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Climate change will redefine taxonomic, functional, and
phylogenetic diversity of Odonata in space and time
Tommaso Cancellario 1,2✉, Rafael Miranda 1, Enrique Baquero 1, Diego Fontaneto 2, Alejandro Martínez 2,4 and
Stefano Mammola 2,3,4

Climate change is rearranging the mosaic of biodiversity worldwide. These broad-scale species re-distributions affect the structure
and composition of communities with a ripple effect on multiple biodiversity facets. Using European Odonata, we asked: i) how
climate change will redefine taxonomic, phylogenetic, and functional diversity at European scales; ii) which traits will mediate
species’ response to global change; iii) whether this response will be phylogenetically conserved. Using stacked species distribution
models, we forecast widespread latitudinal and altitudinal rearrangements in Odonata community composition determining broad
turnovers in traits and evolutionary lineages. According to our phylogenetic regression models, only body size and flight period can
be partly correlated with observed range shifts. In considering all primary facets of biodiversity, our results support the design of
inclusive conservation strategies able to account for the diversity of species, the ecosystem services they provide, and the
phylogenetic heritage they carry in a target ecosystem.
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INTRODUCTION
Recent climate change is driving the reshuffling of the biodiversity
patchwork on the Earth1. Upon those abrupt global changes, few
species can survive in situ by adapting to the novel environmental
conditions, whereas many more are forced to shift their ranges
tracking their eco-physiological optima for growth and survival2,3.
Never before a single human generation witnessed such a rapid
and massive biological migration induced by the increase of
temperature, with terrestrial species rising towards higher
latitudes and elevations and marine life sinking at greater
depths4–6. Inevitably, these rapid readjustments in species ranges
are leaving a considerable imprint on the structure of local
communities, which has cascading effects on ecosystem function-
ing and the provisioning of nature’s contribution to human
societies7–9. The ecological and economic impacts of these
changes are expected to be unprecedented10.
Climate changes will lead to cumulative non-linear responses in

the biological assemblages, permeating through all biodiversity
facets. This is because as climate changes, so does the distribution
of certain species, with a ripple effect on species richness, trait
composition, and evolutionary heritage of local communities11–13.
Therefore, the impact of climate change can be quantified by
predicting changes in the number of species (hereinafter
“taxonomic diversity”), traits (“functional diversity”) and evolu-
tionary lineages (“phylogenetic diversity”) that are present in an
ecosystem. As approximative as the approach might be, a
quantification of the spatial and temporal rearrangement of these
metrics is paramount to understand causally the mechanisms that
drive the evolution of biodiversity across its multiple facets. Given
that taxonomic, functional, and phylogenetic biodiversity are
linked with ecosystem functioning and stability, ecologists and
conservation biologists are increasingly considering these three
facets when designing conservation plans13.

The potential effects of environmental constraints on biological
aggregations can be reflected in the variation of α diversity, which
summarises community structure as the total richness of taxa,
traits, and evolutionary history14–17. Additional features that are
affected by environmental perturbations include community
composition, potentially allowing causal understanding of the
mechanisms that may regulate the effects18. The calculation of β
diversity, which traces the individual elements that change across
biological communities, can further be decomposed into its
replacement and richness components19.
In this context, we described the spatio-temporal effects

produced by the shift of habitat suitability induced by climate
changes on three biodiversity facets, incorporating both α and β
diversity metrics. First, we modelled how global warming will
affect the habitat suitability of each European species of Odonata
during their imaginal stage. Second, we evaluated how the
predicted changes in species habitat suitability will influence the
taxonomic, phylogenetic, and functional diversity of Odonata
communities in space and time (Fig. 1). Third, we used the
predicted range shift to assess whether the response to climate
change of Odonata (including both the sub orders Anisoptera and
Zygoptera) is driven mainly by the evolutionary history or by
distinctive biological and ecological traits. We chose dragonflies
and damselflies because they are well-established model organ-
isms to address general macroecological questions in global
change biology20,21 and thermal physiology22,23, being even
regarded as “barometers” for climate change20. Furthermore,
odonates play a key ecological role in most food webs since they
are both predators and prey, delivering important ecological
services24.
Under the assumption that Odonata species will disperse

tracking their ecological optima, we tested three hypotheses. (1)
Species will redistribute poleward along the latitudinal gradient
and upward along the altitudinal gradient. (2) Those changes will
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affect community composition and will permeate phylogenetic
and functional components. Specifically, we expect that α diversity
will increase in areas with more conservative climate, whereas β
diversity will change more in areas experiencing faster climate
change rates, especially so in the β richness component given the
high dispersal ability of Odonata23. (3) The response of Odonata to
climate change will also be explained by a shared evolutionary
history, since phylogenetically related species may have similar

patterns of distribution change and similar biological and
ecological traits related to their dispersal ability.

RESULTS
Species distribution models
Predictor variables and model performance. Using species dis-
tribution models (SDM), we successfully calculated the habitat
suitability for 107 species of European Odonata (63% of the
169 species contained in our checklist). We omitted 62 species due
to the low number of occurrences available in Global Biodiversity
Information Facility (GBIF). Our models incorporated seven non-
collinear predictors (results of multicollinearity analysis are in
Supplementary Material 1): water bodies, elevation, Emberger’s
pluviometric quotient (embergerQ), temperature annual range
(bio 7), mean temperature of the wettest quarter (bio 8), mean
temperature of the warmest quarter (bio 10), and precipitation
seasonality (bio 15). Boosted Regression Trees attained the
greatest Area Under the Receiver Operator Curve (AUC) values
in 96 species, the ensemble of models in six species, the Maximum
Entropy in four, and the Generalised Additive Model only in one
(Supplementary Materials 2).

Species distribution model future predictions. In accordance with
our first hypothesis, we consistently predicted an increase in
habitat availability towards northern European regions and upper
elevations for most species (Table 1). These shifts were coupled
with a contraction of suitable habitats in the Mediterranean
region. Most species of Odonata experienced a shift in the
centroid of their distribution towards northern latitudes (Table 1),

Table 1. Average (± Standard Error) shift in species distribution
toward northward latitudes and upper altitudes.

Average northward shift in centroid latitude

2050 2070

BCC-CSM1-1 0.93 ± 0.11 (91/107) 1.12 ± 0.12 (86/107)

MIROC-ESM-CHEM 0.49 ± 0.11 (73/107) 0.70 ± 0.13 (81/107)

NorESM1-M 0.81 ± 0.11 (80/107) 0.37 ± 0.11 (70/107)

Average altitudinal shift in metres

BCC-CSM1-1 37.14 ± 5.10 (81/107) 33.43 ± 6.08 (73/107)

MIROC-ESM-CHEM 61.56 ± 6.28 (88/107) 67.41 ± 6.78 (91/107)

NorESM1-M 44.44 ± 5.09 (90/107) 56.43 ± 5.47 (93/107)

In parenthesis, the number of species (out of the total modelled species)
shifting northward latitude and upper altitudes is reported.

Table 2. Results of phylogenetic generalised least square (PGLS) models. Significant effects are highlighted in bold.

Estimate Std. Error t value Pr(>|t|) Res. variable Scenario Time period

(Intercept) 207228.6 52990.2 3.9 0.0001 Centroid difference MIROC 2050

Body length −1828.1 606.9 −3.0 0.0032 Centroid difference MIROC 2050

Flight Season 2777.5 5808.9 0.5 0.6336 Centroid difference MIROC 2050

Habitat Lentic 12534.6 31484.4 0.4 0.6913 Centroid difference MIROC 2050

Habitat Lotic 17994.4 34691.4 0.5 0.6051 Centroid difference MIROC 2050

(Intercept) 253527.6 63388.1 4.0 0.0001 Centroid difference MIROC 2070

Body length −1767.6 709.5 −2.5 0.0143 Centroid difference MIROC 2070

Flight Season 1037.7 6738.3 0.1 0.8779 Centroid difference MIROC 2070

Habitat Lentic 7731.6 39206.2 0.2 0.8440 Centroid difference MIROC 2070

Habitat Lotic 8406.5 42340.7 0.2 0.8430 Centroid difference MIROC 2070

(Intercept) 1.9 0.3 5.8 7.23E-08 Relative area change BCC 2070

Body length 0.0 0.0 0.4 0.6580 Relative area change BCC 2070

Flight Season −0.1 0.0 −3.6 0.0005 Relative area change BCC 2070

Habitat Lentic 0.3 0.2 1.5 0.1337 Relative area change BCC 2070

Habitat Lotic 0.2 0.2 1.1 0.2877 Relative area change BCC 2070

(Intercept) 1.2 0.3 3.7 0.0003 Relative area change MIROC 2050

Body length 0.0 0.0 2.1 0.0344 Relative area change MIROC 2050

Flight Season −0.1 0.0 −1.7 0.0844 Relative area change MIROC 2050

Habitat Lentic 0.3 0.2 1.3 0.2064 Relative area change MIROC 2050

Habitat Lotic 0.0 0.2 0.1 0.9009 Relative area change MIROC 2050

(Intercept) 1.7 0.3 6.6 1.63E-09 Relative area change NOR 2050

Body length 0.0 0.0 0.8 0.4473 Relative area change NOR 2050

Flight Season −0.1 0.0 −3.5 0.0007 Relative area change NOR 2050

Habitat Lentic 0.2 0.1 1.4 0.1539 Relative area change NOR 2050

Habitat Lotic 0.2 0.2 1.4 0.1510 Relative area change NOR 2050

Total table containing PGLS results is in Supplementary Material 7.
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Fig. 1 Infographic summarising the study workflow. In this work, we first constructed a species distribution model for each species of
European Odonata to predict their current and future habitat suitability. Then, we stacked the model projections and used community-level
data (α and β diversity) to quantify the temporal variation of taxonomic, functional, and phylogenetic diversity. Finally, we used the predicted
range shift to assess whether the response of Odonata to climate change is driven mainly by their evolutionary history or by distinctive
biological and ecological traits.
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as well as a rise of their preferred mean elevation in the future
climate scenarios (Table 1). These predictions varied minimally
under different Global Circulation Models. Example model
projections for one of the species is available in Fig. 2
(Supplementary Material 3 for the entire set of species).

Quantification of change of biodiversity measures
We calculated taxonomic, functional, and phylogenetic diversity
for 105 of the 107 species, since we lack genetic data for
Orthetrum taeniolatum (Schneider, 1845) and Sympetrum sinaiti-
cum Dumont, 1977.

α diversity patterns. Current α diversity patterns were overall
congruent across the three biodiversity facets. The highest
taxonomic diversity concentrated around the Central-Atlantic
European region, whereas the highest values for functional and
phylogenetic diversity were attained in Italy, Ireland, and the
North of the United Kingdom (Fig. 3).
Future α diversity projections revealed an increase in taxo-

nomic, functional, and phylogenetic diversity in northern and
eastern Europe, particularly in the Fennoscandian peninsula, the
British Isles, and around the Black Sea. In contrast, these three
metrics are predicted to decrease in Central Europe and the
Mediterranean, particularly in France, Germany, and the Baltic

countries, as well as the Hellenic, Italian, and Iberian peninsulas.
Furthermore, all three α diversity metrics are predicted to increase
towards higher altitude, particularly in the Alps, Cantabrian
mountains, and the Pyrenees (Fig. 3; Supplementary Material 4).

β diversity patterns. We observed greater values of taxonomic,
functional, and phylogenetic metrics of β diversity in the Iberian
Peninsula, Scandinavia, and in scattered areas across western
Europe. We obtained congruent patterns across future Global
Circulation Models, and between 2050 and 2070 predictions
(Fig. 4). These changes were primarily due to variations in the
richness component of β diversity, rather than in the replacement
component. The highest β diversity richness values were
predicted for the Iberian Peninsula, Turkey, Scandinavia, and
Eastern Europe; those for β diversity replacements were predicted
in Iberia, as well as the Balkans, and the Baltic countries (Fig. 4;
Supplementary Material 4).

Phylogenetic signal and phylogenetic generalised least
squares
Pagel’s λ and Blomberg’s K were non-significant and low for all
predictors (relative area change; altitude difference; centroid
difference), scenarios (BCC-CSM1; MIROC-ESM-CHEM; NorESM1-M)
and time periods (2050; 2070) (p > 0.01, K < 0.1, λ < 0.5)

Fig. 2 Example of summarised species distribution model (SDM) projections for an individual odonate species. a Best model prediction
map for the current time period. b Extent of elevation shift across time periods. c Variation of habitat availability between future and current
time periods. Habitat gain and loss are depicted with blue and red colours respectively. Centroid shift is represented by the variation among
the orange (present) and yellow point (future). In the box plots, the box indicates the inter-quartile range (25–75th percentile); the bold line is
the median; the upper and lower whiskers extend from the hinge to the largest and smallest value no further than 1.5 * inter-quartile range;
data beyond the end of the whiskers are outliers. Summarised SDM outcomes for all species are available in Supplementary Material 3.
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Fig. 3 Quantification of α diversity per different time period (current; 2050; 2070) and biodiversity facets (taxonomic, functional and
phylogenetic) under the climate scenario MIROC-ESM-CHEM. For future scenarios, the cold-colour gradient indicates the extent of species
loss, whereas the warm-colour gradient indicates the species gain. See Supplementary Material 4 for BCC-CSM1-1 and NorESM1-M climate
scenarios.
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(Supplementary Material 5), indicating no phylogenetic signal in
the response of Odonata to climate change. These results were
consistent whether they were calculated for the phylogeny of the
Odonata or its suborders Anisoptera and Zygoptera separately.
Exceptionally, Pagel’s λ was relatively high and significant
(λ= 0.73; p= 0.003) for the centroid shift in the MIROC-ESM-
CHEM 2050 climate change scenario, when calculated over the
entire phylogeny of Odonata. In congruence, ancestral character
reconstruction revealed no clear patterns of change in of our trees
(an example in Fig. 5, Supplementary Material 6).
Phylogenetically explicit least-square models (PGLS) revealed

that only body size and duration of flight period significantly
affected the proportional variation in habitat suitability and the
centroid shift, but only for some of our global circulation models
and time periods (Table 2; Supplementary Material 7). The
influence of traits on range shift becomes more pronounced,

although more complex to interpret, when we considered the
orders Anisoptera and Zygoptera separately. The response of
Anisoptera to climate changes was significantly affected by their
body size, flight period, and preference for lentic habitat; the
response of Zygoptera was affected by their flight period and
preference for lotic habitat (Supplementary Material 7).

DISCUSSION
We forecasted variations in habitat availability for 107 species of
European Odonata, predicting conspicuous future readjustments
of their α and β diversity at European scale across taxonomic,
functional, and phylogenetic diversity facets. The relation of those
readjustment to species phylogenetic position and traits were
complex but, overall, the magnitude of range shifts across the
evolutionary tree of European Odonata exhibited low

Taxonomic MIROC-2050

Taxonomic MIROC-2070

Functional MIROC-2050

Functional MIROC-2070

Phylogenetic MIROC-2050

Phylogenetic MIROC-2070

0.00 0.25 0.50 0.75 1.00

Fig. 4 Quantification of total β diversity (β replacement+ β -richness19) per different time period (current; 2050; 2070) and biodiversity
facets (taxonomic, functional and phylogenetic) under the climate scenario MIROC-ESM-CHEM. See Supplementary Material 4 for BCC-
CSM1-1 and NorESM1-M climate scenarios.
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Fig. 5 Reconstruction of ancestral character states for the variables body size (left) and variation in habitat suitability (right). Pagel’s λ
and Blomberg’s K indicate the estimated values for the response variables “Variation of habitat suitability” (see Supplementary Material 6 for
the other tree of ancestral character reconstructions). “Length” in the legend provides the scale for the branch lengths of the phylogenetic
tree. The grey box delimits the Zygoptera clade whereas the brown one the Anisoptera clades.
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phylogenetic signal and poor relationship to the considered
functional traits.

Biodiversity change: a multifaceted problem with non-linear
responses at European scales
Odonate communities will not reshuffle randomly: according to
our predictions, habitat suitability will increase towards northern
latitudes and upper elevations. These changes will be coupled
with a contraction of suitable areas in the Mediterranean for most
species. Similar shifts have been observed for many freshwater
invertebrates25–28 although their effects on the structure and
composition of natural communities remains poorly documented.
Consequently, odonate communities will face a future taxonomic
rearrangement, paralleled by alteration of ecosystem dynamics
and functioning9. The congruence across biodiversity metrics
suggests that taxonomic diversity could be used as a proxy to
predict change in phylogenetic and functional diversity metrics—
which are generally more difficult to estimate. Importantly, this
congruence in biodiversity patterns simplifies designing conserva-
tion strategies29. A similar congruent relation across biodiversity
metrics has been found in other organisms and ecosystems, such
as corals30, ants31, and freshwater fish32, but never in freshwater
invertebrates. These results strengthen our increasing awareness
of the indissoluble relation that links ecosystem functioning and
human societies. Biodiversity loss will indeed permeate all its
facets leading to tilting consequences on humankind. Being
irreplaceable nodes in ecological networks as much as providers
for uncountable ecosystem services, freshwater invertebrates
must not be left out from future climate actions33,34.
Biodiversity changes depend on non-linear species interactions

branching throughout the ecosystem and sometimes involving
several temporal and spatial scales. This complexity is not easily
predictable using correlative methods35. For instance, increasing
taxonomic, functional, and phylogenetic diversity might import
new evolutionary lineages to a given ecosystem, thereby
improving its resilience with novel functions36. Concomitantly,
arriving new species might bring new possibilities for biotic
interactions, which are often difficult to anticipate37. In damsel-
flies, this has been illustrated by the climate-driven expansion
range in the Iberian Peninsula of Ischnura elegans (Vander Linden,
1820), which has hybridised with the previously reproductively
isolated species Ischnura graellsii (Rambur, 1842)38. The hybrids
represent new forms originated in situ, which bring original
functions to the ecosystems and unpredictable consequences in
the native communities39.
In contrast, decreasing taxonomic, functional, and phylogenetic

diversity metrics could reduce ecosystems’ stability and resilience
by narrowing possible species-specific responses to environmen-
tal fluctuations. This often leads to a functional homogenisation40

and a reduction of genetic diversity41. For example, the climate-
change driven arrival of highly mobile generalist species paralleled
by the disappearance of habitat specialised species has caused the
homogenisation of the odonate communities in North America42.
Similar processes of homogenisation driven by habitat alteration
and anthropogenic pressures has been registered for European
freshwater invertebrates43, including in Odonata communities44.
These examples collectively illustrate the complex interplay of the
three diversity metrics in natural ecosystems. Therefore, predicting
how changes in those metrics might affect long term ecosystem
function and stability is challenging and not only requires high-
quality data, but also mechanistic modelling45.

Species distribution models: a useful tool for climatic
predictions, but not without caveats
Species distribution models are robust and reliable approaches to
map species distributions in space and time, although bearing in
mind key limitations. The outcome of these models is unavoidably

coupled with the goodness of the ecological variables selected for
their calculation46. In this study, our models lack variables related
to specific habitats, such as presence of intermittent freshwater
habitats or changes in the future extension of water bodies.
Instead, they largely rely on the use of climatic variables, mostly
because they are more readily available in public databases. As
such, the projected outcomes from species distribution models
must be interpreted as general indications of future trends, rather
than as precise descriptions of species range boundaries.
Another caveat comes from the availability of reliable occur-

rences for the target species. A valid criticism to our approach is
that we entirely rely on species data retrieved from GBIF. In our
case, some of the limitations associated with GBIF data (e.g.,
samples collected opportunistically and spatially distorted) are
alleviated by the relatively large size and the popularity of
dragonflies amongst entomologists, such that information avail-
able in GBIF is arguably less biased compared to the actual
knowledge available for other freshwater groups. Taxonomic
identification errors are another pervasive problem found in GBIF
datasets, but, again, this issue is limited for odonates due to the
availability of high-quality field guides and the facility to recognise
the adult stages. Despite of entirely relying on GBIF, our results of
the current α taxonomy agree with the distribution map proposed
by Kalkman et al.47.
We acknowledge that other sources of records are available in

the literature, but they are generally non-digitalised, and the
information provided is not standardised geographically and
taxonomically. Since those are important limitations for the use of
many sources in large scale macroecological projects, we urge
authors with available occurrence and functional data to make it
available in public databases.
Finally, we only accounted for dispersal dynamics indirectly by

restricting the model calibration area based on a proxy measure of
dispersal potential for each species48. Alternatives to incorporate
dispersal in SDM are available49 and are increasingly used in
invertebrates45, but we were forced down this modelling road due
to broad limitations in terms of available data. Concerning
dispersal, we also consider Europe as a close area, not susceptible
to the arrival of immigrant species from Africa or Asia, which leads
to an underestimation of the future biodiversity facets, particularly
in the Mediterranean basin. Whether this is a realistic assumption
or not, all species distribution models need to depart for a limited
geographical area. Therefore, rather than a problem linked to our
specific approach, this is an axiom of our analyses that needs to be
accounted for during the interpretation of the results. Enlarging
our study area towards Africa and Asia would be certainly
interesting but would also introduce new limitations to our
predictions given the strong biases affecting occurrence data
available for those areas when compared to Europe.

The challenge of predicting collective responses from
individual species traits
Our analyses indicate a collective shift of odonates poleward and
towards upper altitudes in response to climate change5,50,51.
However, this is not true for all the species included in our
analyses, insofar as a few of them exhibited responses that
deviated from these average predictions3. Hence, we explored
whether these individual responses could be explained by the
phylogenetic position and functional traits of each individual
species, to connect the properties of the individual elements of
our system and its collective response. Connecting the role of
phylogenetic and functional traits in the responses of individual
species and how such changes may affect biological communities
is also critical to designing effective management and conserva-
tion plans44.
Phylogenetic relatedness did not explain the future shift of the

European Odonates, given that we found no strong phylogenetic
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signal in any of the metrics that we calculated to characterise their
change in range shift. These results contrast with those proposed
by Pinkert et al.52, who found a robust phylogenetic conservatism
related to thermal preference by studying the changes in
European odonate communities since the Last Glacial Maximum.
However, these results are hardly comparable to ours due to the
different time periods (thousands of years versus decades) and
climatic events analysed (ice retraction versus global warming). In
our case, the current climate change imposes a very quick
migration for most species, which seems to respond with
independence to the phylogeny. This seems to be congruent
with Castillo-Pérez et al.23, who documented a differential
response of odonates to temperature with strong variations at
species and population levels in changing environments.
In contrast to the phylogeny, the relationships between species

traits and ranges shifts were complex, largely depending on the
traits, response variables, and the global circulation models under
consideration. This variability somehow agrees with the contrast-
ing responses predicted across species and populations in
previous studies23. Body size and flight period explained the
changes in the range shift across the entire Odonata but not
consistently across all climatic scenarios, neither when only the
species in the suborder Zygoptera or Anisoptera were analysed.
These results contrasts with those proposed by Grewe et al.21,
where neither biological (e.g., abdomen length and wing size) nor
ecological (e.g., flight period) traits have returned significant
relation with observed range shift. Differences in modelling
methods and trait sources may account for this mismatch.
Due to the complexity of these outcomes, we prefer not to

provide strong biological conclusions from our results. We only
cautiously reaffirm that biological and ecological traits seem to
explain some degree of variability in species-specific responses to
climate change53, opening a door for further studies aiming at a
more mechanistic trait-based understanding of these phenomena.
Future investigations based on high-resolution physiological
adaptations and dispersal abilities (e.g., GPS-tracking, flight muscle
mass, wing loading and shape, temperature tolerance)45,54, and
possibly incorporating traits and phylogenies explicitly into the
modelling pipeline (e.g., ref. 55), might reveal key traits and
mechanisms associated with species’ climate-induced responses.
Traits obtained from larval stages might also be informative, since
most of the life of these insects is spent underwater [e.g., in Anax
imperator (Leach, 1815) the life span is two years in larvae and
eight to nine weeks in adults56]. Unfortunately, these additional
sources of information remain scarcely available for most odonate
species, forcing us to exclude them from the analysis. This scarcity
reminds us of the importance of basic research into the natural
history of most Odonata species as a tool to design more effective
conservation strategies.

METHODS
Rationale
To model species distribution, we used SDMs, mainstream
analytical tools in ecological and biogeographical research57–59.
Due to the easy implementation and the often accessible
interpretation of results (but see ref. 60), SDMs are routinely used
in disciplines as diverse as conservation planning61, habitat
restoration62, invasion biology63,64, and climate change biol-
ogy65,66. In short, distribution modelling refers to the practice of
using an algorithm to infer a relationship between the occur-
rences for a given species (e.g., georeferenced points) and
environmental predictors (e.g., climatic variables, topographic
parameters, habitat type), forecasting its potential distribution in
space and/or time.
As a model organism, we selected Odonata, an order of insects

with tropical evolutionary origin67 and including species with

contrasting thermal preferences. Odonata are well-established
model organisms in ecology and behaviour68–70, and have been
successfully used for tracking climate change using species
distribution models20. These insects have an amphibiotic life with
benthic vagile larvae living in freshwater habitats; the adults are
excellent fliers with high dispersibility compared to other fresh-
water invertebrates71. Broadly within the Odonata, generalist and
lentic species have greater dispersal abilities than specialist and
lotic species. Furthermore, comparing the odonates suborders,
usually, Anisoptera disperse more than Zygoptera72.

Taxonomic checklist and assembly of distribution data
We produced a complete checklist of all 169 European Odonata
by merging the information of the “Atlas of the European
dragonflies and damselflies”73 and the field guide “Dragonflies
of Britain and Europe”74 (Supplementary Material 8). These are the
most comprehensive references for European Odonata available
today. We focused on the European continent because it has been
intensively studied compared to other areas of the world75. We
excluded European Russia (including Kaliningrad) due to the
scarcity of Odonata occurrences therein. We included Turkey to
account for the entire arch of northern Mediterranean countries.
We downloaded all georeferenced occurrences of Odonata

available at the GBIF (09 January 2021; DOI: 10.15468/dl.kvrqug).
Despite its biases76, GBIF remains one of the most extensive global
biodiversity databases77. The coverage provided by GBIF (highest
coverage in UK, France, the Netherlands, Austria, and Germany;
lowest in southern and eastern Europe) for Odonata is congruent
with the current expert-based knowledge about European
odonates21,47. If not specified otherwise, we assumed that
occurrences were adult stages.
We discarded data for fossil, non-European species, records

before 1970, and occurrences falling outside the study area. We
also removed duplicates and records with spatial uncertainty
greater than the resolution of our predictor variables (~10 km; see
section “Selection of environmental predictors”). We minimised
the effects of uneven sampling effort via spatial thinning with the
function reduceSpatialCorrelation from the pack SDMworkshop
(https://github.com/BlasBenito/sdmflow), setting the minimum.-
distance parameter to 1 (~10 km) to match the resolution of our
predictors.

Accessible area delimitation
For each species, we calibrated models within an accessible area48.
The accessible area is the geographic extent hypothesised to fall
within the long-term dispersal potential for a particular species over
its evolutionary history. It is often a broader area than the one
reachable through dispersal within a single generation. In multi-
species analyses, when lacking detailed information on species
biogeographic history and dispersal ability, the simplest way to limit
the boundary of the accessible area is by constructing a continuous
border where most of the occurrences of a taxon are contained. For
this, we used a Minimum Convex Polygon, the smallest area
surrounding the points in which every internal angle does not
exceed 180°78. We estimated a conservative Minimum Convex
Polygon for each species using the R function mcp from the package
adehabitatHR v0.4.1979, setting the percentage of outliers to be
omitted at 1%. Finally, to account for the fact that different species
vary in their dispersal ability, we created an external buffer around
each accessible area, weighting the distance with the flight period of
each species [100,000distance in metres * (Flight period in months/10)].

Selection of environmental predictors
We downloaded four variables from WorldClim 280: monthly
minimum and maximum temperature (°C), monthly precipitation
(mm), and Digital Elevation Model (m a.s.l.). Current climatic data
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are the average for the period 1970–2000. We retrieved the water
bodies’ map from the FAO’s GeoNetwork data portal. This raster
map includes lentic and lotic permanent water body at world
scale. We adjusted the resolution of the water bodies’ map to
5min (~10 km) using the function resample from the R package
raster v3.5-281 setting ‘bilinear’ method. Starting from the three
climate variables (min/max temperature and precipitation), we
calculated 19 bioclimatic variables using the function biovars from
the R package dismo v1.3-382 and 16 environmental variables
using the function layerCreation from the package envirem v2.383.
More information about the latter variables can be retrieved at
https://www.worldclim.org/data/bioclim.html and https://
envirem.github.io.
We visualise the multicollinearity effect amongst our 37

predictors variables (19 bioclimatic, 16 environmental, elevation,
water bodies) via pairwise Pearson’s r correlation and a
dendrogram based on variables’ distance matrix84. We extracted
the final set of predictor variables at |r| < 0.585 and then we
removed variables with a Variance Inflation Factor (VIF) > 386.
We downloaded the same predictors for three future climate

scenarios (Global Circulation Models: BCC-CSM1; MIROC-ESM-
CHEM; NorESM1-M) and two time periods, 2050 (average for
2041–2060) and 2070 (average for 2061–2080). We chose a
moderate Representative Concentration Pathway (RCP 4.5),
namely a scenario that accounts for the greenhouse emission
according to the current green policies87. We assumed elevation
and water bodies to remain constant in the future.

Modelling procedure
To model the distribution, we selected one algorithm for each
main family of modelling algorithms (regression, maximum
entropy, and decision trees)88,89. We opted for Generalised
Additive Model90, MaxEnt91,92, and Boosted Regression Trees93,
respectively, given their high performance94. Furthermore, we
compared the performance of each individual algorithm with an
ensemble model, computed with the function calc in the package
raster, since the aggregation of forecasts of different models
(ensemble model) may improve the prediction habitat suitability
of a given species95,96. Specific settings and parameters for each
algorithm are available in Supplementary Material 9. To discrimi-
nate the areas where each species was more likely to be absent,
we contrasted the presence data against a set of background
points generated within their buffered accessible area. The
number of background points doubled the number of
presences97.
We evaluated the model performance using a holdout

approach, whereby we used 75% of the occurrences of each
species as a “train” dataset and the remaining 25% as “test”
dataset to evaluate their predictive power. We calculated two
performance metrics: AUC and Boyce index98. The AUC values
range from 0 to 1, with higher values indicating better model
discrimination. Whereas this metric is problematic for determining
the absolute performance ability of SDMs, it is acceptable to use it
for relative comparisons across models fitted with the same
data99. The Boyce index is considered one of the most appropriate
model evaluation metrics when absence data are lacking98, and
thus we chose it as a proxy measure of absolute model
performance. The continuous Boyce index varies from –1 to 1:
values above zero indicate model predictions consistent with
distribution data, values around zero indicate performance no
better than random, and values below zero refer to incorrect
model predictions98. We considered predictions with AUC < 0.7
and/or Boyce < 0.4 as low-quality performance.
After their evaluation, we fitted a final model for each species

with the complete set of occurrences and used it to project
potential distribution ranges under current and future climates.
We converted the continuous habitat suitability projections into Ta
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binary maps by using a threshold maximising the sensitivity (True
Positive Rate) and specificity (True Negative Rate)100,101. We
calculated both spatial (e.g., suitable range size, mean elevation,
and centroid) and biodiversity measures (see the next paragraph
for biodiversity measures) only on the binary maps obtained from
the best-performing modelling method102.
In constructing and reporting SDMs, we followed the ODMAP

(Overview, Data, Model, Assessment and Prediction) protocol103,
designed to maximise reproducibility and transparency of
distribution modelling exercises. The ODMAP for this study is
available as Supplementary Material 9.

Estimation of taxonomic, functional, and phylogenetic
diversity metrics
We calculated three diversity metrics for the predicted community
of Odonata occurring within a cell of each raster map. We first
stacked SDM projection for all the analysed species. We estimated
taxonomic diversity as the number of species predicted to occur in
each cell. We calculated functional and phylogenetic diversity as
the total branch length entailed by the species predicted to
occupy each cell, based on a functional and phylogenetic
tree16,104–106 (see next sections). We chose tree-based descriptors
of relationships to make the formulation of functional and
phylogenetic diversity more comparable107.

Estimation of the functional dendrogram. We calculated the
functional tree for European Odonata using six traits broadly
related to dispersal and species response to climate change,
namely: total body size (mm), abdomen length (mm), wings
length (mm), abdomen pigmentation (in RGB), habitat (lentic or
lotic), and flight season time (in months) (Table 3). We focused on
the adult stage because they disperse at large spatial scales108 via
morphological (e.g., wings) and behavioural (e.g., reversible
polarotaxis, repulsion/attraction of polarised light109). In contrast,
larva might disperse as well, but its ability is limited to the aquatic
environment. Therefore, we expect that immigration promoted by
climate change will involve mainly adults.
We determined the male abdomen pigmentation from three

pictures of each species, preferably downloaded from Dragon-
flypix (http://www.dragonflypix.com/index.html). We clipped the
image around the abdomen using the software Gimp110 and
extracted the RGB colour-space using the function getImageHist
(colordistance v1.1.2111). We obtained the mean value of the
abdomen colour for each species as the average of the two
predominant colours on the three photos (data available at
https://osf.io/swnu4/download).
We calculated functional dendrograms16 with the hclust

function in the R package stats v4.1.0112 and a Gower’s
dissimilarity matrix constructed with the package gawdis
v0.1.3113. This function is an extension of the classical Gower’s
distance that provides a solution to limit unequal traits contribu-
tion when different traits are combined in a multi-trait dissimilarity
matrix113 (functional dendrogram: Supplementary Material 10).
The Gower’s distance groups are reported in Table 3.

Estimation of the phylogenetic tree. We calculated phylogenetic
diversity from a tree calculated with sequences available in
GenBank for the analysed species. We retained the five molecular
markers (16S rRNA gene; 18S rRNA gene; Cytochrome c oxidase
subunit I, COI; Histone H3; NADH dehydrogenase subunit 1, NADH)
with the highest taxonomic coverage. We aligned each marker
separately using the E-INS-i algorithm implemented in MAFFT
v7122. We translated alignments of protein-coding genes into
amino acids and checked them for indels and stop codons. When
multiple sequences were available for the same species, we chose
the one with the greatest quality and length. Our final alignment
included a 1996 base pair for the 16S rRNA gene (number of

aligned sequences 87), 1772 base pairs for the 18S rRNA gene (37),
658 base pairs for COI (101), 329 base pairs for H3 (17), and 340
base pairs for NADH (31). We concatenated gene fragments with
SequenceMatrix123 and selected the optimal partition scheme
using the Akaike Information Criterion calculated in PartitionFin-
der124. We calculated ultrametric phylogenetic trees using BEAST
2125, setting a relaxed molecular clock model for each partition
and a Yule model for the estimation of the topology. Our four
Markov Chain Monte Carlo were allowed to run for 100,000,000
generations and sampled every 10,000 generations. The 10% of
initial trees were discarded. We used Tracer v1.7.1126 to confirm
the correct mixing of all the parameters and TreeAnnotator
v2.6.0125 to calculate the consensus tree (Supplementary Material
11).

Elaboration of the taxonomic, functional, and phylogenetic diversity
maps. We assembled taxonomic, functional, and phylogenetic
diversity maps using modified versions of the functions alpha
(temporalAlpha) and beta (temporalBeta) from the package BAT
v2.7.1127. First, we stacked the binary maps obtained from the
best-performing SDMs models of each species. Then, we calculate
α diversity across the three biodiversity facets for present and
future stacked maps. We quantified variations in α diversity
between present and future scenarios by subtracting the α
diversity values in the future and the present. We calculated β
diversity in the same way, estimating replacement and richness
components of β diversity18 for each cell comparing future and
present communities. To calculate the α/β functional and
phylogenetic diversity, we used the functional or phylogenetic
tree as an additional parameter into the functions.

Testing for phylogenetic signal and trait influence on species
response to climate change
We used phylogenetic comparative methods to examine the
influence of phylogeny and traits on the responses of Odonata to
climate change. We characterised the response to climate change
of odonates using three response variables: i) the proportional
variation in habitat suitability, calculated as the ratio between
future and current predicted area (Relative area change); ii) the
altitudinal shift in the distribution, estimated as the difference
between future and current mean altitude (Altitude difference);
and iii) the centroid shift in the distribution, measured as the linear
distance between the position of future and current centroid
(Centroid difference). We used the function distGeo from the R
package geosphere v1.5-14128 to estimate the centroid position.
We investigated whether closely related species experience

similar responses to climate change using Pagel’s λ and
Blomberg’s K, as implemented in the function phylosig from the
R package phytools v0.7-80129. Values close to 0 indicate a weak
phylogenetic signal, whereas values close to 1 or higher suggest
the presence of phylogenetic signal. We then visualised the
phylogenetic signal of each trait using maximum likelihood
ancestral character reconstruction. This technique is widely used
in phylogenetics, and it is useful to reconstruct the transformation
series of a characters given a tree topology and branch length130.
To create the ancestral character reconstruction trees, we used the
function contMapof the R package phytools.
Finally, we explored the relationship between traits and the

species’ response to climate change using PGLS. This approach is
suitable to investigate the effect of several explanatory variables
on a single response variable while controlling for the non-
independence of residuals due to the phylogenetic history shared
across species. To run this analysis, we used the function pgls from
the package caper v1.0.1131. We constructed three separate
models, one for each of the response variables (Altitude
difference, Centroid difference, Relative area change) and three
traits (Body length, Flight Season, Habitat). We excluded other
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traits from the models due to multicollinearity. We used three
functions of branch transformation (lambda, kappa, and delta) to
adjust the covariance matrix to the data selecting the best
transformation through a maximum likelihood procedure. Prior to
model fitting, we performed data exploration, visually inspecting
for the presence of outliers in the predictor and response variables
with dotcharts and verifying multicollinearity among predictor
variables86.
We calculated phylogenetic signal, ancestral character recon-

struction, and PGLS for the entire order of Odonata first, and
afterward we repeated all analyses for the suborders Anisoptera
and Zygoptera separately, since it has been demonstrated that
they can respond differently to environmental change132.

DATA AVAILABILITY
We stored all data, raw predictor variables and detailed model outputs in the OSF
repository (https://osf.io/4rjuc/).

CODE AVAILABILITY
All code used to perform analyses and produce plots is available in GitHub (https://
github.com/TommasoCanc/Odonata_SDM_2022).
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