficult 

scenarios without exceeding their ODDs. This would be of particular 

importance when weather, light or road surface conditions are adverse. 

External sensors communicate with the CAV, which in turn can process this 

information and fuse it with its perception thus gaining a better 

understanding to plan and act accordingly. 

1.1.4.3. Data and AI 

Data 

The ability to generate new knowledge from large amounts of data is a key 

competence of future automated driving. A sovereign, open data 

infrastructure that observes security standards will thus become a key 

enabler for the successful development and deployment of CCAM. 

Another key aspect is the collection of data from untypical or critical driving 

scenarios or corner cases. This requires several types of information like 

sensors and HD map data that will allow software improvements and 

updates. For this aim – learning during fleet operations - it is important to 

gather statistically representative driving data (field data) that will allow to 

validate, verify and improve driving behaviour.  

In addition, the development of basic standards is also a key enabler to 

guarantee safe and reliable software in vehicles on roads. These basic 

standards should be developed in three main areas: for the access for 

stakeholders to collected driving data when critical driving behaviour; for 
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the definition of minimal implementation and update of safety-relevant 

software; and for the definition of a data exchange format.  

AI  

Autonomous driving is based on robust and reliable algorithms for 

environment recognition using different sensors. Due to its ability to 

recognise patterns and establish correlations in large amounts of data and 

learn them, Machine Learning (ML) is indispensable in the area of 

environmental recognition and driving assistance today.  

However, the introduction of Deep Learning (DL) algorithms (a subsection 

of ML) is a key enabler to enable the vehicle to function correctly and make 

confident decisions even in the most difficult situations. 

Accordingly, accepted metrics for the evaluation of AI algorithms are 

required. For this aim having relevant sets of real and synthetic scenarios are 

key to serve the metrics for safety proof and validate its robustness.  

Finally, the importance of the AI training data specification, collection, 

processing and labelling should be stressed: the quality of the training 

dataset determines the robustness and thus operational reliability of the AI 

function. 

 

 

Therefore, this thesis focuses on investigating different perception 

algorithms for road monitoring to collect safety-critical information to 

extend ISAD and ODD levels and influence functional safety. In addition, 

this information can also be used to classify the road and guide automated 

vehicles to the extent to which they can use their systems. 



 

 

Chapter 1 Introduction 

10 

 

1.2. Smart Road Classification 

There are several road classification systems in the literature each of them 

supported by different attributes, however, none of them establishes clear 

thresholds or KPIs of these attributes. In addition, non of the existing systems 

integrate dynamic conditions of the road – e.g. traffic volume or weather 

conditions – to determine the capability that a road has to enable automated 

driving.  

Thus, the World Road Association PIARC made a Smart Road Classification 

(SRC) proposal based on automation and connectivity level indicators [6], 

this is, Level Of Service for Automated Driving (LOSAD) and Infrastructure 

Support Levels for Automated Driving (ISAD). LOSAD describes how 

vehicles’ ODDs interact with the road infrastructure and ISAD indicates the 

connectivity capabilities, and both establish a sound basis to foresee how 

CAVs are likely to perform along a road network.  

This SRC defines five different types of Smart Road segments that can be 

distinguished with specific characteristics related to CAVs (see Appendix A).  

(1) Humanway (HU): the road is not ready for CAVs. Level 2-3 vehicles 

would experience many disengagements, prompting their drivers to 

manually disconnect the system. And Level 4 vehicles may not find 

clear ODDs and will generally perform in manual mode. 

(2) Assistedway (AS): the road is adequate for Level 2+ vehicles. Level 2-

3 vehicles would not induce too many disengagements and will 

allow drivers to enable their driving automation systems. However, 

the road segment might be divided into many Operational Road 

Sections (ORS)2 and does not provide a comfortable automated 

driving experience for Level 4 vehicles. 

(3) Automatedway (AT): the road presents HD maps and can transmit 

digital information to CAVs, so these can better identify ODD-related 

factors and ODD terminals. Level 2 would experience fewer 

                                                      

 

2 The zones that are ODD compliant with all vehicles are called Operational Road Sections 

(ORS). 
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disengagements than on AS segments and Level 3 vehicles would be 

able to use the digital information to foresee oncoming 

disengagements. Longer ORSs would allow longer performance of 

Level 4 vehicles in automated mode.  

(4) Full Automatedway (FA): the road presents a continuous ORS, so all 

Level 4 vehicles should be able to operate autonomously along the 

entire segment. Level 2-3 vehicles experience a much lower number 

of disengagements compared to AT.  

(5) Autonomousway (AU): the road presents similar physical conditions 

to FA segments and incorporated exceptional connectivity features 

that enable cooperative driving. In order to benefit from the best 

performance and safety levels, only Level 4+ vehicles should operate 

along these road facilities or dedicated lanes.  
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1.3. Environmental perception 

With recent advances in AI, ML and DL, these techniques have gained 

prominence in numerous applications.  

In a nutshell, AI is a broad term used to describe any system that can perform 

tasks that usually require human intelligence. This concept includes ML and 

DL. The principle difference between ML and DL is in the techniques of 

extracting the features on which the classifier works. ML classification relies 

on hand-crafted features while DL classifiers, which are considered a subset 

of ML, learn hidden patterns from data by themselves. Thus, these last ones 

are known for their ability to build much more efficient decision rules (see 

Figure 1-1). 

 

Figure 1-1. Machine Learning vs. Deep Learning feature 

extraction approach. 

In particular, contemporary developments in communication networks and 

wireless connectivity, the arrival of accurate and robust sensors that 

continuously miniaturize in size and cost, coupled with AI have been the 

cornerstone for ADS. The availability of big data related to self-driving 

vehicles emphasizes the roles of ML and DL as it is infeasible to craft all 

input

input output

output

Feature extraction Classification

Feature extraction + Classification

Machine Learning

Deep Learning
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possible if-then-else rules that learn all possible situations a self-driving 

vehicle might encounter in the drive-terrain. These AI systems aim to 

implement sensory input and intelligent interaction with the environment. 

These AI capabilities may be divided into the areas of sensing, processing 

and understanding, decision-making and communication or acting (see 

Figure 1-2).  

 

Figure 1-2. Artificial intelligence (AI) data journey or capabilities 

applied for the self-driving use case. 

Sensing is the capability of observing the environment, this will give the 

capability to perceive an object that will be processed to understand the 

surroundings of the vehicles. With this data, the AI will be able to make 

decisions and actuate in consequence for a specific objective.  

This thesis will be focused on the first two steps, to sense (using a single RGB 

camera) and perceive the road based on computer vision techniques. 

1.3.1. Why computer vision? 

What technology is needed to develop autonomous driving? There is a lot of 

controversy about this, pure vision-based systems, the fusion of different 

advanced sensors, etc. However, the renowned Tesla company stated that 

autonomous driving based solely on cameras is possible [7].  

Currently, a manual driving control system is based on two main elements: 

the brain and the eyes of the driver, this is a biological neural network and 

vision system, and they are sufficient to understand the design of road 

networks. Thus, the big challenge for computer-guided autonomous driving 

RADAR
LiDAR
Camera

GPS
etc.
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tracking etc.

obstacle avoidance,
parking maneuverer,

overtaking,
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according to Tesla’s CEO is to solve real-world AI and vision, this is, silicon 

neural networks and cameras 3. 

This artificial intelligence is the basis for autonomous driving for road 

analysis, lane following, and detection of signs, pedestrians, cars or other 

objects. These AI systems require big data and the main sources of raw data 

in self-driving cars are the automotive sensors. Whereas Laser Imaging 

Detection and Ranging (LiDAR) is the most powerful camera, it is expensive 

and, in certain conditions, images captured using RGB cameras should be 

sufficient for self-driving applications.  

1.3.1.1. LiDAR vs. RGB Camera 

Cameras are optical sensors that offer functionality analogous to the human 

eye. The main purpose of CAVs is to mimic the human eye’s ability to 

visually sense the environment. A single camera operating along is called a 

mono-vision system, which results in a 2D image. This system can 

satisfactorily fulfil some CAV sensing requirements such as traffic sign 

detection. Nevertheless, when information about the distance to an object is 

necessary, a 3D stereo-vision system is used which is composed of two or 

more cameras to achieve depth perception. On the other hand, LiDAR is an 

active sensor that can generate high-resolution 3D maps of the vehicle's 

surroundings by emitting laser beams in all directions.  

One of the main strengths of RGB cameras over LiDAR sensors is their 

relatively low cost. In the context of CAV hardware the camera’s price range 

from multiple hundreds of euros (e.g. Blackfly) to even less than one 

hundred (e.g. Logitech webcam). However, research is underway to 

manufacture low-cost LiDAR but currently, their price is about thousand 

euros, and the cheapest one is between five hundred to one thousand euros 

[8].  

Another characteristic of RGB cameras is that they can also sense colour 

information which is important for some road elements such as traffic lights. 

If the camera has a good resolution and the lens are kept in good condition, 

                                                      

 

3Testimony made by Elon Musk in TED | Tesla Texas Gigafactory interview. 
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cameras with colour detection capabilities can outperform LiDAR sensors in 

visual recognition since the last one needs much more data processing to 

create images and identify objects. 

In terms of installability, the camera is generally easier and more versatile to 

embed in a vehicle while LiDAR requires more space and makes installation 

bulkier. 

Although cameras have many strengths they have also limitations. They 

present some issues when dealing with environmental light variations such 

as shadows, sharp glare from the sun or dark views at nigh time. Even 

though some of these problems could be solved by the vehicle's headlights, 

other environmental phenomena such as bad weather conditions - rain, 

snow or fog - are difficulties that cameras have to deal with in this field of 

application. In these cases, LiDAR can fill the gaps of camera-based systems 

since they have been hailed for being able to see objects even in bad weather 

conditions. However, it is also affected by wavelength stability and detector 

sensitivity and the laser can suffer some variations. In addition, to control 

the environment through which the vehicle circulates it is necessary to create 

a map previously with LiDAR, to insert in it all the characteristics of the road, 

lanes, intersections, signs, traffic lights etc. Generating and maintaining these 

high-definition maps with a precise location is a very complex task and 

doing it at a global level is really difficult (see Figure 1-3).  

Thus, in summary, for public safety critical cases currently the sensor fusion 

of these two sensors together with others can offer many benefits. However, 

if only one of the two mentioned above could be chosen, for its versatility, 

ease of installation, lower computational complexity and price, the one 

chosen for the development of this thesis is the RGB camera. Moreover, 

cameras still present a gap for further research to achieve more reliable and 

robust systems that can perform well in any circumstances. And this will be 

one of the points to be addressed in this thesis. 
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Figure 1-3. Camera view and LiDAR view of the KITTI 

validation dataset. Image extracted from [9]. 

1.3.2. Computer vision techniques 

Classification, localization, detection, segmentation, tracking and 

identification are frequently used terms when talking about computer vision 

and intelligent applications. 

 Classification: Assigning a category to a whole image or bounding 

box. This classification can be a single-class classification, where the 

output determines whether there is a car or not in the image or, a 

multi-class classification, where the output predicts the class between 

a sort of categories e.g. bicycle, truck, airplain, boat or a car (see 

Figure 1-4).  

 Localization and detection: Identifying the location of a specific 

object in the image. Object detection finds all the objects and draws a 

rectangle around them (see Figure 1-4).  
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Figure 1-4. Object detection and multi-class classification 

example. 

 Segmentation: Partitioning an image into a set of pixels that share 

certain characteristics and assigning them a label. In this case, object 

detection creates a pixel-wise mask and adds shape information of 

the object. This segmentation can treat multiple objects within a 

single category as one entity which is called semantic segmentation 

(Figure 1-5 a). Whereas instance segmentation, on the other hand, 

identifies individual objects within these categories (Figure 1-5 b). 

  
(a) Semantic segmentation (b) Instance segmentation 

Figure 1-5. Object segmentation example. Both semantic 

segmentation and instance segmentation are shown. In the 

second example, each car is differentiated. 

class: car

class: truck

class: car
class: car

class: car

class: traffic sign
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 Identification: Recognising an individual instance of an object. 

Examples include the identification of a specific person due to its face 

characteristics, identification of handwritten digits or the 

identification of a specific vehicle (see Figure 1-6 a). 

 Tracking: taking an object or a set of object detections in an initial 

frame and re-identify them in the next frame (see Figure 1-6 b).  

  
(a) Vehicle identification (b) Object tracking 

Figure 1-6. Car identification and object tracking examples. 

1.3.3. CCAM trends 

Recent trends and developments in environment perception of CAVs 

revealed that convolutional neural networks (CNN) are the most applied 

technique for object detection due to their remarkable ability to function as 

feature extractors. With GPU and cloud-based fast computation, DL could 

process captured information in real-time and communicate it to the nearby 

cloud and other vehicles in the meaningful vicinity. In order to improve the 

performance of these CNN-based models, transfer learning is frequently 

used by researchers.  

However, in the context of self-driving cars, CNN-dependent strategies still 

need to be fine-tuned to achieve the precision level of the human eye and 

there is a huge scope for additional advancements in object detection and 

scene understanding. It is yet to be investigated when and under what 

conditions CNNs cease to perform well and can pose a threat to human life 

in self-driving scenarios. Much of the earlier tests were conducted on open 

Model: SEAT IBIZA
Color: white
License plate: 9072 GMB

class: car class: car
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roads and in good weather, but more recent tests include adverse weather 

conditions such as fog. 

On the other hand, artificial driving intelligence is still incapable to annotate 

and categorize the driving environment automatically without human 

assistance.  

Last publications on the CAV topic conclude that self-driving cars are no 

longer a question of if but more of when and how[10]. The penetration rate 

of these self-driving cars into human society depends on their ability to drive 

safely. This puts forth a critical need for reliable computer vision techniques, 

mathematical models and simulations to mimic reality and arrive at the best 

parameters and configurations that can adapt to changes in surroundings.  

Tools such as big-data, DL and CNNs give the possibility to achieve high 

levels of accuracy to solve perception problems of CAVs. These tools provide 

researchers with the ability to break complex problems into easier ones and 

previously impossible problems into solvable but slightly expensive ones 

such as capturing and annotating data to create the necessary ground truth.  
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1.4. Motivation  
This section will introduce first the general impact of a road monitoring 

system on the road network as a CCAM solution. Next, some specific CCAM 

limitations will be highlighted which will be addressed during the thesis. 

1.4.1. CCAM impact 

This CCAM reality is still years away and it is not clear when it will come. 

Despite the great effort of the automotive industry during the last decade, 

the most advanced systems nowadays are SAE level 2 (3 at the most). 

Existing autonomous vehicles consist of diverse ADAS that allow an 

automated driving experience under specific circumstances. Therefore, how 

the human and the vehicle share the driving becomes very important. 

To enable and promote a quick and reliable take-up of automated vehicles, 

user confidence in self-driving capabilities is key. A driver should not 

voluntarily decide whether to connect the assistance, but rather by having 

objective information about its operation along the segment to be travelled. 

This information must be provided by combining the characteristics of the 

driving automation system and the infrastructure (both static and dynamic).  

An integral road classification system would also enable efficient planning 

of public investments in physical infrastructure (I1), by improving the 

operability of driving automation, and in digital infrastructure, by increasing 

the benefits of connectivity (V2X). Information-sharing of all elements in the 

intelligent transportation environment – vehicles, road users, infrastructure, 

traffic, weather data and so on – will lead to a more accurate knowledge of 

traffic situation across the network, and consequently, end-users will be 

informed about the level of automation they can enable through each road 

segment. As a result, a safer, sustainable and more comfortable road 

network (I2) is expected. 

1.4.2. CCAM limitations 

Although vehicle technology is constantly enhancing and evolving, the 

sensors and algorithms included in CAVs cannot cope with specific 

challenging situations [6]. 
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 Most Traffic Sign Recognition (TSR) systems recognize only posted 

speed limits and priority of way signs such as stop or yield. The 

performance of these systems depends on the position and 

orientation of the traffic sign and they are also influenced by 

maintenance status or lighting conditions.  

 Despite the few studies quantifying the influence of pavement 

conditions on CAVs' performance, it is clear that the status of the road 

surface plays a critical role in automated driving. A good pavement 

condition is needed to achieve the highest levels of automation. 

 Environmental factors such as weather or lighting also affect CAVs 

performance. Unfavourable weather conditions – heavy rain, fog, 

etc.– make road marking and traffic sign recognition very difficult as 

these tasks are performed with vision cameras that are very sensitive 

to visibility.  

 Speed is also a critical factor in road marking or traffic sign 

recognition because information processing must be faster as the 

vehicle speed increases. Thus, real-time functioning systems are 

needed. 

 Connectivity allows automated vehicles to monitor everything even 

beyond the range of their sensors. Thus, rules and regulations are key 

to ensuring the quality and reliability of the transmitted information.  

All of these factors - infrastructure, environment, traffic conditions, vehicle 

speed - many of which are variable, influence the ODD of automated systems 

and generate road segments that are not suitable for automated vehicles. 

However, the goal to reach a high level of automation is to have all road 

ODD compliant whit all vehicles. Therefore, this thesis addresses the above 

limitations in order to increase the ODD constrains of the vehicles as well as 

to provide valuable information on the areas that are no compliant with the 

road administrations and operators so that they can work actively towards 

improving them and adapting new sections.  

1.4.3. Context 

The development of this thesis has been carried out in collaboration with the 

Sustainable Transportation and Mobility (STM) group and the Intelligent 
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Systems for Industry 4.0 group at Ceit. Two of the centre’s strategic lines of 

action converge here: Cooperative Services for Intelligent Transport Systems 

and Computer Vision for Smart Monitoring Systems. Those lines are 

perfectly aligned with the thesis’ objective for the development of 

technologies for CCAM. In fact, cooperative services are defined for the 

correct integration of automated vehicles into the traffic environment. In 

addition, the STM group has experience in standard vehicle communications 

and has led several pilots regarding cooperative services in C-Mobile and C-

Roads projects. Ceit also participates in the European CCAM initiative 

ensuring that developments are aligned with the European strategy on 

cooperative, connected and automated vehicles. 

On the other hand, from the analysis of the challenges and enablers of future 

mobility, it becomes clear that continuous monitoring of the road to collect 

dynamic data and detect where critical situations occur is key towards  

CCAM.  

In this context, Ceit has worked on several projects aimed at improving the 

quality of road information through the development of specific perception 

systems. These projects are based on the collection of real-time data 

employing an onboard acquisition system installed in administrations’ 

dedicated vehicles – maintenance, police, cleaning, and other services - that 

are on the road during all working hours (see Figure 1-7). 

The projects that have allowed the development of the thesis are: 

“TRAFIK DATA: On-board module for monitoring road signs and weather 

conditions with co-operative services communications” industrial project in 

which Ceit worked together with the company Gertek, involved in urban 

and interurban traffic management and mobility tool provider. In this 

project, the SW and HW architecture of the embedded system was designed 

and the preliminary algorithms for the inventory of traffic signals and fog 

detection modules were developed. Additionally, a proprietary 

communication protocol was defined for direct communication with the 

traffic control centre.  
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Figure 1-7. Data acquisition system installed in a road 

maintenance vehicle of Provincial Council of Bizkaia and 

managed by Gertek. 

“AUTOEV@L: Technological Evolution For Multivehicle Automation And 

Evaluation Of Highly Automated Driving Functions “ public funding project 

which, with the generated knowledge of the first project, allowed to improve 

previous developments with enriched data and new algorithms. A new 

module for road line marking condition monitoring was also developed 

within this project.  

Both projects pursue the same ultimate motivation of improving road safety 

by taking steps toward cooperative driving where real-time information 

from the environment can help drivers make better decisions as well as 

anticipate and plan autonomous vehicles’ behaviour. Furthermore, the 

autonomous inspection tool developed in this thesis will also help to better 

manage maintenance tasks by prioritising resources and reducing costs. 
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1.5. Objectives 

The future of mobility will be connected, cooperative and automated where 

perception and vehicle-to-everything (V2X) communication will have a key 

role to understand and interact with the environment. The reality of the road 

is complex and its complexity will increase as new transport systems emerge 

and vehicles become more automated. There have been great advances in 

the core technology that solve autonomous driving, however many 

perception algorithms still fail to work in critical driving conditions, this is 

when the ODDs are exceeded. The impact of this weakness can be mitigated 

and even prevented by providing a real-time twin of the physical and digital 

infrastructure, but sensorizing the whole road network is not affordable.  

To this end, the hypothesis of this thesis is to study if it is possible to monitor 

road’s critical events and conditions by using specialized vehicles as 

sensors on the move. These vehicles will have an in-vehicle image 

acquisition system for applying computer vision and deep learning 

techniques. Real-time monitoring will allow the collection of useful road 

information and the creation of C-ITS services that help road users to drive 

more safely and efficiently. In addition, this information will also be helpful 

for infrastructure managers who will have a real inventory that will enable 

them to manage tasks and investments. To achieve this, the following sub-

objectives have been identified: 

 Research different computer vision techniques for fog bank detection 

and visibility level classification to inform the driver or the 

autonomous vehicle control system and generate situational 

awareness for adverse weather conditions.  

 Research different computer vision techniques for the recognition of 

vertical traffic signs to generate an asset inventory that can assist in 

the management of infrastructure maintenance. 

 Research different computer vision techniques for road line marking 

damage detection to advise maintenance tasks to the competent 

authorities or to activate the ToC in case the automated vehicle is 

using a lane-keeping based system on a section of road that does not 

meet the necessary conditions to operate this function. 
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 Study the functional requirements needed for a future application of 

the solution as an embedded system that fulfils the following 

characteristics: 

o Modular, to facilitate the integration of new functionalities; 

o Compact, to facilitate the installation in different vehicles;  

o Low-cost, to facilitate accessibility and user acceptancy; 

o Real-time, to generate valid and useful information in time for 

other road users; 

o Common language, to facilitate communication between all 

stakeholders; 

o Standardized, to ease its development and implementation; 

o Interoperable, to facilitate data exchange; 

o Universal, to be applicable to roads worldwide and to all 

types of roads; 

o Useful, to facilitate the application by road administrations or 

road operators. 
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1.6. Document structure 

The report of the thesis entitled “Computer Vision and Deep Learning based 

road monitoring towards a Connected, Cooperative and Automated 

Mobility” is composed of six chapters: 

 Introduction 

 Weather conditions Monitoring: fog detection 

 Traffic Signs Monitoring: asset inventory 

 Road Damage Monitoring: road lines 

 Application in CCAM 

 Conclusions and Future Research Directions 

In this first chapter, an introduction has been given to the road mobility of 

the future, its impact, challenges and enablers as well as to the different 

alternatives for sensing and building perception systems.  

In Chapter 2 the development of a fog bank detection system is presented. 

For this purpose, the state of the art for fog modelling and detection is first 

studied. This is followed by the development and validation of the results of 

the two algorithms developed for the resolution of this problem (rule-based 

and DL-based) and a comparison is carried out.  

In Chapter 3 the development of a system for traffic sign recognition is 

presented. First, the state of the art is studied and the developed solution is 

detailed, which is divided into the detection and classification stages.  

In Chapter 4 the development of a system for the detection of road marking 

damage is presented. The state of the art is first studied and then the 

developments are presented. Firstly, the initial algorithm based on classical 

computer vision techniques is presented, followed by the development of 

the final solution based on DL.  

In Chapter 5 the importance of V2X communications in CCAM is 

highlighted. In addition, messages in DATEX II and C-ITS format are 

presented for the communication of fog bank events, traffic signal 

information as well as road marking damage warnings.  

Finally, Chapter 6 presents the conclusions of this work and proposes future 

lines of research. 



 

 

 

Chapter 2 

Weather Conditions 

Monitoring: fog detection 
 

Part of this chapter has been published in: 

Iparraguirre, O.; Amundarain, A.; Brazalez, A.; Borro, D. “Sensors on the Move: 

Onboard Camera-Based Real-Time Traffic Alerts Paving the Way for Cooperative 

Roads”. Sensors, Special Issue on Sensors for Road Vehicles of the Future, Vol.21, 

No. 4, 1254. February 2021. doi:10.3390/s21041254. 
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2.1. State of the art 

The weather has a great influence on road conditions and therefore on 

driving. Poor conditions in which visibility is reduced hinder the driver's 

ability to drive cautiously and affect directly driving safety. Likewise, it also 

significantly affects camera-based intelligent driving systems as it has been 

shown that their performance in foggy scenarios is much more challenging 

than in clear weather scenes [11–13]. Therefore, current technologies focus 

on fog detection or visibility estimation to further work on image 

enhancement or even image restoration for fog removal.  

Fog visibility estimation algorithms can be broadly classified into classical 

computer vision and deep learning-based approaches. 

2.1.1. Classical computer vision techniques 

The first classical computer vision methods for fog detection rely on the 

analysis and measurement of visibility distance by using image processing 

techniques such as edge, vanishing point or horizon line detection or region 

growing with a special focus on contrast and brightness study. Koschimieder 

was one of the first researchers that treated this phenomenon and proposed 

a simplified atmospheric scattering model that relies on the attenuation of 

brightness contrast by the atmosphere [14].  

𝐿 = 𝐿𝑜𝑒
−𝛽𝑑 + 𝐿𝑓(1 − 𝑒−𝛽𝑑) 

Where L is the total luminance reaching the observer from an object at 

distance 𝑑 through a diffusing media such as fog with an extinction 

coefficient 𝛽 (m-1) and 𝐿𝑜  is the luminance of the object at close range and 𝐿𝑓 

the luminance at the horizon. Thus, the first term is the light from the object 

itself while the second term is the diffuse light from the environment which 

has been scattered into the vision of the observer. In this way, the greater the 

distance to the object, the less light the subject will see from the object and 

more from the environment light, which will cause a decrease in the contrast 

between the object and the background.  

This definition allows W. Middleton to formulate an attenuation law of 

atmospheric contrasts [15]: 
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𝐶 = 
𝐿 − 𝐿𝑓

𝐿𝑓
= 𝐶𝑜𝑒

−𝛽𝑑 

Where 𝐶 is the contrast between the object and the background at distance 𝑑 

and 𝐶𝑜 is the contrast at close range.  To define standardized visibility, a black 

object against a white background is considered, which will have a 𝐶𝑜 of 1. 

Furthermore, a minimum threshold contrast of 0.05 is assumed to be 

distinguishable for the human eye. Therefore, by solving the equation above 

an objective measure of the visibility distance or Meteorological Optical 

Range (MOR) is obtained, which is one of the most popular methods in 

automatic visibility measurement for ADS.  

𝑀𝑂𝑅 = −
ln 0.05

𝛽
≈
2.996

𝛽
 

This law fostered many other works among which the work carried out by 

Hautière et al. [16–21] should be highlighted.  They do various refinements 

implementing dynamically Koschmieder’s law to extract the road and sky 

within the image, compute the weather conditions and restore its contrast, 

which can be considered the first approaches dedicated to transportation 

systems. They also created one of the most popular datasets called FRIDA 

(Foggy Road Image Database). Based on the same principles Negru et al. [22–

24] also published various works to present an image dehazing method from 

a moving vehicle and advise drivers with the adequate speed for the 

detected fog density. The method considers an exponential decay in the 

foggy image and applies a median filter which increases the clarity of the 

reconstructed image.  

Other leading research works on dehazing techniques were developed by 

Tan [25] that removes haze by maximizing the local contrast of the restored 

image and Fattal [26] who estimates the albedo of the scene and the medium 

transmission under the assumption that the transmission and the surface 

shading are locally uncorrelated. However, this may not be physically valid 

or fail in some cases. Later, He et al. [27] proposed a novel prior for single 

image haze removal, the dark channel prior, which is based on the statistics 

of outdoor haze-free images. They found that some local regions which do 

not cover the sky and have very low intensity (called dark pixels), can 

directly provide an accurate estimation of the haze transmission. With this 

haze thickness estimation, a high-quality haze-free image can be restored by 

the atmospheric scattering model. Yeh et al. [28,29] based on the same idea 
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improved the last method by estimating the atmospheric light using haze 

density analysis and using a bilateral filter to calculate and refine the 

transmission map. That results in better colour information and lower 

computational time compared to He’s method. Huang et al. [30] also 

analysed this dark channel prior method and developed a new one to fix the 

problems related to halo effects, colour distortions and insufficient 

transmission map. This method based on depth estimation, colour analysis 

and visibility restoration outperformed other methods. 

However, all these physical models lie on strong priors.  Methods based on 

Koschmieder’s law depend on several assumptions such as static and 

uniform atmosphere and flat and diffuse ground surface. In addition, they 

are valid only for daytime scenarios, making them unusable for real-life 

automotive applications where the system can work 24h/day. Methods 

based on dark channel prior are also based on the assumption that at least 

one of the colour channels has a very low intensity at some pixels. 

There are also several methods in the literature based on the extraction of 

image characteristics for fog detection and classification. Some of these 

methods analyse these features to discern a final result while others use 

classical vision as a pre-processing step to subsequently compute a classifier 

(ML). For example, Pavlic et al. [31] analyse the power spectrum (squared 

magnitude of Fourier transform) of the image without considering any 

special information. This way, fog scenes that contain frequency components 

near-zero can be differentiated from much more high-frequency components 

that present the non-fog scenes. Later on, the author extended the method 

for night conditions [32], however, it still fails to detect clear weather when 

high contrast elements appear in the image (eg. oncoming vehicles, 

overtaking trucks or bridges) in a foggy scene. Spinneker et al. [33] also 

focused their work on frequency characteristics and analysed the power 

spectrum slope around the vanishing point to obtain a visibility range. Other 

researchers studied the fog looking for its colour characteristics. Asery et al. 

[34] analyse the image Gray Level Co-occurrence Matrix (GLCM) features 

and considered its contrast, correlation and homogeneity to construct a 

Support Vector Machine (SVM) classifier that will differentiate foggy and 

non-foggy images, but the background of the image seems to have great 

influence when applied to natural images. In [35] Alami et al. proposed a fog 

detection algorithm based on the analysis of correlation and saturation 
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characteristics in RGB colour space. This analysis was focused on the 

vanishing point which is calculated using an edge-based algorithm and 

Hough Transform. Li et al. [36] presented a fog level detection method based 

on grayscale features where they measure the average grey value of each 

row in the image and classify them into non-foggy, little-foggy or dense-fog 

analysing the slope of the calculated curves. And Liu et al. [37] addressed the 

fog level detection method based on image information characteristics like 

H (hue), S(saturation) and V(value) which reduces the number of judgment 

threshold value demand and thus detection complexity. Finally authors in 

[38] made a comparison between seven histogram-based methods: Color and 

Edge Directivity Descriptor (CEDD), Edge Histogram Descriptor (EHD), 

Fuzzy Color and Texture Histogram (FCTH), Fuzzy Opponent Histogram 

(FOH), Joint Histogram Descriptor (JHD), Scalable Color Descriptor (SCD), 

and Simple Color Histogram (SCH). They used SVM classifier for no fog, 

light fog and heavy fog scenarios, and observed that JHD and FCTH had the 

best performances. 

2.1.2. Deep learning techniques  

On the other hand, Neural Networks are also used for fog detection. This 

Machine Learning method has been on the rise in recent years due to its 

ability to solve complex non-linear functions. In the image classification area, 

Deep Neural Networks (DNN) are mostly used which analyse the global 

features of the image. Chaabani et al. [39] proposed a three-layer neural 

network with a global feature descriptor based on Fourier transform that 

captures the power spectrum of the image to learn six different visibility 

ranges between 60-250 meters. The achieved classification rate was 90.2% 

tested on synthetic images from Foggy Road Sign Images (FROSI) dataset 

[40]. Later on, Palvanov et al. proposed VisNet, an approach based on deep 

integrated CNNs for the estimation of visibility distances from camera 

imagery. The implemented networks use three steams of DCNN connected 

in parallel and pre-processed the input image by applying one filter in the 

frequency domain and another spectral filter for the extraction of low-

contrast regions. This approach achieved 94% on FROSI dataset images. 

Later on, Vaibhav et al. [41] develop a CNN with two image inputs, one 

original and the second input a block-wise discrete cosine transform (DCT) 

and Shannon entropy features. This model classifies three visibility ranges 



 

 

Chapter 2 Road Damage Monitoring: road lines 

32 

 

less than 50 m, 50-150 m and 150 and above and obtains a 94.51 % accuracy 

for the FROSI dataset. Both Palvanov and Vaibhav tested their algorithms 

also on real scene images, which decreased the performance by 4.5% and 

7.06% points respectively, however, none of these datasets is publicly 

available. In summary, the performance of the current state-of-the-art 

algorithms in real driving scenarios is still inconclusive.  
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2.2. Materials and Methods 

In this section an analysis of the existing databases is made and the ones 

chosen or created for the development of this thesis are presented. 

Subsequently, the different methods studied for fog detection are explained. 

2.2.1. Existing Datasets 

Although there are large-scale road datasets such as KITTI [42], Cityscapes 

[43], Mapillary Vistas [44], ApolloScape [45] and BDD100k [46] the 

availability of useful image datasets for the foggy road scenes evaluation is 

very low. Most of the existing datasets contain few or even no foggy scenes 

due to the difficulty of collecting and annotating them. For example, the 

Mapillary Vistas database contains 10 images out of 25000 misty images (not 

dense fog). Thus, some of the existing foggy datasets are generated synthetic 

images or real-world images post-processed with synthetic fog. See Table 2-1 

for a summary. 

Foggy Road Image Dataset (FRIDA) is the most popular one, which was 

created by Hautière et al. with synthetic images [20] and was later extended 

[21]. This last image set presents 66 diverse road scenes that have associated 

4 different fog types (no fog, uniform fog, heterogeneous fog, cloudy fog, 

cloudy heterogeneous fog) which comprises a total of 330 synthetic images. 

The Foggy Road Sign Images (FROSI) dataset was introduced by Belaroussi 

et al. [40] and contains a set of 504 base synthetic images 1400x600 with 

different road signs placed at different distances on the image. For each 

image 7 types of uniform synthetic fog are applied with visibility ranging 

from 50 m to 400 m. Therefore FROSI set is made of a total of 3528 images. 

A more recent dataset derivated from the Cityscapes dataset [43] was 

generated by Sakaridis et al. which is called Foggy Cityscapes [47]. It 

constitutes a collection of 25000 images from the original dataset that are 

processed and automatically annotated into 3 foggy levels using a fog 

simulator ranging visibility of 600, 300 and 150 m. Later, an improved 

version of this dataset called Foggy Cityscapes –DBF (Dual-reference cross-

Bilateral Filter) [47] was published which additionally uses both colour and 

semantics as reference for the transmittance map refinement and comprises 

3475 synthetic foggy images with better adherence to semantic boundaries 
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in the scene than the latter dataset. The same authors also generated two new 

datasets with real-world foggy road scenes called Foggy Driving and Foggy 

Zurich. The Foggy Driving dataset contains 101 light fog images captured 

with a cell phone camera at different points of Zurich and also with images 

collected from the web. Later own, they extended this dataset with collected 

video frames of the same city and its suburbs improving the resolution and 

having much variety of scenes and different fog levels, this last dataset 

contains 3808 images and is named Foggy Zurich [48]. Finally, they 

published the Adverse Conditions Dataset with Correspondences (ACDC) 

[49] with the aim of training and testing semantic segmentation methods on 

adverse visual conditions. ACDC consists of a large set of 4006 annotated 

images, containing fog, nighttime, rain and snow scenarios equally 

distributed.  

Table 2-1. Summary of the existing datasets for fog detection and 

its principal characteristics. 
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FRIDA1 90 -- 4+1 640×480 -- yes 2010 

FRIDA2 330 -- 4+1 640×480 -- yes 2012 

FROSI 3528 -- 7 1400×600 -- yes 2014 

Foggy Cityscapes  20000 8 3+1 2040×1016 
Germany and 

Switzerland 

synthetic 

fog 
2018 

Foggy Cityscapes 

DBF 
550 8 3+1 2040×1016 

Germany and 

Switzerland 

synthetic 

fog 
2018 

Foggy Driving  101 19 -- 960×1280  Zurich no 2018 

Foggy Zurich 
3808 (40 

annotated) 
19 -- 1920×1080 Zurich no 2019 

Seeing Through 

Fog 
1429060 -- -- 1920×1024 

Germany, 

Sweden, 

Denmark, 

and Finland 

no 2020 

Ceit-Foggy 4480 -- 3+2 several Spain no 2020 

Foggy Cityscapes 

DBF extended 
11000 -- 4+1 2040×1016 

Germany and 

Switzerland 

synthetic 

fog 
2021 
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Finally, the SeeingThroughFog dataset [50] was developed in the context of 

DENSE project. It records 10,000 km of driving in Northem Europe under 

different weather and illumination conditions. It contains 12000 samples in 

real-world driving scenes and 1500 samples in controlled weather conditions 

within a fog chamber. The resulting annotations contain 5,5k clear weather 

frames, 1k captures in dense fog, 1k captures in light fog, and 4k captures in 

snow/rain.  

2.2.2. Our datasets 

2.2.2.1. Ceit-Foggy 

Ceit-Foggy dataset consists of a set of 41 videos corresponding to 

approximately 300 km of driving through the Basque Country and Segovia. 

These videos were recorded in different weather conditions as shown in 

Figure 2-1.  

  
(a) Dense fog (b) Moderate fog 

  
(c) Light fog (d) No fog 

Figure 2-1. Ceit-Foggy dataset. Sample images showing the 

annotated four different classes. Three fog levels and the 

category containing negative images, this is, no fog. 
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Around 4000 frames were extracted and of these 1681 images were labelled 

in 4 categories: no fog, light fog, moderate fog and dense fog. These images 

were recorded using different mobile phones and onboard cameras situated 

on the dashboard. The images were subsequently cropped to avoid showing 

the interior of the car. Therefore, the resolution of the images may vary from 

549×411 to 1441×1080. 

Due to the difficulty of finding this meteorological phenomenon the 

distribution of the classes is not balanced as it is shown in Figure 2-2. 

Although this imbalance is not appropriate for training purposes, it could be 

used for model evaluation as it is representative of the samples that would 

occur in natural driving. 

 

Figure 2-2. Class distribution of the Ceit-Foggy dataset. 

2.2.2.2. Foggy Cityscapes DBF – extended 

This dataset was generated from the Foggy Cityscapes DBF dataset to extend 

the number of samples associated with different visibility ranges. This 

refined version has 550 original real-world images and applies a synthetic 

fog based on the standard optical model of Koschmieder [47][51]. The dataset 

characterises three fog levels with an attenuation coefficient β of 0.005, 0.01 

and 0.02 m-1 corresponding to visibility ranges of 600, 300 and 150 m.  

However, following the work done in DENSE project, it was found more 

convenient to follow the visibility ranges defined by NF P 99-320 norm for 

road fog [52]. It is worth noting that due to vehicle speed and depending on 

the availability of contrasted objects along the road the distance to the 

furthest visible object can be different to the general visibility distance. Thus, 

this norm specifies that road fog has a lower threshold of visibility than 
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meteorological fog. These ranges are specified in Table 2-2. This thesis is 

focused on the analysis of road fog and considers the meteorological fog as 

no foggy scene. A slight adaptation is applied by merging the last two road 

fog visibility levels to reduce road fog levels to three for comparative reasons 

with the Ceit-Foggy dataset. The attenuation coefficient for each class is 

inferred from Koschmieder’s law (see section 2.1.1) as in the paper of the 

original dataset.  

Table 2-2. Definition of fog classes following the definition of 

AFNOR norm NF P99-320. Road fog is differentiated into three 

different levels, light fog, moderate fog and dense fog 
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Meteorological fog  < 1000 [0.007 - 0.0003] 2975 

 

Road fog 

light fog 
200to 400 

[0.03 - 0.007] 2750 
100 to 200 

moderate fog 50 to 100 [0.06 - 0.03] 2750 

dense fog < 50 [∞ - 0.06] 2750 

To construct a balanced dataset, 2750 samples were generated for the four 

different visibility ranges: light fog, moderate fog, dense fog and no fog (see 

Figure 2-3). Thus, finally, the dataset contains 11,225 images in total of size 

2048×1024.  

2.2.3. Developments 

As it was explained in the state-of-the-art revision there are two main 

approaches for the detection of foggy scenes based on vision techniques: (1) 

measurement of the visibility range and (2) extraction of image 

characteristics. The first approach was discarded for this application because 

there is no direct relation to the fog's physical properties since several factors 

affect it such as background light, road curvature, presence of contrasted 

objects etc. [53]. The high complexity of this problem could lead to the study 

of a solution with neural networks. However, this option could be 
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problematic if the onboard system has hardware limitations. Thus, in this 

thesis, a classic computer vision approach is explored in Section 2.2.3.1 which 

can be less demanding in terms of computation, although, later a deep 

learning-based algorithm is also addressed in Section 2.2.3.2.  

 

Figure 2-3. The five selected samples of attenuation coefficient 

per class for the construction of the Foggy Cityscapes DBF – 

extended dataset. 
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It is worth mentioning that the hardware used in these developments is a 

Windows 10 PC with an Intel Core i7 processor, NVIDIA GeForce RTX 3080 

10 GB GPU and a total RAM of 32 GB. The software used for the classical 

computer vision approach was Matlab 2020a (Image Processing Toolbox 

V11.1 & Computer Vision Toolbox v9.2) while for the deep learning 

approach Python 3.7.13, Tensorflow V2.8.2 and keras.applications were 

employed. 

2.2.3.1. Classical computer vision approach 

In this section, a classical computer vision approach is applied where the 

colour thresholding technique is used to model and detect fog 

characteristics. Although, most of the previous works have analysed 

grayscale images; our work aims to study whether other colour spaces could 

help to get more information on the image and help to improve the results.  

After several experimental studies in the RGB and HSV colour spaces, it was 

concluded that this information was not sufficient to properly differentiate 

between cloudy and foggy scenes. The thresholding was highly complex and 

failed to generalize the different cases presented in the reference images. 

Therefore, it appealed to a not-so-popular colour space, the XYZ which 

defines quantitative links between distributions of wavelengths in the 

electromagnetic visible spectrum (see Appendix B). This new colour space 

allows us to define a rule-based method from scratch that can classify sunny, 

cloudy and foggy scenes by using XYZ features. Afterwards, the designed 

algorithm estimates the fog level of the foggy images by using RGB features 

(see Figure 2-4).  

Thus, our work extracts the specific features of the images and establishes 

several rules to classify scenes as sunny, cloudy and foggy. These rules are 

summarised in Table 2-3 and they will be presented in detail in the following 

lines.  
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Figure 2-4. Implemented fog detection workflow for the rule-

based method classifier. 

Table 2-3. The proposed rule-based method for fog detection and 

fog level estimation. This method analyses RGB and XYZ colour 

spaces. 

Sunny Z > 0.35 && ZYdiff > 0.1   

Cloudy Z < 0,35   

Foggy Z > 0.35 && ZYdiff < 0.1 

Light greylevel [10-30] 

Moderate greylevel [30-60] 

Dense greylevel [60-100] 

First, the XYZ colour space was analysed, here the Z channel will find cloudy 

scenes and the parameter defined as ZYdiff will differentiate between foggy 

and sunny scenes. Second, once the foggy scene is detected, our algorithm 

will classify the foggy scenes into light fog, moderate fog and dense fog by 

using the RGB colour space-based features. One of the main characteristics 

of fog is that it blocks visibility from a certain distance. This causes a decrease 

in the contrast between the object and its background so that the scene takes 

on a white/grey colour. The calculated grey level will provide an estimation 

of how dense the fog is.  

It is worth mentioning that for these analyses, just pixels from the upper half 

image will be considered. In this portion of the image, it will be mostly the 

sky after having previously calibrated the camera position.  

Input 
image

RGB colour
space

XYZ colour
space

grey level
estimation

ZYdiff
parameter
calculation

 , ZYdiff

Output

Sunny Cloudy Foggy

Image features

Grey 
level

Light 
fog

Moderate
fog

Dense 
fog
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Z and ZYdiff calculation 

In the XYZ colour space, the Z average level of the pixels located on the 

upper half of the image (referred to as  ̅) was analysed. It is observed that 

this channel makes a difference between cloudy scenes and the rest since the 

 ̅ value is lower in cloudy scenes ( ̅ < 0.35).  

However, this characteristic presents similar values both for sunny and 

foggy scenes. Therefore, a further feature is calculated by the 
|𝑍−𝑌|

Y
 formula, 

which represents the difference of the Z and Y channels averages with 

respect to luminance (Y); hereinafter referred to as ZYdiff. This value is not 

relevant for cloudy situations but leads us to differentiate between sunny 

and foggy scenes as can be seen in Figure 2-5. ZYdiff  is higher in sunny 

scenes (ZYdiff  > 0.1) than in foggy ones (ZYdiff  < 0.1). 

Grey level estimation 

The grey level allows approximating how much contrast has been lost in the 

image due to fog. This feature has been extracted by establishing several 

rules for the RGB channels. Firstly, it was considered as grey pixels those 

RGB values enclosed in the (140-255) range. This range represents bright 

pixel values. Additionally, a limitation was established for the difference 

between each channel to 20, this rule will ensure that the saturation of the 

pixel is low.  

Thus, this grey level would be the percentage of pixels that meet these 

conditions compared to the total number of pixels analysed on the upper half 

of the image. 

The calculated greylevel seems to be a good representative of the fog level. 

Thus, based on experimental tests three thresholds that will conform to the 

three different fog levels were defined. This way, the light fog scene is 

expected to have 10-30% of grey pixels, moderate fog conditions will oscillate 

between 30-60% and an image with more than 60% grey pixels will be 

considered a dense fog scenario 
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Figure 2-5. Studied XYZ features in three different weather 

scenes. From up to down sunny, cloudy and foggy sample 

scenes. 

In this manner, the fog detection matrix presented in Table 2-3 is finally 

constructed. 

2.2.3.2. Deep Learning-based approach 

Due to the high complexity of the problem, currently, many works are 

focused on solving it by applying DL techniques because of their ability to 

solve complex non-linear functions. Therefore, in this section, the approach 

to construct a neural network-based model is presented. This model can deal 

with different scenarios and classify three different levels of road fog 

depending on the visibility range.  

Network architecture 

For this approach EfficientNetV2 [54] is introduced, a new family of CNN 

that presents a faster training speed and better parameter efficiency than 

previous models while being up to 6.8x smaller (see Figure 2-6). This model 

(a) Original sunny

(d) Original cloudy

(g) Original foggy (i) Z value foggy

(c) Z value sunny

(f) Z value cloudy

(h) ZYdiff foggy

(e) ZYdiff cloudy

(b) ZYdiff sunny



 

 

Section 2.2 Materials and Methods 

43 

 

increases both training speed and parameter efficiency by using training-

aware Neural Architecture Search (NAS) and scaling the image size, 

however, this technique often causes a drop in accuracy. To solve this 

inconvenience, and achieve both fast training as well as good accuracy, 

EfficientNetV2 proposes to adaptively adjust regularization along with the 

image size by a dropout or data augmentation. This technique is called 

progressive learning which jointly increases image size and regularization 

during training.  

 

 

Figure 2-6. Model comparison trained on ImageNet ILSVR2012 

top-1 Accucary vs. Training Time. Image extracted from [54] 

Model setup 

The selected architecture is EfficientNetV2 B0 since it is the most lightweight 

one, initialize the model with the pre-trained ImageNet weights and fine-

tune it to apply transfer learning to our target domain. The dataset used for 

this training is the Foggy Cityscapes BDF-extended that has been partitioned 

in 80% train 10% test and 10% validation (see Table 2-4). The experiments in 

this Section were carried out using Keras API. To use this model the original 

images were re-scaled to the shape 224×224×3 and stored as TFRecords 

(binary records) so that they can be read efficiently. 
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Table 2-4. Foggy Cityscapes BDF-extended distribution for 

training, validation and testing of a deep learning-based 

classifier. 

Foggy Cityscapes BDF-extended 

Train (80%) 9353 

Valid (10%) 936 

Test (10%) 936 

 11225 

 

 

Figure 2-7. Transfer learning architecture designed for the new 

fog classifier 

The first step to transfer learning was freezing all layers so as to avoid 

destroying any of the information the pre-trained model contains during 

future rounds. Then add some new trainable layers that will learn to turn the 

old features into predictions on the new dataset (see Figure 2-7). For this step, 

it is selected a relatively large learning rate of 0.001 and set 100 epochs with 

Target dataset
(Foggy Cityscapes BDF - extended)

Light fog

Moderate fog

Dense Fog

…

Convolutional layers Dense layers Target labels

New 
Classifier

Frozen layers

Goldfish

Tree frog

Alligator lizard

…

Source dataset
(Imagenet)

Convolutional layers Dense layers Source labels

Pre-trained network

TRANSFER LEARNING
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an early stopping callback to monitor the val_loss. The next step was to 

unfreeze part of the model (the top 155 layers) and reduce the learning rate 

to 1e-6 for another 60 epochs followed by another 40 epochs with a learning 

rate of 1e-8. This fine-tuning phase where part of the model is re-trained can 

potentially achieve meaningful improvements by incrementally adapting 

the pertained features to the new data.  

2.2.4. Evaluation parameters 

For the evaluation of the multiclass classification model’s performance, 

accuracy metric was employed that calculates how often predictions match 

the one-hot label. Thus, the accuracy is defined as: 

𝐴𝑐𝑐𝑢𝑐𝑎𝑟𝑦 =
𝑀𝑎𝑡𝑐ℎ𝑒𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

Inference times have also been measured to assess their real-time 

performance 

Additionally, the confusion matrix is also generated to illustrate the results 

of the classifier for each class, which allows to analyse what are the most 

difficult scenarios.  

For the comparison of the two different models presented above, it is used 

the Foggy Cityscapes DBF-extended validation partition that contains 936 

images and the whole Ceit-Foggy dataset with 1681 images. Both of them 

have 4 categories: light fog, moderate fog, dense fog and no fog.  
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2.3. Results 

In this section, it is first illustrated an offline analysis of the rule-based 

method to illustrate how the defined thresholds fit the datasets. Then the 

results of the two models are presented and discussed. 

2.3.1. Rule-based method data visualization 

This validation was executed for the Ceit-Foggy dataset in order to check 

whether the defined thresholds for the rule-based method were 

representative. Thus, the algorithm was executed and all parameters were 

recorded and drawn in the following figure (see Figure 2-8). 

 

Figure 2-8. Image features representation for each ground truth 

label in the Ceit-Foggy dataset 

Figure 2-8 shows the representation of grey level,  ̅ and ZYdiff parameters 

obtained by the analysis of RGB and XYZ colour spaces.  

All the parameters analysed range from [1,100]: 

Grey level: which has a direct link with the fog level when the scenario is 

classified as foggy. It is represented in grey in the figures above. 

(a) No fog (b) Light fog

(c) Moderate fog (d) Dense fog
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𝒁̅ value: which differentiates cloudy from foggy scenarios when the sky is 

not clear. It is represented (multiplied by a factor of 10) in orange in the 

figures above. 

ZYdiff: which differentiates foggy from sunny scenes. It is represented 

(multiplied by a factor of 10) in yellow in the figures above. 

Represented in grey in the first column data, the grey level shows a clear 

difference between the four scenarios. With a special focus on the foggy 

scenarios, it is observed that most of the points could be clustered from [10-

30] for light fog, [30-60] for moderate fog and [60 -100] for dense fog. On the 

other hand, ZYdiff is mostly under 10 and  ̅ above 35 for foggy scenes. 

However, for no-fog scenarios where both sunny and cloudy situtations are 

included the range of this values is much wider.  

2.3.2. Models comparison 

For the comparison of the two models developed in this chapter, the two 

datasets are presented in Section 0. were used and executed both algorithms.  

Table 2-5 shows the summarized results of this comparison where the 

accuracy and the processing time per image were analysed  

The best performance result achieved for the deep learning model is 95.83% 

while for the rule-based method is 80.07%. This can be explained by the high 

complexity of modelling a complex phenomenon such as fog in different 

light conditions and scenarios with only four parameters. However, the 

neural network-based model learns by itself the characteristics of the 

training images and can collect thousands of different parameters, thus 

presenting much more adaptability to the different scenes that can be 

presented. Regarding the processing time of the algorithms, it is observed 

that the processing in the rule-based method is always slower. However, 

both models have an adequate computation time (below 300 ms) to run the 

analysis in real-time with no problem as long as the same current 

computational capabilities can be commanded. 
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Table 2-5. Fog detection models’ evaluation parameters 

comparison for the Ceit-Foggy and Foggy Cityscapes DBF - 

extended datasets. 

  RULE-BASED DEEP LEARNING 

DATASET 
Number of 

images 
Accuracy (%) 

time per 

image (ms) 
Accuracy (%) 

time per 

image (ms) 

Foggy CityScapes 

BDF-extended 
936 0.6368 296.27 0.9583 252.6 

Ceit-Foggy 1681 0.8007 164.03 0.7055 74.4 

For a deeper analysis of the performance of the two models, the confusion 

matrix was calculated for each test that allows studying in which scenarios 

each algorithm fails or succeeds.  

Rule-based method 

In Figure 2-9 it is shown that the rule-based method confuses light fog and 

non-fog classes on several occasions for both datasets (40.4% and 30.1%), 

which is also true for the human eye in many of these cases. Though, a 

detailed analysis has shown that many of these cases have a limiting grey 

level. Failures in this scenario are considered to be of low importance since 

the alert level is lower and no false alarm is generated for the driver. 

However, in Figure 2-9 (a) the confusion that occurs between the moderate 

fog and light fog classes for the synthetic dataset is considered more severe 

since the alert level is higher than the ground truth. The prediction in this 

classes is of a higher fog level in 41.9% and 37% of cases respectively. In the 

detailed analysis of the images, it is concluded that this behaviour may be 

explained due to the colour of the synthetic fog of the Foggy CityScapes BDF-

extended dataset. The rule-based method has used real fog images as a 

reference to define the boundaries, in these pictures the fog takes a warmer 

colour than synthetic fog which is represented with a much pure and cold 

white tone which results in a foggier sensation. 
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RULE-BASED              DEEP LEARNING 

 
 

(a) Foggy CityScapes BDF-extended dataset 

  

(b) Ceit –Foggy dataset 

Figure 2-9. Fog detection models' confusion matrix comparison 

for the Ceit-Foggy and Foggy Cityscapes DBF - extended 

datasets. 

Deep learning –based method 

The reverse occurs for the deep learning-based model when tested on real 

fog images from the Ceit-Foggy dataset. Both in the case of light and 

moderate fog 28% and 68% of the cases respectively are predicted to have a 

lower fog level. This use case is also related to the previous fog tone 

phenomenon: since the deep learning model was trained with synthetic fog 

images the real fog does not have enough white level to be classified at the 

level of the ground truth (see Figure 2-10).  

It is also worth mentioning the good results obtained for the deep learning 

model when testing with synthetic fog images. Since the fog tone of the 
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training and test images is the same, the model fits very well with the new 

test images. 

 

 
(a) Synthetic fog (b) Real fog 

Figure 2-10. Fog tone comparison of the two datasets. Synthetic 

fog presents a colder colour than the real foggy scenes. 

Video analysis for both models 

Finally, Figure 2-11 shows a comparison of the two models with one of the 

original videos used to generate the Ceit-Foggy dataset. This video was 

recorded in a light-fog scenario, but during the route, the vehicle enter a 

thicker fog bank which then fades away at the end of the video.  

 
(a) Rule-based 

 
(b) Deep Learning based  
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(c) Example frames 

Figure 2-11. Off-line video analysis and model comparison for a 

light-fog scenario with a moderate-fog bank that disappears in 

the last frames 

Figure 2-11 (a) shows the result of the rule-based method where the 

evolution of all the parameters was illustrated. The diamond markers 

present the fog event alarm and judging de grey level it is shown how the 

light-fog [10-30] evolves to the moderate-fog level [30-60] and finally 

decreases to a no-fog scenario. 

The same tendency is reflected in Figure 2-11 (b). This graphic presents the 

behaviour of the deep-learning model which has a discrete output of four 

different levels. It is also observed the change from light to moderate when 

entering the fog bank and to no fog when exiting the fog bank.  

Lastly, Figure 2-11 (c) shows three samples of the video with the three 

different scenarios commented above.  
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2.4. Discussion 

Fog is one of the most dreaded weather phenomena on the road as it can 

significantly reduce visibility abruptly in a matter of seconds and can last 

from a few metres to kilometres. It poses a safety hazard to both human-

driven and automated vehicles. Nowadays, information regarding fog can 

be displayed on variable messaging boards, however, this method is not very 

effective as its location is imprecise. 

In this chapter, a new dataset was generated containing 1681 foggy images 

that were labelled in three different fog levels. In addition, the synthetic 

Foggy Cityscapes DBF dataset was extended for 4 different visibility levels. 

The development of two fog detectors has been also presented, the first one 

addressed classic computer vision techniques while the second one uses the 

most recent deep learning techniques.  

Both models have shown good results in tests with different datasets and 

videos. Accuracy levels of more than 80% and processing times of less than 

300ms have been reported. Therefore, it could be said that both are valid 

detectors to integrate into an on-board system that can monitor in real-time 

this meteorological phenomenon. This sensorisation would provide better 

and more accurate information on the location of fog banks, making it 

possible to generate ad-hoc warnings to help drivers and automated vehicles 

to be prepared and make better decisions while driving and this enhance 

road safety.  

It is worth mentioning that a preliminary version of this system is already 

integrated on an onboard barebone industrial mini PC and is being validated 

on-site generating real-time traffic alerts (Linux i7-6600U CPU & 8 GB RAM).
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3.1. State of the art 

Vertical signalling is essential for the safe coexistence of all road users and 

road management. For this reason, there are already many studies on traffic 

sign recognition in the literature. These systems are of great interest for 

ADAS, for the decision-making of autonomous vehicles as well as for road 

network maintenance (asset inventory) [55]. TSR can be categorized into two 

subtasks, detection which aims on locating the traffic sign in an image and 

classification which will later predict the category of the detected sign. 

Computer-vision methods have been widely spread to address this task. 

Those have evolved over the years, first, classical vision techniques were 

used most of them based on shape or colour modelling, ML techniques were 

also employed, however, these methods present weakness when dealing 

with different scenarios with illumination change, occlusions etc. Thus, deep 

learning techniques arise to solve these problems, however, they require 

large annotated datasets. Next, a brief review of these methods will be 

presented. 

3.1.1. Classical computer vision techniques 

3.1.1.1. Colour and shape-based methods 

These methods are the oldest in the state of the art and were mainly used for 

traffic sign detection.  

Colour-based methods take advantage of the traffic sign design which means 

to be easily distinguishable from the background. Segmentation techniques 

by colour thresholding of different colour spaces are the most used among 

the researchers. RGB is the most intuitive colour space, however, it is also 

very sensitive to light conditions, weather conditions, reflections etc. Thus, 

choosing the colour space is very important. Other works developed colour-

based detection methods using hue, saturation and value (HSV), hue, 

saturation and intensity (HIS) as well as other various colour spaces [56].  

Regarding the shape-based methods, the most used one is the Hough 

Transform which consists of voting of each pixel edge image for the object 

centre at the object boundary [57,58]. Others apply template matching 

techniques [59] or similarity detection by analysing symmetry [60,61]. Some 
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works use Distance Transforms [62] capturing object shape template 

hierarchy, Edge Detection features [63] and Haar-like features [64]. 

Despite TSR requiring colour and shape information, the problems of 

illumination changes or colour fading of traffic signs, as well as the 

deformation and occlusions are still unresolved [65]. 

3.1.1.2. Machine learning methods 

Thus, conventional computer vision methods are employed to extract and 

learn new specified visual features. The most popular features are Haar-like 

features, SIFT (Scale Invariant Feature Transform) features, HOG 

(Histogram Oriented Gradients) features and SURF (Speed Up Robust 

Features) features, but there are also others such as ICF (Integral Channel 

Feature), ACF (Aggregated Channel Features) etc. They were further applied 

both for detection and classification tasks. 

The increase in complexity of the features to learn requires using more 

powerful algorithms. The most popular ones are the cascaded detectors as 

Viola-Jones [66] strategy, which performs classifier training based on 

AdaBoost [67]. The benefit of this classifier is that detection runs fast and its 

accuracy is fair [68]. Other popular methods are also used for TSR, such as 

SVM [69] that contract an N-dimensional hyperplane that optimally 

separates the data into two categories; Random Forests (RF) [70] which 

operates by constructing multiple decision trees during the training time and 

outputting the class of individual trees, genetic algorithms [71] based on 

natural selection processes; artificial neuronal networks (ANN) [72] or CNNs 

[73,74]. These last two methods are increasingly gaining popularity in recent 

years due to the advances in graphics processing units. 

However, these methods also still present limitations, especially when the 

number of features to be learned increases, and the speed of the algorithms 

also increases, making them ineffective for real-time analysis. In addition, 

some of these features still present difficulties when there are abrupt changes 

in the background. 

3.1.2. Deep learning techniques 

In recent years, DNNs have received great attention in computer vision 

research and have been widely used in both object detection and recognition. 
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The main difference and also its strongest point is that deep learning uses 

multilayer neural networks to automatically extract and learn the features of 

visual objects.   

The most popular approach for TSR is the end-to-end CNN-based models. 

For these models, there are two kinds of algorithms, the two-stage detectors 

which are based on the generation of region proposals by selective search to 

predict the candidate bounding boxes followed by the classification, and in 

contrast the one-stage detectors who do the object classification and 

bounding-box regression directly in a single-step without using pre-

generated region proposals. The first ones are normally more accurate; 

however, they are also slower than single-stage algorithms. 

The TSR systems have evolved as the algorithms themselves have advanced. 

Zhu et al. [75] proposed a six layers Fast-RCNN model to simultaneously 

classify and locate traffic signs. Zuo et al. [76] used Faster R-CNN-based 

model. Shao et al. proposed a simplification of the Gabor wavelet to improve 

Faster R-CNN for traffic sign detection [77,78]. Zhang et al. [79], Yang et al. 

[80] and Yuan et al. [81] added an attention module to the CNN to improve 

the detection of small traffic signs or under complex backgrounds. With the 

emergence of single-stage detectors, new works were developed. Zhang et 

al. [82] apply CNN inspired by YOLOv2 while Wang et al. [83]used YOLOv4. 

Whereas Shan et al. [84] and Jin et al. [85] proposed different improvements 

for Single Shot Detector (SSD) CNN-based algorithms.  

There are countless examples in this field and currently, in the state of the 

art, many of them achieve results that exceed human performance (98.84%) 

[86]. However, these deep learning methods are highly dependent on the 

quality of the datasets they use. Although technically the level is very high, 

many non-technical challenges can be overcome to jeopardise the 

performance of these algorithms, especially when dealing with complex 

scenarios where the resolution of the images is low, there are different 

lighting or weather conditions, fading and blurring, occlusions or other 

artefacts, multiple appearances of signs etc. [87] (see Figure 3-1). 
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Figure 3-1. Sample images for TSR challenges: lighting or 

weather conditions, artefacts, low-resolution signs, motion blur, 

rotation, occlusion, damage, inconsistencies and intra-class 

variation (The vast majority of the samples are extracted from 

Ceit-TSR dataset). 
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3.2. Materials and methods 

3.2.1. Existing datasets 

The traffic sign recognition research field has increased its attention in the 

last years and therefore since 2011 many new large datasets have been 

publicly available. This has allowed many comparative studies that have 

helped to improve existing algorithms.  

The German Traffic Sign Recognition Benchmark (GTSRB) is one of the first 

large and public datasets collected in various locations in Germany that was 

created to evaluate the classification branch of the problem with the 

International Joint Conference on Neural Networks  (IJCNN) 2011 

competition [88]. The authors of this dataset added a new benchmark for 

detection purposes (GTSDB) and organised also the IJCNN 2013 [89]. These 

were the boom for the creation of many other new public datasets for TSR in 

different countries. 

Belgium Traffic Sign Dataset [90], STS Dataset recorded in Sweeden [91], 

RUG from Netherlands [92], Stereopolis dataset from France [93] and 

MASTIF dataset from Croatia [94] which together with the GTSDB led to the 

creation of the European Traffic Sign Dataset (ETSD) [95] which includes all 

these datasets and also extend the annotations of some of them to label all 

possible classes. Some datasets contain images from China such as Tsinghua-

Tencent Dataset (TT100K) [96], Chinese Traffic Sign Dataset (CTSD) [97], 

Changsha University of Science and Technology Chinese traffic sign 

detection benchmark (CCTSD) [82], and Complex Traffic Sign Dataset CTSD 

[98]. Russian traffic Sign Dataset (RTSD)[99], LISA dataset with American 

signs [100], Dataset of Italian Traffic Signs (DITS) [99], Korean Traffic Sign 

dataset (KTSD) [101], DFG from Slovenia [102] and Cure TSD of Belgium 

[103].  

Finally, there is a recent dataset called Mapillary Traffic Sign Dataset (MTSD) 

[104] for detection and classification on the Global Scale created by Facebook. 

This dataset aims to cover the diversity of countries all over the world in 

urban and rural areas, images of different quality and captured under 

varying conditions. The last paper that reported on TSR datasets proposed 

two new synthetic datasets [105] which consist of Carla Traffic Sign 
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Detection (CTSD) and Carla Traffic Sign Recognition Dataset (CATERED)  

both created through the Carla simulator. 

All the characteristics of these publicly available datasets are summarized in 

Table 3-1. 

3.2.2. Our dataset 

Ceit-TSR consists of 264 colour images captured from 40 different videos of 

driving tracks within the Basque Country (Spain). They were recorded using 

different mobile phones and onboard cameras located on the dashboard. The 

images of this dataset were specifically selected so that in addition to the 

different weather and light conditions that are covered in other existing 

datasets, they would also include other complex conditions. Those 

incorporate images with motion-blur, low-resolution signs, distant signs, 

low contrast and windshield artefacts (reflections, raindrops, dirtiness etc.) 

as it is shown in Figure 3-2. All images were manually annotated using the 

Computer Vision Annotation Tool (CVAT) [106] resulting in 583 bounding 

boxes that were also classified in 49 different classes (see Figure 3-3). 

 

Figure 3-2. Ceit-TSR dataset. Sample images showing some of the 

challenging conditions: low contrast, fog, reflections, shadows, 

and heavy rain. 
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Table 3-1. Summary of the publicly available TSR datasets. 
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Figure 3-3. CVAT tool that shows the labelling task for Ceit-TSR 

dataset 

3.2.3. Used datasets 

In addition to the Ceit-TSR dataset and to be able to evaluate the 

generalisability of the developed algorithms and contrast them with the 

works reported in the state of the art, the datasets GTSDB, GTSRB and ETSD 

have also been used (see Table 3-2).  

Table 3-2. Summary of the used datasets for TSR in Chapter 3. 

 Number images Labels Classes Country 

GTSDB (test) 300 361 43 Germany 

GTSRB (test) 12630 12630 43 Germany 

ETSD 18550 18550 164 
Belgium, Croatia, France, Germany, 

Netherlands, Sweden 

Ceit-TSR 264 583 49 Spain 

3.2.4. Developments 

The implemented traffic sign recognition system is composed of two 

modules: detection and classification (see Figure 3-4). As will be explained 

in the following sections, both algorithms were fine-tuned, detector and 
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classifier, except for the neural networks used for the classification which 

were pre-trained models.  

 

Figure 3-4. Implemented Traffic Sign Recognition workflow. 

The hardware used in these developments is a Windows 10 PC with an Intel 

Core i7 processor, NVIDIA GeForce RTX 3080 10 GB GPU and a total RAM 

of 32 GB. As for the software, the authors employed Matlab 2020a (Image 

Processing Toolbox V11.1, Computer Vision Toolbox v9.2, Piotr’s Matlab 

Toolbox v3.5, Deep Learning Toolbox v14.0, Deep Learning Toolbox 

Importer for Caffe Models v20.1.0 and Deep Learning Toolbox Importer for 

Tensorflow-Keras Models v 20.1.0).  

3.2.4.1. Traffic Sign Detection 

After the revision of the state-of-the-art of traffic sign detection methods, it 

can be concluded that there is no clear framework that achieves the best 

results. Thus, it was decided to implement and compare some of the most 

popular methods. Firstly, classical features were used such as colour and 

shape for modelling a Viola-Jones cascade detector. However, these 

alternatives were finally discarded as they were difficult to adjust and not 

very flexible with changing light conditions.  

Usually, existing detectors could be improved in two ways: using more 

complex features or implementing more powerful learning algorithms. Since 
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the combination of boosting and cascading is proven to be very efficient for 

object detection [107], the key is to find representative characteristics at a low 

computational cost. In this context, a combination of record-breaking 

characteristics has emerged for pedestrian detection [108] and in this thesis, 

this method was applied for traffic sign detection. The ACF detection 

framework uses an AdaBoost classifier trained with ACF features to classify 

image patches. The entire image is searched by using a multiscale sliding 

window approach. These ACF features consist of ten different channels: 

three from the LUV colour space, the gradient magnitude, and the six 

oriented gradient maps (see Figure 3-5). Afterwards, the sum of every block 

pixel of these channels is computed using fast features pyramids and 

downscaled. Features are single-pixel lookups in the aggregated channels. 

Boosting is used to train and combine decision trees over these features 

(pixels) to locate accurately the object [108]. The channel extension offers a 

rich representation capacity, while the simplicity of the features allows a low 

computational cost. 

 

Figure 3-5. ACF features. In the first row from left to right: 

original image, LUV channels, the gradient magnitude and 

individual representation of HOG features in different angles, of 

a sample sign. 

3.2.4.2. Traffic Sign Classification 

In this phase, two different pre-trained classifiers were used for inference 

and then a voting system was employed to give a final prediction. 

 European Classifier: this is an 8-layers model with VGG architecture 

modified adding 1) L2 regularization of 1e-4 value on each 

convolutional and fully connected layer and 2) Batch Normalization 
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after each convolutional layer and before the ReLu activations. Adam 

optimizer was used and the learning rate was set to 1e-3. This model 

was trained by Serna et al. [95] on the ETSDB dataset. The input shape 

is 48×48×3 whereas the output is an array of 164 different classes (see 

Figure 3-6). 

 

Figure 3-6. Traffic sign samples of the ETSDB dataset. There are 

164 different classes grouped into 9 categories: danger, 

regulatory (priority, prohibitory, mandatory and special 

regulation) informative (information, direction and additional 

panels) and others. 

 German Classifier: this is an 8-layers model with AlexNet 

architecture. However, the authors do not provide details of the 

training. This model was trained by people of the Center for Digital 

Technology and Management [109]on the GTSDB dataset. The input 

shape is 227×227×3, whereas the output is an array of 43 different 

classes (see Figure 3-7). 
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Figure 3-7. Traffic sign samples of GTSRB dataset. There are 43 

different classes. 

Image pre-processing  

Several studies had probed that pre-processing methods that normalize the 

image and give better contrast can improve the performance of the existing 

pre-trained CNN models [95,110–112]. Thus, after studying different 

combinations a specific pre-processing routine was finally defined for each 

of the classifiers that are used in this chapter. (1) The V channel 

normalization is firstly applied for the input images of the European 

classifier to smooth the pixels’ luminance distribution. (2) Then, both models 

require the mean image subtraction to make the network less sensitive to the 

changing background and lighting conditions. For this step both images 

must be of the same size, thus they are resized to the CNN input shape before 

doing the subtraction. (3) Next, the input image will go through a random 

cropping loop to generate ten different images. All of them will be passed to 

the classifier and the one with the highest confidence score will be selected 

(see Figure 3-8).  
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(a) For European classifier 

 

(b) For German classifier 

Figure 3-8. The pre-processing phase before applying the 

corresponding classifiers. V channel normalization, mean image 

subtraction and random cropping tasks are presented. 
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Voting system 

Voting is an ensemble method that combines the performance of multiple 

models to make predictions. In this case, the predictions of the german and 

the European classifiers are combined to obtain the final output. The aim of 

incorporating this voting is to mitigate the risk of one model making an 

inaccurate prediction by having other models that can make the correct 

prediction. For the case of these two classifiers, the European classifier covers 

a wider variety of traffic sign classes whereas the german model output is 

more reduced but presents better performance for some of the classes. 

Therefore, a soft voting system was implemented where every individual 

classifier provides a probability of the output class and the target label with 

the greatest sum of probabilities wins the vote. Therefore, since there are 

only two votes, in this case, the winning class will be the one in which the 

two votes coincide or, if they differ, the class with the higher confidence 

score. 

3.2.5. Evaluation parameters 

For the analysis of the detector’s performance precision and recall metrics 

were employed, where precision measures the proportion of the total 

number of signals detected that are correct, while recall measures the 

proportion of the total number of signals to be detected that are correctly 

detected.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

For the evaluation of the multiclass classification model’s performance, 

accuracy metric was employed that calculates how often predictions match 

the one-hot label. Thus, the accuracy is defined as: 

𝐴𝑐𝑐𝑢𝑐𝑎𝑟𝑦 =
𝑀𝑎𝑡𝑐ℎ𝑒𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

Inference times have also been measured to assess their real-time 

performance. 
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3.3. Results 

In this section, the results of both the detector and the ensemble classifier are 

evaluated in four different datasets. GTSDB and Ceit-TSR contain complete 

road scenes where detection followed by classification is necessary. GTSRB 

and ETSDB are composed of cropped images containing just a traffic sign, so 

just the second phase should be needed. However, GTSRB detection is also 

applied since the original dataset includes a border around the actual sign of 

10 per cent of the sign size, at least 5 pixels. 

Table 3-3 shows the detection and classification results of the pure and 

ensemble models presented in this chapter for the detection and 

classification phase. In addition, the computational time per frame is 

measured. 

Table 3-3. Detection and classification results of the pure and 

ensemble models tested in the four different datasets used in this 

chapter. 

  

Model 

European  German  Ensemble  

GTSDB  

(300 imgs) 

detection 
prec./recall 

1.00/ 0.76 1.00/ 0.76 1.00/ 0.76 

classification  
accuracy 

0.967 0.971 0.985 

processing  
time 

0.069 0.121 0.138 

European  

(18145 imgs) 

detection 
prec./recall 

-- -- -- 

classification 
 accuracy 

0.889 0.868 0.924 

processing  
time 

0.009 0.062 0.071 

GTSRB  

(12630 imgs) 

detection 
prec./recall 

1.00/0.52 1.00/0.52 1.00/0.52 

classification  
accuracy 

0.915 0.934 0.964 

processing  
time 

0.011 0.065 0.072 

Ceit-TSR  

(264 imgs) 

detection 
prec./recall 

0.87/0.57 0.87/0.57 0.87/0.57 

classification  
accuracy 

0.691 0.552 0.713 

processing  
time 

0.090 0.146 0.138 
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3.3.1. Traffic Sign detection 

Since the learning process of an ACF detector is very similar to that of the 

cascade detector, this function also needs images with and without traffic 

signs. It uses as positive images all those that are passed as an argument 

while the negative ones are automatically generated. 

The design and selection of parameters for the detector are crucial to 

achieving optimal implementation of it. Thus, several fine-tuning 

experiments were done showing that: 

 The inference time was always about 200ms per image. 

 Up to 5000 learners or decision trees do not improve the results. 

 Object training size should be a maximum of 30×30 pixels, bigger 

dimensions may increase the false negatives. 

 The confidence threshold is key to compensate false positives and 

negatives.  

The final detector was trained with an object training size of 30×30 pixels. It 

used 5000 weak learners in 30 stages.  

As it can be observed in Table 3-3 the precision of this detector is pretty good 

(1.00 - 0.87), this is, most of the predicted bounding boxes are correct. 

However, the recall is lower (0.76 - 0.52). This means that there are some 

traffic signs that the detector will miss. Nevertheless, this factor is not 

considered to be that relevant for the actual application of this thesis, since it 

is a model that will be in an on-board vehicle that is continuously driving on 

the same roads and therefore will make several passes and will have the 

opportunity to detect the traffic sign that it has previously missed. Even so, 

a detailed analysis has been carried out to try to identify the scenarios where 

the detector fails. Figure 3-9 shows an example of Ceit-TSR dataset where 

there is one True Positive (TP) or detected sign and three False Negatives 

(FN) or missed signs. It is shown that, when the traffic sign to detect is small, 

this is, less than 15×15 pixels (see Table 3-4) the detector fails.  
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Figure 3-9. Example of false-negative detections due to the small 

size of the traffic sign. Table 3-4 shows detailed information. 

Table 3-4. Ground truth of the example shown in the figure 

above. A sign is considered small when its width and height are 

below 15 pixels. 

Image Bounding Box Class Width Height 

IMG (5).jpg [454,335,467,348] 80 13 13 

IMG (5).jpg [848,174,977,303] 24 129 129 

IMG (5).jpg [225,339,239,353] 41 14 14 

IMG (5).jpg [347,337,358,348] 87 11 11 

 

For the case of the GTSRB dataset in which the image has almost no 

background, the size of the images where the detector failed versus those 

where it succeeded to predict the bounding box has been analysed. After 

doing a Wilcoxon Rank Sum test it is observed that there is a significant 
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difference in the image size between both groups of samples (p <0.0001) (see 

Table 3-5). 

Table 3-5. Image size comparison between GTSRB detected 

traffic signs and missed traffic signs. 

 Mean size Standard deviation 

Detected signs 60.33 × 61.71 24.71 × 26.59 

Missed signs 39.71 × 38.72 16.6 × 15.86 

 

Analysing the traffic sign classes that the detector is missing there is no clear 

pattern. In Figure 3-10 are illustrated the traffic signs that present more 

difficulties when analysing the GTSRB dataset, this is, the ones that have 

more missed samples than detected ones. 

  

Figure 3-10. Traffic sign classes were there is more missed 

samples than detected for GTSRB dataset. 

0 50 100 150 200 250 300 350 400

End of all prohibitions

End of no overtaking for trucks
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3.3.2. Traffic Sign classification 

Concerning the classification of the detected signs, as was explained in 

section 3.2.4.2 two models were used that were already for TSR, thus they 

did not require any hyperparameter fine-tuning. Nevertheless, an additional 

pre-processing was added to the input images for improving their 

performance and the final voting system to ensemble both outputs. 

Table 3-3 shows the classification results of the pure and ensemble models 

for the four different datasets used in this chapter. In overall conclusion, it 

can be observed that the ensemble model performs in all cases better than 

the pure models. Regarding the datasets, the best result is obtained with 

GTSDB achieving a 98.5% classification accuracy followed by GTSRB and 

ETSDB which achieve also accuracies higher than 92.4%. The worst 

performance is for Ceit-TSR where the classification accuracy drops to 71.3%. 

This is probably due to the complex conditions presented in this dataset. 

Next, Figure 3-11 shows some examples where the classifier has failed in 

different conditions. The left side shows the complete scene and on the right 

side the cropped problematic detection. These complicated conditions are 

listed below: 

 The classifier (and detector) can recognise traffic signs that the 

authors did not label since they were not able to differentiate them. 

See Figure 3-11 (a). 

 The low resolution of the image gives confusion to some of the 

symbols although the overall category of the sign is detected 

correctly. See Figure 3-11 (b). 

 The pre-processing harmed the image in some specific scenarios and 

the classifier receives an input image that is not clear. See Figure 3-11 

(c). 

 The model detects objects with similar characteristics to traffic signs 

but which are not traffic signs. See Figure 3-11 (d). 
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Pred.: Closed all directions 

 

 

Pred.: Speed limit 80 

(a) Traffic signs not labelled 

 

 

Pred.: Attention bottleneck 

right 
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Pred.: No overtaking trucks 

(b) Low-resolution traffic sign 

 

 

Pred.: No entry trucks 

 

 

Pred.: Speed limit 60 

(c) Pre-processing harmed the input image 
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Pred.: Closed all directions 

 

 

Pred.: Standing and parking 

prohibited 

 

 

Pred.: Mandatory pass right. 

(d) Detected other objects 

Figure 3-11. Visual analysis of complex situations in Ceit-TSR 

dataset where the classifier fails. The left side shows the complete 

scene and the right side shows the cropped detection before and 

after pre-processing. 
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In addition, the classification results were analysed through the confusion 

matrix of each test. These matrixes can be seen in Appendix C. After studying 

them it is concluded that there is no specific pattern for the failures. In 

general, the bad classifications confuse the symbol but the overall category 

(warning, prohibition, regulatory etc.) is generally correct, this is especially 

noticeable for speed limit signs (see Figure A-3).  
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3.4. Discussion 

Vertical traffic signal recognition technology has come a long way in recent 

years and is already on the market today. However, in order to achieve a 

future of autonomous driving, it is imperative to further improve the 

robustness of this technology so that it can function in all circumstances and 

expand the number of recognised signals. This chapter has presented the 

TSR system developed to be embedded in a maintenance vehicle that can 

continuously monitor the signalling to create an asset inventory. This system 

will allow to study the status of the signals and manage the necessary 

maintenance tasks. 

Nevertheless, in order to improve the robustness of these systems, many new 

images are needed to cover all types of scenarios. Therefore, in this thesis, a 

small dataset containing 264 annotated images has been generated to detect 

and classify up to 49 different signals. This dataset provides new images 

from another country that was not covered by the current datasets and 

presents complicated scenarios with low-resolution images, dirt on the glass 

and different weather conditions. The recognition was addressed in two 

stages, one model for signal detection and one for signal classification. These 

algorithms have been tested on some of the best-known public datasets and 

have produced results suitable for the application.  

It is worth mentioning that this system is already integrated on an onboard 

barebone industrial mini PC and is being validated on-site (Linux i7-6600U 

CPU & 8 GB RAM). Currently, it is working as an assistant system for the 

road management authorities. However, this solution could also help to 

update in-vehicle maps and traffic signage or assist with the dynamic speed 

limit system. 
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The final development presented in this chapter has been published in: 

Iparraguirre, O., Iturbe-Olleta, N., Brazalez, A., Borro, D., “Road marking 

damage detection based on deep learning for infrastructure evaluation in emerging 

autonomous driving”. IEEE Transactions on Intelligent Transportation Systems 

July 2022. doi: 10.1109/TITS.2022.3192916. 
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4.1. State of the art 

Increasing traffic, harsh weather conditions, ageing, poor construction 

quality and lack of proper maintenance cause the road infrastructure to 

deteriorate. This deterioration in turn leads to a loss of driving quality, 

passenger comfort and road safety. In addition, poor road infrastructure, 

and especially poor signage, could lead to the malfunctioning of 

autonomous vehicles that would fail to detect the environment. Therefore, 

maintaining the roadway infrastructure in an optimal state is of vital 

importance. 

Currently, these tasks of observing and detecting infrastructure failures in 

order to make maintenance decisions are entirely manual, which is tedious, 

time-consuming and costly work. Therefore, in recent years, more and more 

research is prioritising safety and the reduction of inspection costs to 

improve the efficiency of infrastructure maintenance by developing 

automatic road condition monitoring systems to drive a new type of 

intelligent maintenance of road infrastructure. The emerging cost-effective 

Road Condition Monitoring (RCM) systems allow to rationalize periodic 

inspections and thus minimize the costs associated with failing pavement 

structures and warrant long-standing structural integrity and safety levels. 

4.1.1. Data adquisiton systems 

RCM systems rely on data acquisition systems, which are a combination of 

non-intrusive sensors and their platforms for the collection of 1D data, 2D 

visual data or 3D depth data (see Figure 4-1). The convenient deployment of 

these sensors can be done in different data acquisition platforms: Unmanned 

Aerial Vehicles (UAVs), smartphones and ground vehicles or robots.  

Low-cost sensors such as accelerometers, gyroscopes, magnetometers and 

GPS are employed to measure one-dimensional parameters such as motion, 

rotation, velocity, orientation and location for vibration-based RCM. This 

kind of sensor cannot be used for real-time applications and a drawback is 

detection is limited only along the wheel path. 

The most commonly used sensors are the ones acquiring 2D imaging which 

allows studying multiscale low-level and high-level feature extractions. 

These sensors are also economical and they can be used for real-time 
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applications depending on the processor’s capability. However, as a 

drawback, they are sensitive to illuminance levels.  

The depth consideration (3D) of these bidimensional images can be acquired 

by using thermal imaging sensors, LiDAR, laser sensors or radars. Those 

sensors are not sensitive to light effects and facilitate the examination of 

intrinsic characteristics, however, these systems increase the cost 

significantly.  

 

Figure 4-1. Sensors and data acquisition platforms schema for 

Road Condition Monitoring (RCM). Image extracted from [113] 

4.1.2. Road condition monitoring 

4.1.2.1. Vibration-based RCM 

Inertial sensors such as gyroscopes or accelerometers, including those 

embedded in smartphones, are used to measure accelerations and estimate 

the IRI of the road in many scientific works [114,115]. The most novel 
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attempts, consider the dynamic characteristics of the vehicle (ie. suspension) 

to improve the measurement accuracy [116] or reconstruct the pavement 

profile [117]. This road condition measurement method is memory friendly 

and suitable for real-time detection, but they are vulnerable to errors due to 

noise or other road obstacles and the monitored area is limited.  

4.1.2.2. Vision-based RCM 

On the other hand, vision-based object detection, classification and 

segmentation have largely contributed to road distress detection, monitoring 

and analysis since these systems are economical solutions that are capable of 

monitoring the entire area covered by an image.  

Machine Learning techniques 

Some studies explore ML methods in pavement engineering to detect, 

classify and analyse anomalies. Generally, the algorithms used are SVMs, 

ANNs, RF or Canny edge detection combined with Otsu Thresholding. [118–

120].  

Deep Learning techniques 

However, DL methods have become the most extensively used 

computational approach in the field of civil engineering and ITS. In 

comparison with the conventional feature extraction techniques, the DL-

based techniques learn multi-level image features in detail, which are more 

descriptive than the handcrafted ones. Thus the DL models are better than 

ML computer vision approaches in terms of performance [121]. Overall, all 

these DL models are CNN-based models and they cover three different 

pattern recognition tasks: object detection, classification and segmentation 

[113]. Classification identifies the category of the defect, while object 

detection apart from classifying also locates where the object is at a bounding 

box and finally segmentation predicts the categories of each pixel and 

distinguishes the object instance.  

Most of the work done on the classification and segmentation of road defects 

focuses exclusively on potholes and cracks. Some specific neural network 

architectures have even been proposed, such as CrackGAN or CrackU-net. 

In the field of damage detection, a more extensive study has been carried out 

with a greater variety of defects to be detected: potholes, joints, manholes, 

longitudinal lateral and alligator cracks, patches, fatigue etc. In these 
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researches, some images were used but in most of the cases, they were 

proprietary. The large-scale Road Damage Dataset (RDD) published by the 

University of Tokyo was the breakthrough that provides a platform to the 

scientific community for the comparison and evaluation of state-of-the-art 

DL models. This dataset proposed eight different damage types (see Table 

4-1). and [122] and two different Road Damage Detection Challenges were 

organised in 2018 and 2020. In this last challenge, they addressed a multiclass 

detector trained just four out of the eight defined defects (potholes, 

longitudinal cracks, alligator cracks and lateral cracks) and the best team 

reported an F1 score of 0.6748. 

Table 4-1. Road damage types and definitions proposed by 

Maeda et al. [122]  

 Damage type Detail Class name 
 

Crack 

Linear  

Crack 

Longitudinal 
Wheel-marked part D00 

 Construction join part D01 
 

Lateral 
Equal interval D10 

 Construction join part D11 
 Alligator Crack Partial pavement, overall pavement D20 
 

Other damage 

Pothole D40 

 Cross walk blur D43 

 While line blur D44 

Thesis use case: Road marking damage 

The novelty of this RDD2020 dataset is that it introduces annotations of new 

defects such as crosswalk blur or white line blur that very few works have 

addressed to date. 

Vokhidov proposed a CNN-based method to recognize arrow-road 

markings in different light and damage conditions [123]. Kawano applied 

the YOLO model to detect road markings blur in colour and white lines and 

marks as well as in crosswalks [124]. Xu et al. proposed a hybrid feature 

detector and threshold-based method for line-making identification, 

classification and worn percentage calculation at pixel level [125]. On the 

other hand, Wei et al. built a road marking inspection system based on 

semantic segmentation to estimate the damage ratio by comparing the 

marking’s damage part vs. the marking region [126]. However, one of the 

most outstanding works in this field is the one done by Maeda et al., authors 

of RDD datasets, who proposed a multi-class classifier for eight different 
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defects including white line and crosswalk blur [122]. This study tries several 

CNN architectures and obtained the best performance with SDD Inception 

V2 and SDD Mobilenet achieving an accuracy of 0.83 for the specific white 

line blur damage (D44) (see Table 4-2). 

Table 4-2. Table extracted from [122]. Detection and classification 

results for each class using the SSD Inception and SSD 

MobineNet. SIR: SSD Inception V2 Recall, SIP: SSD Inception V2 

Precision, SIA: SSD Inception V2 Accucary, SMR: SSD Mobilenet 

Recall, SMP: SSD Mobilenet Precision, SMA: SSD Mobilenet 

Accuracy 

 

The authors of this thesis, therefore, see the detection of defects in road 

markings as a field in which progress can be made and the next sections will 

focus on this topic. 

Road Monitoring systems’ interoperability 

Concerning the interoperability of the RCM systems, D. Arya et al. presented 

extensive work to study the usability of a single-source model in other 

countries and proposed models capable of detecting and classifying road 

damages in more than one country [127]. They conclude that the 

performance of a model is significantly degraded when applied to road 

images from another country and recommend the mixed-modelling strategy. 

Moreover, these same authors have recently announced a new challenge 

oriented to address road damage detection in multiple countries. This 

challenge is named as “Crowdsensing-based Road Damage Detection 

Challenge” (CRDDC2022)[128] and allows participants to develop/propose 

their own datasets. This way, after a suitability analysis the selected datasets 

have been added officially to the RDD2022 dataset [129], a continuation of 

the original RDD2018 dataset. This new dataset contains 47,420 road images 

from six different countries: India Japan Czech Republic, Norway, the 

United States, and China. The images are annotated with four types of road 
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damage: Longitudinal Cracks (D00), Transverse Cracks (D10), Alligator 

Cracks (D20) and Potholes (D40).  
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4.2. Materials and Methods 

4.2.1. Existing datasets 

Nowadays, a few public datasets are available, for road damage detection. 

The lack of standardisation in the classification of road defects and in the 

systems for acquiring them is one of the major problems for the development 

of novel algorithms in this area. 

Currently, there are several open-source datasets, the oldest one was 

generated in 2015, which indicates how recent research in this field is. 

Most of the studies tested their methods on their own datasets [130–132]. 

After a detailed review, eight meaningful open-source datasets [133–141] 

were found and summarized in Table 4-3. As it is observed the most 

encountered defect type are cracks of different topologies followed by 

potholes. However, these categories do not have always the same 

characteristics since there is no standard, thus they are handcrafted. For the 

rest of the categories, there is a huge imbalance as is the case of the road 

marking blurring. In addition, most of these datasets were recorded with a 

specific data acquisition hardware which difficult a lot the comparison with 

new labelled images.  

Therefore this thesis aims to follow in the footsteps of the Japanese RDD2018-

2019 dataset that includes 8 different defects [141] and continues in the 

RDD2020 dataset [140] and RDD2022 dataset [129] with newly collected data 

from India and the Czech Republic as well as Norway, the United States and 

China respectively. These last two datasets contain only 4 specific damage 

types focused on cracks and potholes. This family of datasets are currently 

the ones that include most samples and its acquisition method seems to be 

the most easily replicable and thus it is selected to be the reference dataset in 

this thesis. Those opted for using the camera mounted on the front part of 

the vehicle with a wide view angle that records the road and other elements 

of the infrastructure. . 
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Table 4-3. Existing publicly available datasets for road defects 

monitoring.  
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4.2.2. Used datasets 

Following the analysis of the state of the art, this chapter will be focused on 

monitoring the while line blur defect. For this aim, the public reference 

dataset RDD2019 will be used so that it is comparable to the latest state-of-

the-art work that uses the already defined category D44. In addition, a 

proprietary dataset is generated with Spanish images to study the 

interoperability and generalization capability of the developed models. 

4.2.2.1. Road Damage Dataset 2019 (D44)  

Road Damage Dataset 2019 (RDD2019) is a continuation of RDD2018 created 

by the researchers of the University of Tokyo Maeda et al. It contains 13,135 

images and 30,989 annotations for nine different damage categories, the ones 

listed in Table 4-1 and the category D50 which corresponds to utility hole 

(see Figure 4-2). These annotations are in Pascal VOC format. 

 

Figure 4-2. Sample of Road Damage Dataset 2019 (RDD2019) 

from (a) to (i) the nine different defects are represented. 

(i) D50

D50
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Since this work is exclusively focused on the blurred line defect the RDD2019 

dataset [140] was truncated to use only the images containing D44 damage 

type. Those are 3,290 images and 4,104 labels collected in Japan with a 

resolution of 600×600.  

4.2.2.2. Our dataset: Ceit Road Damage Dataset (CRDD) 

On the other hand, new images were collected for this study on Spanish 

roads using an onboard RGB fish-eye camera. These images were recorded 

between February 2020 and September 2021 in the territory of Bizkaia, 

Basque Country (Spain), saving some months in which the maintenance 

vehicle was not operational. Most of them show highway scenes. Their 

resolution is 1280×720 and was captured at an average speed between 80 and 

120 km/h. This dataset provides also new complex situations, there are 

daylight and night images considering a wide variety of light and weather 

conditions. In addition, these images have the added difficulty that the 

camera is installed on the roof of the vehicle and therefore, as there is no 

windscreen, droplets or other artefacts may appear (see Figure 4-3).  

 

Figure 4-3. Examples of Ceit Road Damage dataset in different 

light and weather conditions. Top right sunny with shadows, 

bottom right rain, top left sunrise and bottom left cloudy. 
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Firstly, a preliminary cleaning was applied, where invalid images were 

discarded, either because the vehicle is on the breakdown lane, because the 

eyepiece was excessively dirty or because they were overexposed. Next, the 

remaining 6101 images were manually labelled using the LabelImg tool [142] 

and saved in PASCAL VOC format. After all, the set of images proposed in 

this study has 971 images and 1,262 labels of defect D44.  

It is necessary to clarify that as a result of different experiments carried out 

for this study, it was decided to select a subset of the Spanish image set by 

discarding some of the more complex images, mainly those containing night 

scenes. Additionally, in order to maintain the resolution of the input images 

for the neural networks and not distort the defect area, a square crop of 

720×720 was also applied taking into account that in most of the samples the 

road defects are located in the central part of the image (see Figure 4-4). After 

these changes, the subset used for this work has 879 images and 1,132 labels 

as it is shown in Table 4-4. 

Table 4-4. Distribution of used datasets: RDD2019 for D44 defect, 

Ceit Damage Dataset and its simplified subset. 

Dataset 
Country Number 

of images 
Labels Resolution Night scenes 

RDD2019 (D44) Japan 3290 4104 600×600 - 

CRDD Spain 971 1262 1280×720 ✓ 

CRDD simplified Spain 879 1132 720×720 - 

 

It should be stressed that after the tests carried out throughout this work, 

this arrangement to maintain the resolution of the images, as well as a good 

selection of the transformations applied in the dataset augmentation phase, 

is vital for the good performance of the models. 
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(a) Without crop correction (b) With crop correction 

Figure 4-4. Applied crop correction for keeping the resolution of 

the input image in Ceit Road Damage dataset. 

Lastly, it is worth mentioning that this study will also sum up both datasets 

and create a new mixed one to evaluate the influence of multiple-source 

models. 

4.2.3. Developments 

First, the problem was tackled using classical computer vision techniques. 

However, the results were not good and it was switched to an end-to-end 

deep learning approach.  

The hardware used in these developments is a Windows 10 PC with an Intel 

Core i7 processor, NVIDIA GeForce RTX 3080 10 GB GPU and a total RAM 

of 32 GB. The software used for the classical computer vision approach was 

Matlab 2020a (Image Processing Toolbox V11.1 & Computer Vision Toolbox 

v9.2) and Python 3.7.9. Whereas for the deep learning approach Python 

3.8.13, Tensorflow v2.8.0 together with the Tensorflow 2 Object Detection 

API were employed. 

4.2.3.1. Classical computer vision-based 

This is a hybrid algorithm which uses first a pre-trained CNN model for road 

lanes detection and applies classical machine vision techniques for paint 
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condition assessment. Figure 4-5, shows the defined steps to detect and 

evaluate road lane conditions. 

 

Figure 4-5. Flow chart of the classical computer vision-based 

approach for road lanes quality assessment. 

Step 1: Detection of lanes in the scene. For this purpose, a pre-trained CNN-

based model is used called PINet_new, which is based on PINet model [143] 

and has been optimized. This network was trained with the CULane dataset 

which includes different urban roads, rural roads, and highways with 

different light and weather conditions including night images or crowded 

roads. The output of the CNN gives segmentation of the road lanes given by 

a dotted green line (see Figure 4-6). 

 
 

Figure 4-6. Machine learning-based lane condition assessment. 

Step 1, lane detection. 
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Step 2: Lane mask generation. This step applies classical vision techniques 

such as morphological operations to adapt the output of the CNN model and 

obtain a mask suitable for the study of lane quality (see Figure 4-7). 

  

Figure 4-7. Machine learning-based lane condition assessment. 

Step 2, mask generation. 

Step 3: Day/night image classification. The classifier consists of an HSV 

colour space analysis of the top half of the images. Several experiments have 

shown that the V value can differentiate between these two cases, with night 

scenes being those with an average V value of less than 100. This step is 

necessary to separate the night and day images since each scene contains 

different characteristics. The night images are pre-processed to improve the 

light conditions so that the subsequent stage of the algorithm works correctly 

for both cases (pre-processed day/night) (see Figure 4-8). 

 

Figure 4-8. Machine learning-based lane condition assessment. 

Step 3, day/night scene classifier. 
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Step 4: Analysis of the mask’s features and detection of deteriorated areas. 

In this last step, the condition of the paint of the detected lanes is classified 

using thresholding techniques. For this aim, the image is segmented into 3 

levels using Otsu’s method to next evaluate each area independently. In this 

analysis, the pixels that meet the conditions to be categorized as "bad" are 

counted. However, since the segmentation always takes part of the asphalt 

as well as paint, different pixel weights are set depending on whether the 

pixels are from inside or outside of the segmented area. Finally, each 

detected lane is classified as OK/NOK according to the proportion of pixels 

defined as "bad" (see Figure 4-9). 

   

Figure 4-9. Machine learning-based lane condition assessment. 

Step 4, analysis of the mask's features. 

Evaluation parameters 

The results of this algorithm will depend on the good performance of the 

first block, the detection of lines using the PINet model. No metric has been 

used to evaluate the segments detected in this first step, the analysis of the 

results is explained in detail in section 4.3.1. 

4.2.3.2. Deep Learning-based 

Data augmentation 

Since the Ceit-TSR dataset did not contain as many images with defects as 

expected, and given that the benefits of enhancing this type of image have 

been demonstrated [144] [145], it was decided to apply this pre-processing 

to generate “synthetically” novel training data from both datasets. Given 

that our dataset did not contain as many images with defects as expected, 

and given that the benefits of enhancing this type of image have been 

demonstrated [133,144], it was decided to apply some pre-processing to 

generate synthetically novel training data from both datasets. 
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For this aim, the imgaug library [146] was used, which supports a wide range 

of augmentation techniques. Six types of image transformation methods 

were combined paying special attention to ensure that the images will not 

break by changing them too much. The operations used are listed below and 

shown in Figure 4-10: horizontal flip, linear contrast, multiply, additive 

brightness, additive hue and saturation and additive Gaussian noise. The 

augmenter has been configured in such a way that applies a combination of 

none to six transformations on the original image random in number and 

type of operation. 

 

Figure 4-10. Example of the applied six different transformations 

without combination for the data augmentation. 

The objective of this pre-processing is to reach in both training datasets the 

5,000 labelled images recommended by [141,147] for each class for an image 

processing-based classification task to provide satisfactorily accurate results. 

Thus, the times that an original image has been augmented are different for 

each dataset. Table 4-5 shows the composition of the new augmented 

datasets. It is worth noting that before doing the augmentation all datasets 

were split into 80% training and 20% for test and validation partitions (10%-

10%). 

(a) Multiply (b) Add. Gaussian noise (c) Horizontal flip

(d) Linear contrast (e) Brightness (f) Saturation & Hue
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Table 4-5. Resulting used datasets' partition after data 

augmentation process. 

 RDD2019 (D44) CRDD Mixed 

 Images Labels Images Labels Images Labels 

 Original Dataset 

Train (80%) 2632 3289 703 903 3335 4213 

Test (10%) 329 413 88 112 417 515 

Valid (10%) 329 402 88 117 417 508 

 Augmented Dataset 

Train 5264 6578 4911 6311 6668 8824 

Model setup 

Given the recent advancements in image content analysis using CNNs, there 

are several proposed methods for generic object detectors based on deep 

learning architectures that demonstrate to have a very good performance. 

Therefore, in this study transfer learning is applied to train and optimize 

different algorithms to fit our application.  

The experiments have been carried out using the open-source Tensorflow 

environment and its TF2 Object Detection API. This platform offers a 

collection of detection models pre-trained on the COCO 2017 dataset to 

facilitate initializing models when training on novel datasets. For this study, 

the comparative study made by Huang et al. [148] was used as a guideline to 

meet the balance between speed and accuracy of the convolutional object 

detector use. Finally, the base model Faster R-CNN with Inception Resnet 

V2 feature extractor was considered. This two-stage detector attained the 

best possible accuracy achieving the state-of-the-art single model 

performance at that moment.  

However, in the last years, the TF2 Model Zoo has been updated with new 

single-stage detectors which seems to improve the performance of the above 

ones. Thus, it is also selected for this study the Single Shot Detector (SSD) 

with Mobilenet V2 which is one of the most used models in the literature and 

the EfficientDet D0 as one of the most recent architectures. The overall mAP 

numbers for these models are shown in Table 4-6. 
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Table 4-6. Summary of the properties of the studied different 

object detection models. 

Model Name 
Speed 

(ms) 

COCO Mean 

Average Precision 

(mAP) 

Outputs 

Faster R-CNN Inception Resnet V2 640×640 203 37.7 Boxes 

SSD Mobilenet FPNLite 640×640 39 28.2 Boxes 

EfficientDet V1 D0 512×512 39 33.6 Boxes 

 

The major difference between the selected architectures lies in the age of the 

architectures and the optimisation improvements that have been applied in 

subsequent iterations. Two-stage detectors such as Faster R-CNN [149] 

achieve very good accuracy levels, however, they are usually the slowest. In 

the first stage, the network proposes regions where the object can be found 

and in the second step it predicts the class of the object. However, single-step 

detectors (such as SSD [150]) get rid of the first step and explore the 

network's ability to predict the presence and class of the object. Thus, one-

stage detectors have gained in popularity because of their potential to be 

faster and simpler but they tend to lag behind two-stage detectors in 

accuracy. However, later on, a new family of object detectors was born called 

EfficientDet [151], which based on the single-stage detectors, goes deeper 

into the network architecture design to improve efficiency and find the right 

balance. They propose a weighted bi-directional feature pyramid network 

(BiFPN), which allows easy and fast multiscale feature fusion; as well as a 

compound scaling method that uniformly scales the resolution, depth, and 

width for all backbone, feature network, and box/class prediction networks 

at the same time 

Object Detection Model 

This study carries out the training of different models based on some of the 

state-of-the-art architectures. These training can be differentiated into two: 

 Pure models: those who use images only collected in one country. 

 Mixed models: those who merge the database of different sources 

and countries to seek greater generalisation of the models. 

These models will be tested on data collected from the target country as 

well as on images from different countries. 
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Evaluation parameters 

For the evaluation of the model’s performance, the PASCAL VOC 2012 object 

detection competition evaluation metric [152] was employed. Thus, a correct 

prediction is the one in which the corresponding predicted bounding box 

has over 50% Intersection over Union (IoU) with the ground truth bounding 

box.  

With this aim, a code based on the work developed by Padilla R. et al. was 

used [153]. The current metrics calculated are the Precision-Recall curve and 

Average Precision. An object detector of a particular class is considered good 

if its precision stays high as recall increases, this is, when varying the 

confidence threshold, the precision and recall will still be high. Another way 

to compare the performance of object detectors is to calculate the area under 

the curve (AUC) of the Precision-Recall curve. This value is the precision 

averaged across all recall values between 0 and 1. 

In addition, the F1-score metric is also calculated. The F1-score measures 

accuracy using the statistics of precision and recall.  

Finally, the inference time of the trained models has also been measured for 

comparative reasons. 
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4.3. Results 

4.3.1. Classical computer vision approach 

The success of this algorithm depends on the good performance of the initial 

phase, this is the detection of road lanes. If no lanes are detected, the 

following analysis will not be possible.  

Table 4-7. Results of the machine learning approach for road 

paint assessment in RDD2019 (D44) dataset and CRDD dataset. 

  RDD2019 (D44) dataset CRDD dataset 

Total images 329 88 

Overall result 

no-lane 181 (55%) 33 (38%) 

NOK 18 (12%) 23 (49%) 

OK 130 32 

Bounding box result 

TP  4 (1.2%) 3(3.3%) 

TN 0 0 

FP 43 36 

FN 290 53 

Processing time (s) 

Lane Detection 136.72 36.73 

Lane condition analysis 17.08 6.04 

Total proc. time / frame 0.47 0.49 

 

As is shown in Table 4-7 about 55% and 38% of the images in datasets 

RDD2019 (D44) and CRDD were discarded in this first phase because PINet 

was not able to detect any lane. This may be because the lanes are too 

degraded to be detected or because of the camera's perspective with which 

the algorithm has not been trained.  

In the next phase, the detection of lanes in poor condition has been assessed 

in two ways. On the one hand, the result of the global scene was analysed, 

this is, whether there is an alert in the image that the paint needs to be 

repaired (taking into account that all the images in the dataset should contain 

at least one). And on the other hand, a more exhaustive evaluation in which 

the bounding boxes of the ground truth have been contrasted with those 

calculated by the algorithm. 
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In the first analysis, 12% and 39% of the scenes contain a warning for 

RDD2019 (D44) and CRDD datasets respectively. And when the analysis 

focuses on the bounding boxes the result worsens. Just 4 (1.2%) and 3 (3.3%) 

bounding boxes for RDD2019 (D44) and CRDD datasets respectively were 

detected correctly. This may be due to the difficulty of modelling pixels in 

need of repair for any kind of environmental conditions. There are also 

situations where a crack or joint has been detected as a lane. In addition, the 

size of the bounding boxes calculated by the ML algorithm is usually smaller 

than those of the ground truth so the IoU does not meet sufficient conditions 

to consider the result valid (see Figure 4-11).  

  
(a) Small detected bounding boxes (b) Pedestrian pavement detected 

  
(c) Good result of RDD2019 (D44) dataset (d) Good result of CRDD dataset 

Figure 4-11. Visual results of the ML-based road paint damage 

detection 
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Due to the bad behaviour of this algorithm, this thesis proposes another way 

of addressing the problem using deep learning techniques that are explained 

in the following section. 

4.3.2. Deep learning approach 

4.3.2.1. Object detection models 

As it was advanced in the previous section this work studied two different 

neural network model architectures presented in Table 4-6.  

Regarding the fine-tuning of these networks, several hyperparameters were 

explored to optimize the pre-trained model that will be used. Finally, the 

following configuration was selected and defined on the different pipelines. 

Since the images available of the different datasets were originally in 

different sizes all input images were re-scaled to 512×512 size. All models 

were trained for 25,000 steps. The SGD optimizer was used with a 

momentum of 0.9 and the L2 regularized or weight decay was fixed to 3.9E-

05. However, both learning rate and batch size were tuned for each model 

and dataset as shown in Table 4-8. 

It is worth noting that architectures like Faster RCNN Tensorflow Object 

Detection API encounters memory consumption problems and for the 

resources of our machine, the batch size should be reduced considerably to 

avoid OOM (Out Of Memory) errors, however, for SSD-like architectures, a 

little increase on this number was permitted. 

Table 4-8. Summary of the hyperparameters used on the 

different object detection models trained in this section. 

Network architecture Model version Hyperparameters 

Faster RCNN Inception Resnet V2 V1 input size 512×512 

batch size 2 

num steps 25000 

optimizer SGD 

momentum 0.9 

regularizer L2 3.90E-05 

learning rate  

(cosine decay) 

Japan 0.07 

Spain 0.0003 

Mixed 0.07 
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SSD Mobilenet V2 V1 input size 512×512 

batch size 18 

num steps 25000 

optimizer SGD 

momentum 0.9 

regularizer L2 3.90E-05 

learning rate  

(cosine decay) 

Japan 0.07 

Spain 0.0003 

Mixed 0.07 

EfficientDet V1 D0 V1 input size 512×512 

batch size 8 

num steps 25000 

optimizer SGD 

momentum 0.9 

regularizer L2 3.90E-05 

learning rate  

(cosine decay) 

Japan 0.07 

Spain 0.0003 

Mixed 0.07 

EfficientDet V1 D0 V5 input size 512×512 

batch size 8 

num steps 25000 

optimizer SGD 

momentum 0.9 

regularizer L2 3.90E-05 

learning rate  

(exponential decay) 

Japan 0.07 

Spain 0.0003 

Mixed 0.07 

4.3.2.2. Performance of the models for different countries 

Table 4-9 presents the F1-score and mAP values obtained for the detection of 

D44 damage type for all the experiments conducted in this work. A total of 

eight pure models and four mixed models were trained. Marked in bold, the 

best results obtained for each country and model type based on the F1-score 

value are shown.  

In general, it is observed that models work better for the Japanese dataset. 

Comparing the best two pure models it is shown that the best Japanese pure 

model achieves 75% of mAP while the best Spanish pure model’s mAP is less 

than 30%, both tested with their target country. This may be because the 

Spanish images are more complex and although they were augmented, there 

were originally fewer samples.  
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Nevertheless, it should be noted that training with the mixed dataset clearly 

improves the model performance for the two countries, although the 

difference for the Spanish images is much more noticeable (an improvement 

from 27.73% to 83.79%). It is therefore clear that building a dataset containing 

images from different sources greatly enriches the dataset and helps the 

generalisation of the trained models. 

Table 4-9. F1-score and mAP (mean average precision) for the 

white line blur detection and each used dataset. 

Model name test set F1 mAP inference time (ms) 

frcnn_inception-resnetv2_japan 
Japan 0.743 65.61% 191.582 

Spain 0.197 6.50% 189.726 

frcnn_inception-resnetv2_spain 
Japan 0.270 17.75% 193.120 

Spain 0.390 25.05% 190.478 

frcnn_inception-resnetv2_mixed 
Japan 0.860 86.85% 193.519 

Spain 0.600 58.27% 189.524 

ssd_mobilenetv2_japan 
Japan 0.755 71.07% 25.171 

Spain 0.220 8.00% 21.217 

ssd_mobilenetv2_spain 
Japan 0.120 3.20% 25.102 

Spain 0.335 18.62% 20.897 

ssd_mobilenetv2_mixed 
Japan 0.920 92.48% 24.690 

Spain 0.848 77.94% 21.565 

efficientdetv1_d0_japan (V1) 
Japan 0.830 75.00% 47.049 

Spain 0.194 6.91% 44.464 

efficientdetv1_d0_spain (V1) 
Japan 0.235 11.90% 49.159 

Spain 0.422 27.73% 44.281 

efficientdetv1_d0_mixed (V1) 
Japan 0.790 92.34% 45.400 

Spain 0.934 83.79% 43.901 

efficientdetv1_d0_japan (V5) 
Japan 0.785 76.07% 47.816 

Spain 0.238 8.39% 43.542 

efficientdetv1_d0_spain (V5) 
Japan 0.233 8.46% 47.267 

Spain 0.418 30.69% 43.878 

efficientdetv1_d0_mixed (V5) 
Japan 0.929 91.74% 47.361 

Spain 0.828 78.97% 44.363 

 

It is worth mentioning that the F1-score results obtained in this paper with 

the mixed models exceed the results reported in the state of the art for both 

Spanish and Japanese images. 



 

 

Chapter 4 Road Damage Monitoring: road lines 

104 

 

4.3.2.3. Empirical analysis 

Figure 4-12 shows visually the F1 scores in the previous table. 

It can be seen that the tendency of the results is very similar for each model. 

This is, the mixed model obtains better results than the pure one and models 

trained with Japan dataset perform better than models trained with the 

Spanish dataset. In addition, for pure models, the performance with target 

images is much better than the performance with images from a different 

country.  

 

Figure 4-12. F1-score summary results for the models and 

datasets considered in this chapter 

Regarding the comparison between the different models, it can be noted that 

the ones based on EfficientDet perform somewhat better than the other 

architectures. Besides that, concerning inference time there is a clear 

difference between single-stage detectors and two-stage detectors, being the 

last ones the slowest. However, if the system were time-critical, it should also 

be noted that within the single-stage models, the ones based on SSD 

Mobilenetv2 could predict in half the time of those based on EfficientDetV1 

D0 (20 milliseconds/image faster).  
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4.3.2.4. Visual analysis 

The results presented in the last section are promising. However, in this 

section, the results of the predictions will be analysed visually in order to 

better understand the differences between the two datasets and the failures 

of the detectors. Note that in the next images the red box corresponds to the 

ground truth label with the green box illustrating the prediction done by the 

detector. 

For the visual analysis, some images of the inference of four models marked 

in bold in Table 4-9 were extracted.  

To predict the Japanese dataset’s defects: 

 Pure model: efficientdetv1_d0_japan (V1) 

 Mixed model: efficientdetv1_d0_mixed (V5) 

To predict the Spanish dataset’s defects: 

 Pure model: efficientdetv1_d0_spain (V1) 

 Mixed model: efficientdetv1_d0_mixed (V1) 

Generally, mixed models present higher confidence score detections than 

pure models. In addition, these models detect more defects and their 

bounding boxes fit better the area of interest (see Figure 4-13).  

  
(a) Mixel model (b) Pure model 

Figure 4-13. Comparison of the detection bounding boxes for a 

mixed and efficientdetv1_d0_spain (V1) pure model in CRDD 

dataset sample. 
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On the other hand, the comparison of the two databases shows that the 

images from Spain dataset (see Figure 4-14) present more complex situations 

than Japan dataset (see Figure 4-15). 

  
(a) Small label (b) Low contrast label 

  
(c) Too worn paint label (d) Wear too light label 

Figure 4-14. Difficult labels of CRDD dataset where the detector 

has missed the defect. 

Figure 4-14 shows some of the difficulties identified in CRDD datasets, such 

as: 

 smaller labels; 

 dirtiness of the glass used in the on-board system;  

 lower contrast of the images; 
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 a wider range of labelled paint wear. Samples with paint too worn to 

be detected or samples where the wear is too light to be detected; 

 the camera setup is not focused on the asphalt zone. Large focal 

length. 

  

Figure 4-15. Samples from the RDD2019 (D44) dataset. 

These factors plus the fact that this dataset was originally smaller may 

influence the performance of the detectors for these images to be somewhat 

lower than for the Japanese dataset. 
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4.4. Discussion 

Good quality of the road infrastructure is key for road safety but also of vital 

importance for the future’s autonomous driving. Potholes, cracks etc. affect 

driving comfort, safety and make our driving much less efficient. But poorly 

maintained road signals or markings difficult to interpret the road and the 

road rules that govern the coexistence of all road users and seriously 

jeopardise our safety whether the vehicle is autonomous or human-guided. 

This chapter has discussed road line monitoring as a key element for many 

of the ITS that is based on lane-keeping on the intelligent or autonomous 

vehicles 

However, road marking damage detection is a task that has hardly been 

addressed in the literature due to its complexity and the lack of sufficient 

images. Therefore, this thesis provides a set of 971 images labelled for this 

specific defect and considers high complexity scenarios to be used in the 

future. In addition, this dataset provides the scientific community with new 

images from other countries that was not covered by the current datasets. 

Several experiments were carried out for three different architectures, 

obtaining a promising performance of an F1-score value higher than 0.92, 

which exceeds the results reported in the state of the art (F1-score 0.743) by 

25%. 

It should be noted that for this task it is vital to have both quantity and 

quality of data. It is very important to have enough images that represent all 

possible scenarios (or countries) as well as the labelling task to select the data 

to be trained with criteria so that they do not confuse the neural network. It 

is also crucial the pre-process the images and do a good data augmentation 

that does not distort the original image (for this particular defect, 

maintaining the resolution of the image was indispensable).
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5.1. Context 

Until a few years ago, the vehicle was considered an individual element on 

the road network. It was governed solely by the sensors and technologies 

installed in it. And to this was added the perception of the user who was 

driving it, which was limited to the visual horizon of the road area in which 

it was located. However, vehicular communications have changed this 

paradigm, creating a much more cooperative and enriched environment. 

These communications allow the exchange of information in real-time 

between different elements and road users. In this way, the perception of the 

environment is enhanced as the vehicle can receive information about the 

manoeuvres of the users around it even before they are in its field of vision. 

In addition, it allows the vehicle to cooperate with the infrastructure (V2I) 

and other road users (V2V, V2P) and to anticipate situations further ahead 

on its route such as road works, accidents, fog banks, etc. Vehicular 

communications in road transport have involved new systems and services 

that help improve road safety and driving efficiency, moreover, they will be 

an essential part of autonomous driving. 

5.1.1. ITS value chain 

In the same way, vehicular communications have also evolved in the last 25 

years. Originally, the vehicle as an individual element was connected 

directly to the traffic control centre. However, in the meantime, other actors 

have appeared in between (see Figure 5-1).  

 Service Provider (SP): this actor came in due to the first digitalization 

step of road traffic information. The SP exchange the information in 

real-time between the traffic centre and the vehicle, an electronic 

format is needed to automate these services.  

 Content Aggregator (CA): more and more data sources emerged and 

thus SP needed a CA who combines traffic information with other 

kinds of relevant information for road users. Here, the need for 

standardization of the electronic processable data became obvious 

and need to be used by all the actors in the ITS value chain. 

 National Access Points (NAP): From this need to standardize 

information, the NAPs arise from the delegated acts on ITS. This 
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actor gathers several types of traffic information and provides traffic 

data according to European standards. These EU regulations aim to 

accelerate the development of interoperable services to end-users 

throughout Europe. 

 Service Access Point (SAP): this actor emerged in the domain of 

advanced traffic information and individual navigation services 

intending to manage the information provided to the road user and 

vehicle from different service providers efficiently and effectively. 

Therefore, the devices used by cars and travellers do not need a direct 

relationship with the service providers anymore. 

 Road Side Unit (RSU): this last actor came in to connect the vehicle 

with the traffic centre (and close the circle), this is direct digital 

communication between road operators and vehicles. The C-ITS 

technology enables this and RSUs are developed to support this. 

Technological innovations make that all actors in this ITS value chain can 

communicate with each other. However, consistency and reliability of 

information throughout the value chain need to be ensured. For this aim 

different standards arise for the different domains that are involved here. 

 Road operators domain: which involves from RSUs to the NAPs. 

They have developed an extensive standard called DATEX II. In 

DATEX II all relevant details of traffic information and management 

can be expressed. The focus of this standard is on providing an as 

complete information view of the road as feasible. 

 Content and service aggregators domain: which involves NAPs to 

SAPs. Here the leading standard is TPEG, which was developed to 

enable the consistent provision of traffic and traffic-related 

information to end-users across several media. 

 Service providers and OEMs: that involves the vehicle and its 

connections to the ITS value chain, the SAPs and RSUs. The main 

standards here are the C-ITS standards developed by ETSI. 
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Figure 5-1. ITS value chain representation. It contains all 

involved actors and domains with its leading standards. 

5.1.2. Data exchange via cooperative V2X communication 

In a cooperative road traffic scenario, cooperative V2X communication units 

– so-called ITS stations – are implemented in vehicles and traffic 

infrastructure, and exchange data with each other via the cooperative V2X 

short-range ad-hoc network.  

Nowadays, the vast majority of new vehicles are equipped with a navigation 

system and different sensing technologies. And every so often, onboard 

units in the vehicles broadcast data such as their position, speed and driving 

direction to their surroundings. Additionally, they send out event-triggered 

messages about special incidents, such as an emergency braking, a vehicle 

defect or a slippery road detected. As an example, the vehicles receiving such 

positioning information can calculate where the cars are going to be, predict 

whether a hazardous situation of a crash could occur and consequently warn 

Road Site 
Unit

Vehicle

Service Access 
Point

Service 
Provider

Content
Aggregator

National
Access
Point Traffic 

control centre

Road Operators
DATEX IIContent/Service 

Aggregators
TPEG

Service providers / OEMs
C-ITS



 

 

Section 5.1 Context 

113 

 

the driver to react in this situation (V2V). Similarly, an event detected by the 

vehicle such as a slippery road can be transmitted to the road site units of the 

infrastructure so that they can alert other vehicles that are about to pass 

through the same area (V2I). 

In addition to intelligent vehicles, the road infrastructure is also starting to 

incorporate more and more technology (speed sensors, acoustic sensors, IP 

CCTV cameras, smart traffic lights, condition/weather monitoring systems, 

digital signage, etc.) and thus, getting smarter. The I2V communication is 

also used when the so-called roadside units in the traffic infrastructure 

inform e.g. about signal phases of traffic lights, speed limits or road works. 

This way, for example, traffic lights can advise the driver about green or red 

lights and inform of an adequate speed to find it open, thus influencing the 

driving behaviour to be more efficient (see Figure 5-2). 

 

Figure 5-2. V2X communication ecosystem diagram plus the 

communication with the Traffic Control Centre. 
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Throughout the development of this thesis, V2I and I2V communications 

were worked on, this is, in the service provider and road operator domains. 

For this purpose, the C-ITS standard has been studied to transmit 

information obtained by the monitoring vehicle to the RSU or vice versa. On 

the other hand, the Datex II standard has also been analysed to communicate 

events of other sources from the traffic control centre to the RSU. 
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5.2. Message handling 
In the previous chapters, the monitoring of the road using artificial vision 

techniques has made it possible to detect fog banks, traffic signs and 

damaged road markings. These events can be of great use for cooperative 

and connected mobility and it is therefore important to know which 

standards allow this information to be transmitted in a harmonised way so 

that other road users (V2V) or road operators (V2I/I2V) can interpret it. 

5.2.1. C-ITS standard 

C-ITS is a standard managed by the ETSI TC ITS committee which defines 

specifications for Co-operative ITS, which offers enormous potential through 

vehicle-to-vehicle and vehicle-to-roadside communication. Applications 

include road safety, traffic control, fleet and freight management and 

location-based services, providing driver assistance and hazard warnings 

and supporting emergency services. These specifications are crucial for the 

commercial deployment of the technology 

TC ITS develops standards related to the overall communication 

architecture, management and security as well as the related access layer 

agnostic protocols: the physical layer, Network Layer, Transport Layer and 

Facility Layer. 

In this thesis and concerning the services in the Facility layer for the 

communication between infrastructure and traffic participants there are two 

C-ITS messages to highlight that may represent the type of events that would 

be generated in the previous chapters: 

 Decentralized Environmental Notification Message (DENM) was 

defined as a Basic Set of Applications (BSA) for Road Hazard 

Warning (RHW) application to alert road users of a detected event. It 

is composed of multiple use cases (see Appendix D). Its technical 

specification reference is ETSI EN 302 637-3. 

 Infrastructure to Vehicle Information message (IVIM) that supports 

mandatory and advisory road signage such as contextual speeds and 

road works warnings. IVIM either provides information on psychical 
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road signs such as static or variable road signs, virtual signs or road 

works. Its technical specification is ETSI TS 103 301. 

5.2.1.1. Weather Condition  

Bad weather conditions such as fog banks are contemplated in the DENM 

messages as reduced visibility warning events categorized as 

adverseWeatherCondition-Visibility (see Appendix D). 

The next DENM message shows an example of a fog bank event (cause code 

18 – subcause code 1) with a range of  1000 meters that affects all traffic 

directions in the A-8 road passing through the municipality of Eibar 

(43.195055, -2.437543). The event was created the 06/07/2022 8:41:45 a.m. and 

has a validity duration of 10 minutes (see Message 5-1). 

Message 5-1. DENM message example for a fog bank event. 

{ 
    "header": { 
        "protocolVersion": 1, 
        "messageID": 1, 
        "stationID": 3494000000 
    }, 
    "denm": { 
        "management": { 
            "actionID": { 
                "originatingStationID": 3494000000, 
                "sequenceNumber": 0 
            }, 
            "detectionTime": 1657089705, 
            "referenceTime": 1657089705, 
            "eventPosition": { 
                "latitude": 43195055, 
                "longitude": -2437543, 
                "positionConfidenceEllipse": { 
                    "semiMajorConfidence": 1, 
                    "semiMinorConfidence": 1, 
                    "semiMajorOrientation": 0 
                }, 
                "altitude": { 
                    "altitudeValue": 0, 
                    "altitudeConfidence": "alt-000-01" 
                } 
            }, 
            "relevanceDistance": "lessThan1000m", 
            "relevanceTrafficDirection": "allTrafficDirections", 
            "validityDuration": 600, 
            "stationType": 5 
        }, 
        "situation": { 
            "informationQuality": 0, 
            "eventType": { 
                "causeCode": 18, 
                "subCauseCode": 1 
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            } 
        } 
    } 
} 

5.2.1.2. Traffic Signs 

C-ITS standard allows representing the traffic sign information with IVIM 

messages. Usually, they are composed of two different containers, the 

General Ivi Container (GIV) which defines the ivitype and the road sign code, 

and the Geographic Location Container (GLC) where the location of the 

traffic sign is detailed.  

The Pictogram category code which defines the kind of traffic signal 

represented in the message is defined in ISO 14823:2017. These traffic signs 

are separated into three main category types (see Figure 5-3): 

Category code 

Service category code Pictogram category code 

Category  
number 

Sub category 
number 

Category number   

1: Traffic sign 

1: Danger 
warning 

1-9: Danger warning 

Serial number (1-99) 

2: Regulatory 

1-3: Priority 

4-6: Prohibition or restriction 

7-9: Mandatory 

3: Informative 

1-3: Advance direction 

4: Direction 

6: Lane guidance 

7-9: Road/place identification 

2: Public facilities 
1: Public 
facilities 

1-9: Public facilities and services 

3: Ambient/road 
condition 

1: Ambient 
condition 

1-9: Ambient conditions and nature 

2: Road 
condition 

1-9: Road condition and nature 

Figure 5-3. Table extracted from ISO 14823:2017(E) where 

general category codes are defined [154]. 

 Traffic sign: traffic signs are officially established pictograms in each 

country to control traffic using warning, regulatory or informative 

signs. 

 Public facilities: public facilities indicate the existence of certain 

public facilities and their service details (e.g. toilets, restaurants, 

hospitals, etc.). 
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 Ambient/road conditions: they are concerned with the ambient 

condition of the roadway or local conditions which may affect the 

flow of road traffic (such as bad weather and traffic congestion). The 

next message shows an example of a regulatoryMessages (1) ivi type 

which contains a 100 km/h speed limit event in the A-8 road reaching 

the Zarautz toll (43279035, -2.152400) (see Figure 5-4). It was created 

on at 06/07/2022 10:38:18 am and has a validity duration of 24 h (see 

Message 5-2). For this specific case the category code is constructed 

as follows (see Table 5-1): 

 

Figure 5-4. Representation of the traffic sign that is codified in 

the IVIM message example. 

Table 5-1. Breakdown of the codes defining the speed limit sign 

according to ISO 14823:2017 (E) [154]. 

Service category Pictogram category 

Full name Category 

number 

Sub category 

number 
Nature 

Serial 

number 

1: Traffic sign 2: Regulatory 5 57 
Maximum speed limited 

to the figure indicated 
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Message 5-2. IVIM message example for a speed limit sign. 

{ 
    "header":{ 
      "protocolVersion":1, 
      "messageID":1, 
      "stationID":0 
    }, 
    "ivi":{ 
      "mandatory":{ 
        "serviceProviderId":{ 
          "countryCode":"8500",4 
          "providerIdentifier":3495 
        }, 
        "iviIdentificationNumber":1, 
        "timeStamp":1657096698, 
        "validFrom":1657096698, 
        "validTo":1657183098, 
        "iviStatus":1 
      }, 
      "optional":[ 
        { 
          "giv":[ 
            { 
              "iviType":1, 
              "roadSignCodes":[ 
                { 
                  "code":{ 
                    "iso14823":{ 
                      "pictogramCode":{ 
                        "serviceCategoryCode":{ 
                          "trafficSignPictogram":"regulatory" 
                        }, 
                        "pictogramCategoryCode":{ 
                          "nature":5, 
                          "serialNumber":57 
                        } 
                      }, 
                      "attributes":[ 
                        { 
                          "spe":{ 
                            "spm":100, 
                            "unit":0 
                          } 
                        } 
                      ] 
                    } 
                  } 
                } 

                                                      

 

4 Country code follows the standard ISO 3166-1:2020 Codes for the representation of names 

of countries and their subdivisions — Part 1: Country code. The representation for Spain is ES 

that using ITA2 Baudot-Murray code is codified as 1000010100 in binary and 8500 in 

hexadecimal. 
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              ] 
            } 
          ] 
        }, 
        { 
          "glc":{ 
            "referencePosition":{ 
              "latitude":43279035, 
              "longitude":-2152400, 
              "positionConfidenceEllipse":{ 
                "semiMajorConfidence":1, 
                "semiMinorConfidence":1, 
                "semiMajorOrientation":0 
              }, 
              "altitude":{ 
                "altitudeValue":0, 
                "altitudeConfidence":"alt-000-01" 
              } 
            }, 
            "parts":[ 
              { 
                "zoneId":1 
              } 
            ] 
          } 
        } 
      ] 
    } 
  } 

It should be noted that such C-ITS messages do not make sense in the 

vehicle-RSU direction but could be transmitted in the other direction in the 

case of the In-Vehicle Signage (IVS) service. IVS provides information about 

existing, fixed and dynamic traffic signs to passing vehicles employing IVI 

messages. For the practical case where the maintenance vehicle equipped 

with a signal recognition system is being used to generate/update a signal 

inventory, no communication standard has been established. 

5.2.1.3. Road Damage 

There is no C-ITS message defined for the exchange of road marking damage 

event data. However, other road damages such as subsidence or burst pipe 

are contained in DENM messages for hazardousLocation-SurfaceCondition 

cause code (see Appendix D). 

The next DENM message example shows the case of a hazardous location 

event due to subsidence damage on the road surface (cause code 9 – subcause 

code 4) of less than 200m in the GI-3440 mountain road (43.330319, -

1.898631). The message was created on at 06/07/2022 13:19:44 a.m and the 
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validity duration of this event is 24 h. Just one lane or traffic direction is 

affected (see Message 5-3). 

Message 5-3. DENM message example for subsidence damage 

on the road surface. 

{ 
    "header":{ 
      "protocolVersion":1, 
      "messageID":1, 
      "stationID":3494000000 
    }, 
    "denm":{ 
      "management":{ 
        "actionID":{ 
          "originatingStationID":3494000000, 
          "sequenceNumber":0 
        }, 
        "detectionTime":1657106384, 
        "referenceTime":1657106384, 
        "eventPosition":{ 
          "latitude":43330319, 
          "longitude":-1898631, 
          "positionConfidenceEllipse":{ 
            "semiMajorConfidence":1, 
            "semiMinorConfidence":1, 
            "semiMajorOrientation":0 
          }, 
          "altitude":{ 
            "altitudeValue":0, 
            "altitudeConfidence":"alt-000-01" 
          } 
        }, 
        "relevanceDistance":"lessThan200m", 
        "relevanceTrafficDirection":"upstreamTraffic", 
        "validityDuration":3600, 
        "stationType":5 
      }, 
      "situation":{ 
        "informationQuality":0, 
        "eventType":{ 
          "causeCode":9, 
          "subCauseCode":4 
        } 
      } 
    } 
  } 

It should be noted that the subcause code field is an integer that supports a 

range of 0-255. Therefore, a new cause code (e.g. 10) could be defined to cover 

this specific case. 
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HazardousLocation-SurfaceConditionSubCauseCode ::= INTEGER { 
 unavailable(0), 
 rockfalls(1), 
 earthquakeDamage(2), 
 sewerCollapse(3), 
 subsidence(4), 
 snowDrifts(5), 
 stormDamage(6), 
 burstPipe(7), 
 volcanoEruption(8), 
 fallingIce(9), 
 roadMarkingDamage (10) 
    } (0..255) 

5.2.2. DATEX II standard 

DATEX II is the electronic language used in Europe for the exchange of 

traffic information and traffic data. The development of DATEX II was 

initiated in the early 90s because of the need to exchange information 

between traffic centres of motorway operators. Soon there was the need to 

open this information to service providers and DATEX I was too limited for 

this. Therefore, DATEX II was developed in the early 2000s. Employing 

DATEX II, traffic information and traffic management information are 

distributed in a way that is not dependent on language and presentation 

format. This means that there is no room for misunderstandings and/or 

translation errors by the recipient, but the recipient can choose to include 

spoken text, an image on a map, or integrate it into a navigation calculation.  

DATEX II is a multi-part standard created and maintained by CEN TC278. 

The content of these specifications can be found in CEN 16157. In addition, 

there is also an Exchange Specification standard that has led to several 

options to implement DATEX II content exchange based on different 

requirements from different DATEX II application fields. This last one can 

be found in ISO/CEN TS 19468. 

The DATEX II data model includes various sub-standards or parts. Part 1 

describes the rules of the standard, Part 2 describes the chosen location 

referencing method and Part 7 describes common information elements. 

Parts 3 to 6 and 8 to 13 describe the data model for the exchange of 

information about a certain type of information (see Figure 5-5). 
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Figure 5-5. DATEX II standard's components schema. Extracted 

from [155]. 

In this thesis and for the representation of the event types generated in the 

chapters below the DATEX II components that will be used are Road 

Situation for road hazard events and Traffic Regulations for traffic signs. It 

is will be also necessary for the Common and the Location Referencing 

components for modelling and to specify their location. 

5.2.2.1. Weather condition 

For the representation of bad weather conditions such as fog banks, the 

DATEX II standard contemplates the component Situation – Traffic element 

where there is a specific section for PoorEnvirontmentConditions (eg. fog, 

heavy rain, snowfall, etc.). For this type of event, the location reference type 

that will be used is TpegAreaLocation since this kind of event cannot be 

specified in more detail. For the specific case of fog representation DATEX II 

provides a different level definition (see Table 5-2).  

The next DATEX II message shows an example of a fog bank event with a 

coverage area of 1000 meters in the A-8 road passing through the 

municipality of Eibar (43.195055, -2.437543). The event was created the 

2022/07/07 11:16:22 a.m. and has a validity duration of 10 minutes (see 

Message 5-4). 
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Table 5-2. Fog levels are defined by the DATEX II standard for 

PoorEnvironmentType events. 

Situation PoorEnvironmentTypeEnum Dense fog 
Dense fog, limiting visibility to 50m 

or less. 

Situation PoorEnvironmentTypeEnum Fog Fog, visibility more than 50m. 

Situation PoorEnvironmentTypeEnum Moderate fog 
Misty conditions impair vision over 

100m. 

Situation PoorEnvironmentTypeEnum Patchy fog 
Fog, in which intermittent areas of 

dense fog may be encountered. 

Message 5-4. DATEX II message example for a fog bank event. 

{ 
    "d2:payload": { 
        "@lang": "eng", 
        "@modelBaseVersion": "3", 
        "publicationTime": "2022-07-07T11:16:22", 
        "publicationCreator": { 
            "country": "es", 
            "nationalIdentifier": "ceit-brta" 
        }, 
        "sit:situation": [ 
            { 
                "@id": "2840", 
                "sit:headerInformation": { 
                    "informationStatus": "technicalExercise" 
                }, 
                "sit:situationRecord": [ 
                    { 
                        "@id": "2840-00", 
                        "@version": "1", 
                        "sit:situationRecordCreationTime": "2022-07-07T11:15:49", 
                        "sit:situationRecordVersionTime": "2022-07-07T11:15:49", 
                        "sit:probabilityOfOccurrence": "riskOf", 
                        "sit:validity": { 
                            "validityStatus": "active", 
                            "validityTimeSpecification": { 
                                "overallStartTime": "2022-07-07T11:15:49", 
                                "overallEndTime": "2022-07-07T11:25:49" 
                            } 
                        }, 
                        "sit:locationReference": { 
                            "loc:tpegAreaLocation": { 
                                "loc:tpegAreaLocationType": "other", 
                                "loc:radius": 1000, 
                                "loc:centrePoint": { 
                                    "loc:latitude": 43.195055, 
                                    "loc:longitude": -2.437543 
                                } 
                            } 
                        }, 
                        "sit:poorEnvironmentType": [ 
                            "fog" 
                        ] 
                    } 
                ] 
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            } 
        ] 
    } 
} 

5.2.2.2. Traffic Signs 

DATEX II standard has recently added a new component for traffic 

regulation where a specific traffic regulation issued by a competent authority 

can be communicated. In this component, different traffic regulation types 

are included such as speed limits, road or ambient warnings, traffic jams 

ahead, etc.  

The next DATEX II message shows an event example of a traffic sign limit of 

100 km/h located in the A-8 road Bilbao direction (see Message 5-5). 

Message 5-5. DATEX II message example for a speed limit traffic 

sign. 

    "d2:payload": { 
        "@lang": "eng", 
        "@modelBaseVersion": "3", 
        "@id": "", 
        "publicationTime": "2022-07-07T16:36:40", 
        "publicationCreator": { 
            "country": "es", 
            "nationalIdentifier": "ceit-brta" 
        }, 
        "tro:trafficRegulationsFromCompetentAuthorities": { 
            "tro:trafficRegulationOrder": [ 
                { 
                    "@id": "2842", 
                    "@version": "1", 
                    "tro:issuingAuthority": { 
                        "values": { 
                            "value": [ 
                                "road maintenance operator" 
                            ] 
                        } 
                    }, 
                    "tro:regulationId": "2842-00", 
                    "tro:status": "madeAndImplemented", 
                    "tro:implementedLocation": { 
                        "loc:supplementaryPositionalDescription": { 
                            "loc:roadInformation": [ 
                                { 
                                    "loc:roadDestination": "BILBAO", 
                                    "loc:roadName": "A", 
                                    "loc:roadNumber": "8" 
                                } 
                            ] 
                        } 
                    }, 
                    "tro:trafficRegulation": [ 
                        { 
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                            "tro:status": "active", 
                            "tro:typeOfRegulation": [ 
                                { 
                                    "tro:advisorySpeed": { 
                                        "tro:numericValue": 100, 
                                        "tro:unitOfMeasure": "kilometresPerHour" 
                                    } 
                                } 
                            ] 
                        } 
                    ] 
                } 
            ] 
        } 
    } 
} 

It is worth mentioning that DATEX II also allows communication in case a 

traffic sign is damaged. For this aim, the correct component is Situation-

Traffic Element and it is defined under the option of EquipmentOrSystemFault 

where it can be specified as the literal TrafficSignals. 

5.2.2.3. Road Damage 

DATEX II standard contains a new Situation-Traffic Element component to 

define road surface conditions that are not related to the weather but which 

may affect driving conditions. This element allows for communication of 

event types such as slippery roads or the presence of oil, road as well as road 

marking not present or road surface in poor condition. However, as it is seen 

in Table 5-3 the event referring to road marking is not related to road damage 

itself but to the situation where the lanes are missing due to some 

maintenance works. Thus, this option was discarded, nevertheless since the 

element “Road surface in poor conditions” is much more global, it could be 

used and add a general comment where the damage description is given. 

Table 5-3. Road surface condition definitions of DATEX II 

standard for Road Damage type events. 

Situation 
NonWeatherRelatedRoa

dConditionTypeEnum 

Road marking not 

present 

Road markings are not present due 

to maintenance works in progress 

Situation 
NonWeatherRelatedRoa

dConditionTypeEnum 

Road surface in poor 

condition 

The road surface is damaged, 

severely rutted or potholed (i.e. it is 

in a poor state of repair). 

 

The next DATEX II message represents an example of a road marking 

damage on the exit branch of the GI-636 road towards Pasaia 
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Antxo/Donibane/Errenteria that has an extension of about 200m (from PK 0 

to PK 0.182) (see Figure 5-6). The event was created the 2022/07/07 12:23:45 

a.m. and has a validity duration of 24 h. For this type of event, the location 

reference type selected is linear since it is clearly defined in a road section 

and could affect only a specific carriageway (see Message 5-7). 

 

Figure 5-6. Road marking damage detected in  GI-636 exit branch 

road. 

Message 5-7. DATEX II message example for road in poor 

conditions event. 

{ 
    "d2:payload": { 
        "@lang": "eng", 
        "@modelBaseVersion": "3", 
        "publicationTime": "2022-07-07T12:23:45", 
        "publicationCreator": { 
            "country": "es", 
            "nationalIdentifier": "ceit-brta" 
        }, 
        "sit:situation": [ 
            { 
                "@id": "2841", 
                "sit:headerInformation": { 
                    "informationStatus": "technicalExercise" 
                }, 
                "sit:situationRecord": [ 
                    { 
                        "@id": "2841-00", 
                        "@version": "1", 
                        "sit:situationRecordCreationTime": "2022-07-07T12:23:01", 
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                        "sit:situationRecordVersionTime": "2022-07-07T12:23:01", 
                        "sit:probabilityOfOccurrence": "riskOf", 
                        "sit:validity": { 
                            "validityStatus": "active", 
                            "validityTimeSpecification": { 
                                "overallStartTime": "2022-07-07T12:23:01", 
                                "overallEndTime": "2022-07-08T12:23:01" 
                            } 
                        }, 
                        "sit:generalPublicComment": [ 
                            { 
                                "sit:comment": { 
                                    "values": { 
                                        "value": [ 
                                            "Road marking damage" 
                                        ] 
                                    } 
                                } 
                            } 
                        ], 
                        "sit:locationReference": { 
                            "loc:secondarySupplementaryDescription": { 
                                "loc:roadInformation": [ 
                                    { 
                                        "loc:roadName": "GI", 
                                        "loc:roadNumber": "636-1-0" 
                                    } 
                                ] 
                            }, 
                            "loc:tpegLinearLocation": { 
                                "loc:tpegDirection": "unknown", 
                                "loc:tpegLinearLocationType": "segment", 
                                "loc:to": { 
                                    "loc:pointCoordinates": { 
                                        "loc:latitude": 43.3113699, 
                                        "loc:longitude": -1.9169185 
                                    }, 
                                    "loc:name": [ 
                                        { 
                                            "loc:descriptor": { 
                                                "values": { 
                                                    "value": [ 
                                                        "PK 0.182" 
                                                    ] 
                                                } 
                                            }, 
                                            "loc:tpegOtherPointDescriptorType": "pointName" 
                                        } 
                                    ] 
                                }, 
                                "loc:from": { 
                                    "loc:pointCoordinates": { 
                                        "loc:latitude": 43.3113314, 
                                        "loc:longitude": -1.9153143 
                                    }, 
                                    "loc:name": [ 
                                        { 
                                            "loc:descriptor": { 
                                                "values": { 
                                                    "value": [ 
                                                        " PK 0" 
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                                                    ] 
                                                } 
                                            }, 
                                            "loc:tpegOtherPointDescriptorType": "pointName" 
                                        } 
                                    ] 
                                } 
                            } 
                        }, 
                        "sit:nonWeatherRelatedRoadConditionType": [ 
                            "roadSurfaceInPoorCondition" 
                        ] 
                    } 
                ] 
            } 
        ] 
    } 
} 

It is worth mentioning that, in relation to this road damage, DATEX II 

standard allows also to create of specific messages concerning both 

maintenance works such as repair work for resurfacing work or road 

marking work as well as construction works for road improvement or 

upgrading. 
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5.3. Discussion 

The interconnection of all the elements of the intelligent transport 

environment is essential to achieve a future of connected, cooperative and 

autonomous mobility. Incorporating road dynamic information will 

facilitate anticipation of drives in vehicles with low driving automation 

levels as well as CAVs systems with high driving automation levels. In this 

way both will be able to adapt their driving task in the event of an 

unexpected situation – low visibility due to weather conditions, 

infrastructure in poor conditions, etc. -. As a result, V2X communications will 

have an impact on efficiency, sustainability and road safety. 

For these communications to be effective, they must be secure and reliable, 

and the messages transmitted must be interpretable by any user. Therefore, 

regulations in this area are of utmost importance as well as standardisation. 

In this chapter, two of the most widely used standards for communication 

with OEMs (C-ITS) as well as with road operators (DATEX II) have been 

studied. Example messages have been implemented in both standards that 

capture the events generated by the modules developed in the previous 

chapters: fog banks, vertical signalling and road marking. In this study it has 

been found that the fog event is defined in both standards, similarly, there is 

also the possibility to report on vertical signage although it would have to be 

checked if DATEX II includes all the signs listed in the catalogues. However, 

there is currently no defined C-ITS format for a vehicle capable of detecting 

the status of signals or road markings to transmit them. Similarly, the 

DATEX II standard does not allow the case defined for road surfaces in poor 

conditions to be detailed. 

It is clear that there is still a long way to go in the regularisation and 

standardisation of CCAM and it is necessary to continue working and 

updating the existing ones in order to adapt to new needs that may arise. 
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6.1. Conclusions 

The mobility of the future will be connected, cooperative and autonomous. 

The defined roadmaps make it clear that, although 100% autonomous 

mobility is still far from being a reality, vehicles will increasingly feature a 

higher level of automation. For this to be sustainable, interaction between all 

road users, V2X, is essential. In addition, it is also key that the infrastructure 

is in good condition so that the perception of the environment is as clear and 

reliable as possible. In this way, the exchange of safety-critical information 

together with a robust and reliable perception system will be able to assist 

the behaviour of both drivers and autonomous vehicles to improve driving 

efficiency and safety. 

The general objective of the thesis has been met, having designed a road 

monitoring system capable of detecting critical situations such as fog banks 

and infrastructure damage by employing computer vision techniques. 

 It has been implemented a system for the detection of fog banks 

between 0 and 400 meters of visibility, differentiated into three 

different alert levels. 

 A traffic signal recognition system capable of recognising up to 

164 different signal classes has been implemented.  

 A system capable of detecting road line damage has been 

implemented. 

This road monitoring system comprises three modules that already have a 

TRL level of between 5 and 6, this is, a model prototype already exists and 

for some of the modules the field verification process has started. 

In general terms, the following can be concluded with regard to the sub-

objectives: 

Fog bank detection module 

 Two different algorithms have been developed. The first one is a 

rule-based algorithm with an accuracy of 80% in real scenarios 

and 63% for synthetic ones. Whereas the second algorithm is 

based on DL which has an accuracy of 96% on synthetic images 

but 70% on real images.  
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 For the comparison of the module, it has not been possible to 

contrast it with the state of the art since results for public datasets 

of real scenarios have not yet been reported. 

 It is observed that current algorithms for synthetic fog generation 

are not realistic enough as they present a much whiter colour than 

what the image acquisition systems capture.  

 It is concluded that by generating a synthetic dataset where the 

fog has a more realistic colour, a DL model could be trained to 

improve the performance of the rule-based method for real scenes.  

Traffic sign recognition module 

 A two-stage algorithm has been developed for separate detection 

and classification. The first stage is based on classical CV while the 

second stage is based on a DL classifier voting system. The 

classification stage obtains accuracy values of around 92.4-98.5% 

while the detection stage presents good precision values but a low 

recall (52-76%).  

 Regarding the validation of the module, similar values to the state 

of the art have been achieved for signal classification, however, 

the signal detection performance could be improved. 

 It is concluded that although the developed system is suitable as 

an inventory tool, the development of a single-stage end-to-end 

recognition system based on DL could improve the performance 

of the current system. 

Road marking damage module 

 Two algorithms have been developed, firstly the problem was 

tackled with classical vision methods but due to the impossibility 

of modelling the defects, an end-to-end model based on DL was 

trained which achieves an F1 score of 92%. 

 The validation of this module demonstrates that the current state 

of the art has been exceeded by 25% for the detection of the line 

marking defect. 
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Operational objectives 

 The designed system is modular since no algorithm depends on 

any other algorithm than the acquisition system. 

 The system used in this thesis is compact and low-cost as it 

consists of an RGB camera and a processing unit that could be 

installed in any vehicle. 

 The system designed in the thesis can be implemented in real-

time. All developed algorithms can run with calculation times 

between 70 - 300 ms.  

 The system studied in the thesis can generate and transmit events 

for V2I/I2V communication in common and standardised 

languages such as DATEX II and C-ITS messages. 

 The system designed in this thesis is universal and interoperable, 

it has been proved that the algorithms can work with images 

collected in different countries.  

 The road operators and public administrations we have contacted 

show interest in the usefulness of the system designed in this 

thesis for the prioritisation and management of their investments 

and resources. 

The work carried out in this thesis will make it possible to gain a better 

understanding of the state of the road and to detect critical situations which 

are limiting to the operation of ADSs or drivers and which endanger road 

safety. This information will be useful to improve the management of 

infrastructure maintenance and to warn vehicles so that they can anticipate 

a dangerous situation. This will also involve the improvement and extension 

of ISADs and ODDs that allow further progress to be made in completing 

the safety cases of self-driving vehicles.  
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6.2. Future research directions 
The results and conclusions drawn from the present work allow to think of 

future developments related to road monitoring: 

Improvement guidelines: 

 Generate a synthetic dataset where fog has a more realistic colour 

(not pure white). It could be improved by inserting the synthetic fog 

directly into the real-scenario images already collected  

 Develop a single-stage end-to-end traffic sign recognition system 

with a wider dataset.  

 Improvement of the embedded system to improve image quality and 

prevent dirtiness of the frontal glass. 

General future research lines 

 The quality improvement and extension of the current datasets with 

new images that have a rich variety of different scenarios to improve 

the performance of the algorithms. This will require making use of 

other public image repositories such as Google Street View and 

enriching images of real scenarios with synthetic fog or defects to 

compensate for the imbalance of such rare situations (the use of 

Generative Adversarial Networks (GANS) could be explored). 

 Extension of the road damage module to include other types of 

defects that are critical to road safety such as potholes and others that 

can help to better manage road maintenance by prioritizing 

resources. 

 Extension of the adverse weather detection module to include 

detection of spray or splash clouds effect produced by extremely wet 

roads that highly hinder the visibility of the drivers and the 

capabilities of autonomous vehicles. 

 For the construction of the embedded system, migration of the 

execution of the algorithms to the cloud to allow for more powerful 

processing than on an on-board computer. 
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 The universalisation and standardisation of data, so that the scientific 

community can work synergistically with the ultimate goal of 

improving road safety and sharing local developments with others 

to achieve richer models for a global solution. 

 The dumping of the data collected by the road monitoring system 

into a GIS data visualisation tool. This will allow post-processing of 

the raw data to generate the asset inventory and improve 

infrastructure maintenance management. 

 The physical modelling of the road (macroscale, microscale, 

capacities, etc.) so that in combination with the data extracted from 

the road monitoring system a Digital Twin (DT) of the road can be 

built. This will allow the study of the life cycle and predict the 

deterioration of the road.  
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A. Appendix – Smart Road Classification 

framework 
Table A-1. Road categories in terms of automation and 

connectivity support [6] 
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1 - Humanway

The road physical infrastructure triggers too many disengagements. Therefore, 

drivers are suggested to disable the driving automation systems. The connectivity 

capabilities of the road cannot be used to foresee or reduce the number of 

disengagements.

3 - Automatedway

The conectivity provided by the road digital 

infrastructure can be used by Level 3 vehicles to 

foresee disengagements and warn the driver to 

resume control in advance.

4 - Full Automatedway 

Level 4 and 5 vehicles can 

perfom autonomously. Level 2 

and 3 might experience few 

disengagements.

4 - Full Automatedway

The dynamic information 

provided by the road digital 

infrastructure can be used by 

Level 4 vehicles to manage 

ODDs and drive 

autonomously.

5 - Autonomousway

Cooperative 

driving. 

Recommended for 

critical road 

segments and 

juctions with traffic 

segregation to only 

allow CAVs.

LOSAD

Non-continuous 

ORS. Most 

drivers may 

retake manual 

control 

sometimes

2 - Assitedway

No information about dynamic 

parameters that could 

influence the ODD. Although 

the road segment would not 

trigger disengagements to 

Level 4 vehicles, the lack of 

information prevents them 

from an automated 

experience. Level 2 - 3 

vehicles might experience 

very few disengagements.

2 - Assitedway

Disengagements are not very 

frequent, but exist, Level 3 

vehicles do not have 

information to foresee 

disengagements, so they 

operate like Level 2 vehicles.

2 - Assitedway

The physical road infrastructure triggers relatively frequent disengagements that 

might affect the automated experience. Under certain circumstances, drivers might 

be allowed to enable their driving automation systems. Due to their number, the 

connectivity level should not be used to foresee disengagements (for Level 3 

vehicles).
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B. Appendix – Colour spaces  

In this section, there is a brief description of the three colour spaces that have 

been used in this work to extract characteristics from the image. 

RGB colour space 

This colour space is the most common one since the human eye only has 

colour-sensitive receptors for red (R), green (G) and blue (B). Thus, it is 

theoretically possible to decompose every visible colour into combinations 

of these three “primary colours” with different ranges of intensities from 0 

to 255. Thus, this combination can be represented as a three-dimensional 

coordinate plane with the values for R, G and B on each axis (see Figure A-1 

a). This way, it is concluded that when all channels have a value of zero, no 

light is emitted resulting in black colour. Whereas when all three colour 

channels are set to their maximum the resulting colour is white.  

HSV colour space 

HSV colour space is a cylindrical representation where colours of each hue 

(H) are arranged in a radial slice (see Figure A-1 b)The hue is the colour 

portion of the model that is expressed in 0-360 degrees where it can be 

considered colours like red, yellow, green, cyan, blue and magenta each in 

60-degree increments. The central axis represents the value (V) or brightness 

of the colour from 0 to 100 per cent, where 0 is completely black and 100 is 

the brightest and reveals the most colour. Finally, saturation (S) describes the 

amount of grey in a particular colour, its minimum value (0) introduces more 

grey colour and the maximum (100) is the most similar to its primary colour.  
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(a) (b) 

Figure A-1. Representation of (a) RGB and (b) HSV colour spaces. 

XYZ colour space 

The CIE XYZ colour space encloses all colour sensations that are visible to 

the human eye. The human eye with normal vision has three kinds of cone 

cells that sense light, S, M and L depending on their sensitivity to short, 

middle or long wavelength light. The CIE colour model takes the luminance 

(as a measure for perceived brightness) as one of the three colour 

coordinates, calling it Y. The spectral response of the luminance is specified 

as the photopic luminosity function. The maximum possible Y value, e.g. for 

a colour image, may be chosen to be 1 or 100, for example. The Z coordinate 

responds mostly to shorter-wavelength light (blue colours on the visible 

light spectrum), while X responds both to shorter- and longer-wavelength 

light [156]. Figure A-2 shows the used colour matching functions. 
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Figure A-2.The CIE XYZ standard observer colour matching 

functions.  

Adapted from Jeff Mather (2021). Spectral and XYZ Color 

Functions(https://www.mathworks.com/matlabcentral/fileexchange/702

1-spectral-and-xyz-color-functions), MATLAB Central File Exchange. 

Retrieved January 5, 2021 
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C. Appendix – TSR confusion matrixes 

 

Figure A-3. Confusion matrix of ensemble classifier in Ceit-TSR 

dataset. 
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Figure A-4. Confusion matrix of ensemble classifier in GTSRB 

dataset. 
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Figure A-5. Confusion matrix of ensemble classifier in GTSDB 

dataset. 
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Figure A-6. Confusion matrix of ensemble classifier in ETSDB 

dataset. 
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D. Appendix – C-ITS messages 
Table A-2. DENM message’s cause and subcause codes summary 

that covers all possible use cases for Road Hazard Warning 

(RHW) service. 

DENM message - ETSI EN 302 637-3 V1.2.2 (2014-11) 

CauseCode SubcauseCode 

reserved(0), 
 

trafficCondition(1), 

unavailable(0), increasedVolumeOfTraffic(1), 

trafficJamSlowlyIncreasing(2), 

trafficJamIncreasing(3), 

trafficJamStronglyIncreasing(4), trafficStationary(5), 

trafficJamSlightlyDecreasing(6), 

trafficJamDecreasing(7), 

trafficJamStronglyDecreasing(8) 

accident(2), 

unavailable(0), multiVehicleAccident(1), 

heavyAccident(2), accidentInvolvingLorry(3), 

accidentInvolvingBus(4), 

accidentInvolvingHazardousMaterials(5), 

accidentOnOppositeLane(6), unsecuredAccident(7), 

assistanceRequested(8) 

roadworks(3), 

unavailable(0), majorRoadworks(1), 

roadMarkingWork(2), 

slowMovingRoadMaintenance(3), 

shortTermStationaryRoadworks(4), 

streetCleaning(5), winterService(6) 

adverseWeatherCondition-Adhesion(6), 

unavailable(0), heavyFrostOnRoad(1), 

fuelOnRoad(2), mudOnRoad(3), snowOnRoad(4), 

iceOnRoad(5), blackIceOnRoad(6), oilOnRoad(7), 

looseChippings(8), instantBlackIce(9), 

roadsSalted(10) 

hazardousLocation-SurfaceCondition(9), 

unavailable(0), rockfalls(1), earthquakeDamage(2), 

sewerCollapse(3), subsidence(4), snowDrifts(5), 

stormDamage(6), burstPipe(7), volcanoEruption(8), 

fallingIce(9) 

hazardousLocation-ObstacleOnTheRoad(10), 

unavailable(0), shedLoad(1), partsOfVehicles(2), 

partsOfTyres(3), bigObjects(4), fallenTrees(5), 

hubCaps(6), waitingVehicles(7) 

hazardousLocation-AnimalOnTheRoad(11), 
unavailable(0), wildAnimals(1), herdOfAnimals(2), 

smallAnimals(3), largeAnimals(4) 

humanPresenceOnTheRoad(12), unavailable(0), childrenOnRoadway(1), 

cyclistOnRoadway(2), motorcyclistOnRoadway(3) 

wrongWayDriving(14), unavailable(0), wrongLane(1), wrongDirection(2) 
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rescueAndRecoveryWorkInProgress(15), 

unavailable(0), emergencyVehicles(1), 

rescueHelicopterLanding(2), 

policeActivityOngoing(3), 

medicalEmergencyOngoing(4), 

childAbductionInProgress(5) 

adverseWeatherCondition-

ExtremeWeatherCondition(17), 

unavailable(0), strongWinds(1), damagingHail(2), 

hurricane(3), thunderstorm(4), tornado(5), 

blizzard(6) 

adverseWeatherCondition-Visibility(18), 

fog(1), smoke(2), heavySnowfall(3), heavyRain(4), 

heavyHail(5), lowSunGlare(6), sandstorms(7), 

swarmsOfInsects(8) 

adverseWeatherCondition-Precipitation(19), 
unavailable(0), heavyRain(1), heavySnowfall(2), 

softHail(3) 

slowVehicle(26), 

unavailable(0), maintenanceVehicle(1), 

vehiclesSlowingToLookAtAccident(2), 

abnormalLoad(3), abnormalWideLoad(4), convoy(5), 

snowplough(6), deicing(7), saltingVehicles(8) 

dangerousEndOfQueue(27), 

unavailable(0), suddenEndOfQueue(1), 

queueOverHill(2), queueAroundBend(3), 

queueInTunnel(4) 

vehicleBreakdown(91), 

unavailable(0), lackOfFuel(1), 

lackOfBatteryPower(2), engineProblem(3), 

transmissionProblem(4), engineCoolingProblem(5), 

brakingSystemProblem(6), steeringProblem(7), 

tyrePuncture(8) 

postCrash(92), 

unavailable(0), accidentWithoutECallTriggered(1), 

accidentWithECallManuallyTriggered(2), 

accidentWithECallAutomaticallyTriggered(3), 

accidentWithECallTriggeredWithoutAccessToCellul

arNetwork(4) 

humanProblem(93), unavailable(0), glycemiaProblem(1), heartProblem(2) 

stationaryVehicle(94), 

unavailable(0), humanProblem(1), 

vehicleBreakdown(2), postCrash(3), 

publicTransportStop(4), carryingDangerousGoods(5) 

emergencyVehicleApproaching(95), 
unavailable(0), emergencyVehicleApproaching(1), 

prioritizedVehicleApproaching(2) 

hazardousLocation-DangerousCurve(96), 

unavailable(0), dangerousLeftTurnCurve(1), 

dangerousRightTurnCurve(2), 

multipleCurvesStartingWithUnknownTurningDirect

ion(3), multipleCurvesStartingWithLeftTurn(4), 

multipleCurvesStartingWithRightTurn(5) 

collisionRisk(97), 

unavailable(0), longitudinalCollisionRisk(1), 

crossingCollisionRisk(2), lateralCollisionRisk(3), 

vulnerableRoadUser(4) 

signalViolation(98), 

unavailable(0), stopSignViolation(1), 

trafficLightViolation(2), 

turningRegulationViolation(3) 
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dangerousSituation(99) 

unavailable(0), 

emergencyElectronicBrakeEngaged(1), 

preCrashSystemEngaged(2), espEngaged(3), 

absEngaged(4), aebEngaged(5), 

brakeWarningEngaged(6), 

collisionRiskWarningEngaged(7) 

 


