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Abstract 

Nowadays, building energy models (BEMs) are widely used, particularly in the assessment of 
energy consumption in buildings to address the potential savings that can be generated. The 
realisation of a dynamic energy model based on high-fidelity physics (white-box models) requires 

a tuning process to fit the model to reality, due to many uncertainties involved. Currently some 
research trends try to reduce this performance gap by modulating different types of experimental 
parameters such as: capacitances or infiltration. The EnergyPlus simulation software, in its latest 

versions, has implemented an object: HybridModel:Zone that calculates the infiltration and 
internal mass of buildings using an inverse modelling approach that employs only the measured 
indoor temperature data to invert the heat balance equation for the zone under study. The main 

objective of this paper is to reduce the execution time and uncertainties in the development of 
quality energy models by generating a new calibration methodology that implements this 
approach. This uses, as a starting point, a research created by the authors of this study, which was 

empirically and comparatively validated against the energy models developed by the participants 
in Annex 58. It is also worth highlighting the empirical validation of the HybridModel:Zone object, 
since it was activated in all scenarios where its execution is possible: periods of seven days or more 

of free oscillation and periods in which the building is under load. The findings are promising. The 
data generated with the new methodology, if compared with those produced by the baseline 
model, improve their resemblance to the real ones by 22.9%. While those of its predecessor did it 

by 15.6%. For this study, the two dwellings foreseen in Annex 58 of the IEA ECB project have been 
modelled and their real monitoring data have been used. 
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1 Introduction 

There is a growing interest in full-scale validation of specific 
elements and whole building models to characterise energy 
performance and efficiency (Strachan et al. 2016). This 
validation will reduce the gap between the post-construction 
behaviour of the building and the theoretically designed 
performance, as discussed by Subbarao et al. (Subbarao 
1988; Subbarao et al. 1990) or Burch et al. (1990). Building 
energy simulation is at the heart of the energy assessment 
of buildings. Reliable quantification of energy conservation 
measures (ECMs) will increase confidence in simulation as 
an effective tool to increase retrofit investment (Siddharth 

et al. 2011; Fernández Bandera 2018). However, the simulation 
of building performance is a very loose science. The industry 
needs that the BEM casts confidence into the market 
(Gutiérrez González et al. 2019). 

The 2013 ASHRAE fundamentals handbook (ASHRAE 
2013) classifies the different types of energy models into 
two categories: physical or white-box models generated 
by direct modelling and data-driven or black-box models 
created by inverse modelling. 

Developing a building energy model does not ensure 
that its performance resembles reality. As a general rule, 
what is called the “Building performance gap” occurs, that 
is, the distance between the behavior of the model and the 
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List of symbols 

A   constant term  
Ai  area of the i-th internal surface of the zone (m2)
B   temperature term (°C–1) 
C   velocity term (s/m) 
Cpi  specific heat capacity of the air from the i-th 
  nearby zone (J/kg)  
Cz   current zone air sensible heat capacity multiplier 
D  velocity square term (s2/m2) 
Fsch  infiltration schedule  
hi  convective heat transfer coefficient of the i-th 
  internal surface of the zone (W/(m2·K))  
I  infiltration  
Idesign  design infiltration rate, flow/zone, flow/floor 
  area, flow/exterior area, flow/exterior wall area, 
  or air changes/hour  

infm   mass flow rate of air from the i-th nearby zone  
   (kg/s) 

_zoneim  mass flow rate of air from the i-th nearby zone 
   (kg/s) 

iQ   the i-th internal sensible heat gain rate of the 
   current zone (W) 

sysQ   sensible heat transfer rate due to HVAC system 
   supply (W)  
T∞  outdoor air temperature (K) 

Tobd   outside temperature (K) 
Tsi  temperature of the i-th internal surface of the zone (K)
Tz  current zone air temperature (K)  
Tzi  temperature of the air from the i-th nearby zone (K) 
Tzone  indoor temperature per thermal zone  
WS  wind speed (m/s) 
ρ  Spearman’s rank correlation coefficient  

Abbreviations 

ASHRAE American Society of Heating, Refrigerating and
  Air-Conditioning Engineers  
BCE  Energy in Buildings and Communities Programme 
BEM  building energy model 
CTF  conduction transfer function 
ECMs  energy conservation measures  
EnEV  Energieeinsparverordnung (German Energy Saving 
  Ordinance) 
HVAC  heating, ventilation, and air conditioning 
IEA  International Energy Agency  
LBNL Lawrence Berkeley National Laboratory  
LOSC free oscillation period  
NSGA-II non-dominated sorting genetic algorithm  
ROLBS  randomly ordered logarithmic binary sequence 
TFM  transfer function method 

  
 

building. To correct this discrepancy, both the white-box 
and black-box models must be subjected to an adjustment 
or calibration process.  

There are different approaches to the calibration process 
of white box models. Soebarto (1997) proposed a manual 
calibration by modifying different types of parameters 
through the observation of graphs. Royapoor and Roskilly 
(2015) manually calibrated an office building by comparing 
the data collected by sensors placed in the building. Yang 
and Becerik-Gerber (2015) adjusted the parameters they 
considered most sensitive in their detailed model at different 
levels. Robertson et al. (2015) selected the most sensitive 
parameters from the model and then used them in an 
optimization that helped minimize the discrepancy with 
the real building. Tüysüz and Sözer (2020) calibrated a 
residential building using a detailed model and short-term 
monitoring data. Ascione et al. (2020) used a Pareto 
optimization, calibration and modeling technique to 
realistically fit the detailed energy model of an industrial 
building. Martínez et al. (2020) conducted a performance 
comparison of approaches based on multi-objective 
optimization to calibrate white-box energy models.  

To fit data-driven or black-box models to real data, 

inverse modeling is the most common solution. In recent 
years, interest in running BEMs based on this technique 
has been growing because they can provide a good estimate 
for measurement and verification. Different approaches in 
the field of inverse modelling have been implemented. Dhar 
et al. (2019) developed an inverse modelling methodology 
based on the Fourier series where temperature, as an input, 
was used to predict the energy demand of the building. Dong 
et al. (2005) used a support vector regression to calculate 
the building demand. Thomas et al. (2008) introduced in 
his inverse modelling methodology four linear regression 
methods to estimate building demand. Yu et al. (2010) 
incorporated a novel decision tree methodology into their 
process to ensure that it adequately responded to the required 
requirements. Kwok et al. (2011) used artificial neural 
networks trained by measured data to predict the energy 
demand of a building. Heo and Zavala (2012) and Zhang  
et al. (2013), created a predictive model based on inverse 
modelling using a Gaussian regression process. Fan et al. 
(2014) developed a model composed of eight learning 
algorithms to improve the predictions of their BEM. 
Robinson et al. (2017) used a gradient increase regression 
model to predict annual energy consumption in real estate. 
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Wang et al. (2018) proposed to apply an inverse modelling 
methodology based on an ensemble bagged tree. Sadaei  
et al. (2019) transformed the input data that will feed the 
energy model into multichannel images, converting it into 
a CNN (convolutional neural network) model. Yuan et al. 
(2019) applied a partial least squares regression (PLSR) and 
random forests to classify the main features to become input 
data in the model and thus predict, in this case, the heating 
demand of the building under study.  

The inverse modelling technique is not unique to black 
box models. Detailed models can also be subjected to this 
adjustment process. Heo et al. (2012) used it by performing 
a Gaussian approach to the procedure. Giuliani et al. (2016) 
developed a methodology where the set points of the HVAC 
systems in the energy model were overridden by a special 
program to use the measured building surface temperatures 
in the adjustment process. Tahmasebi and Mahdavi (2012) 
introduced dynamic data into the white box model, which 
in combination with uncertainty indices generates the 
process to bring the BEM to reality. Chen et al. (2019) 
developed an energy model calibration methodology that 
combines white box models with metamodels in an office 
building. Nagpal et al. (2019) worked out a methodology to 
obtain the energy performance of a university campus 
where the models created are generated from the combination 
of black and white box BEM. Ramos Ruiz et al. (2016) used 
the building’s indoor temperatures to guide the NSGA-II 
genetic algorithm towards finding the detailed energy model 
that fulfils the proposed objective function.  

Physical or white box models characterize the dynamic 
thermal behavior of the building (Al-Homoud 2001; Crawley 
et al. 2008; Foucquier et al. 2013). And programs such as 
EnergyPlus can consider the thermal mass of the building 
envelope using the transfer function method (TFM), as well 
as the finite difference method according to the EnergyPlus 
Engineering Reference Book (US DOE 2020).  

However, these are models that take a long time to 
generate, require a lot of experience to implement and have 
difficulties in adapting to socio-economic vicissitudes.    
It should not be forgotten that these models are composed 
of some three thousand adjustable parameters, and that the 
scientific community assures that the fewer parameters 
involved in the fitting process, the more robust the results 
obtained will be (Reddy 2006).  

Following this assumption, the authors of this research 
developed a methodology for calibrating white box models 
using inverse modelling in its process, relying on public 
data generated by Annex 58 for its implementation.  

Annex 58 describes an empirical validation study on 
two buildings in the German town of Horskilchen, as part 
of the AIE BCE project (Annex58 2016). The objective of 
Annex 58 was to test the correlation between the real data 

measured in the dwellings and the data generated by the 
energy models developed by the participants. 21 universities 
and research centres worked on the trial, creating their BEMs 
and providing the necessary data for the project (Strachan 
et al. 2016).  

The requirements for approaching the experiment 
were made public and taking this opportunity the authors 
validated empirically and comparatively a new methodology 
for energy model adjustment (Gutiérrez González et al. 
2020). This new approach achieves high quality results by 
reducing the number of sensors provided by the Annex 58 
to be used in the process by more than 47%. In addition,  
a very significant reduction in the number of parameters 
involved in the process was implemented, leaving only 4: 
capacitances, infiltrations, internal mass and thermal 
bridges.  

The calibration methodology implemented defines an 
objective function that will search for the best fit between 
real and simulated data using the uncertainty indices 
proposed in the experiment (MAE and ρ). Managing to 
generate robust and high quality models. For this purpose, 
the JePLUS package (JePLUS and JePLUS+EA) (Zhang and 
Korolija 2010) will be used, which allows the NSGA-II 
genetic algorithm (Deb et al. 2002) to be integrated with 
the EnergyPlus engine and thus used as a tool to find the 
best solution. The search space that the algorithm faces is 
defined by the possibility of combinations that can occur in 
the selected parameters.  

Of the four parameters involved in the calibration 
process, some of them are difficult to quantify physically in 
a reliable way, such as capacitances and infiltrations. Seeing 
the difficulty in obtaining accurate data on these parameters, 
Hong and Lee presented a paper examining the EnergyPlus 
object: HybridModel:Zone (Hong and Lee 2019), which, 
through inverse modelling, inverts the heat equation of the 
air in the zone (US DOE 2016), using its internal temperature 
as input, to calculate analytically both the internal mass of 
the space (capacitances) and its infiltrations.  

Lee and Hong (2019) validated the inverse modeling 
algorithm, which has the HybridModel:Zone object using 
the Facility for Low Energy Experiment in Buildings 
(FLEXLAB) at Lawrence Berkeley National Laboratory 
(LBNL). However, one of the limitations of this study was 
the fact that three days of free oscillation of the building 
were used instead of the seven necessaries for the optimal 
functioning of the algorithm. In addition, it was argued 
that if the measured energy in the time step of the HVAC 
systems were known, the inverse model could also be applied 
for those periods. But there was no empirical validation of 
this feature.  

The main objective of this study is the implementation 
of the HybridModel:Zone object within the calibration  
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methodology developed by the authors of this research, as 
recommended by Lee and Hong (2019) in their work. Since 
they stated that the object could not replace an adjustment 
process, but rather should be used as a calibration aid. Thus, 
establishing a new technique for obtaining robust and quality 
calibrated models. Since the capacitance and infiltration 
values defined when activating the HybridModel:Zone 
object will be removed from the search space, thereby 
increasing the speed and accuracy of the process.  

Due to the development of this new methodology, a 
second objective was implemented: the empirical validation 
of the object in all spaces in which it can be activated: load 
and free oscillation spaces.  

Another novelty of the research is the development of a 
technique capable of transforming the specificity of the 
infiltrations produced by HybridModel:Zone into generic 
ones. This procedure is important because those calculated 
by the object are specific to the time period where it is 
activated and cannot be exported to others.  

The organization of the document is structured as 
follows: Section 2 will describe the methodology used in the 
research. This part is made up of: Subsection 2.1, where a 
detailed of the dwellings used in the study will be made; 
Subsection 2.2 will provide how the energy model to be 
used has been generated; Subsection 2.3 will explain the 
time periods in which action will be taken; Subsection 2.4 
will discuss the evaluation criteria used and Subsection 2.5 
will summarize the methodology used by means of a flow 
chart. In Section 3, the results obtained in the different 
phases of the investigation will be presented, while Section 
4 will show the conclusions reached.  

2 Methodology 

2.1 Description of the test site 

To conduct this study, the real data generated by the 

experiment created to develop Annex 58 has been used and 
that, is freely available for any researcher to use in their 
investigations. This work has not been done specifically for 
the evaluation of the HybridModel:Zone object; however, 
the available data can be used for this purpose. The first 
step for the evaluation of the object was the development of 
the energy models of the N2 and O5 houses, built for the 
experiments. These houses are located south of Munich, 
in the Bavarian town of Holzkirchen. They are two single- 
family homes that share the morphology of a German 
detached house. And are separated by a few meters 
from each other without any element to give them shade 
(Figure 1).  

Each house has 3 floors: basement, main and attic, with 
an approximate area of 100 m2 per floor. The main floor 
consists of: living room; kitchen; children’s room; bedroom; 
bathroom; entrance and corridor. Following the rules set 
out in Annex 58 for the BEM of dwellings, the rooms on 
the ground floor have been defined as separate thermal 
zones. The adjustment work could have been simplified by 
analyzing the whole ground floor as a single thermal zone. 
This option may be acceptable when the average temperature 
of the building is representative of that of the thermal zones. 
It would reduce costs, because it might only be necessary to 
account for an average temperature of the floor and the 
overall energy consumed by the dwelling, but even so, the 
precision in the adjustment with the measured data will be 
affected.  

With regard to the construction systems used, it should 
be noted that the insulation of the exterior facades     
was made in accordance with the recommendations of the 
German energy code EnEV 2009. The window panes placed 
in both homes have a U of 1.1 W/(m2·K) while the frames 
have 1.0 W/(m2·K).  

The houses are equipped with a mechanical ventilation 
system that introduces air into the living room for a value 
of 120 m3/h. This air is exhausted through two outlets 

 
Fig. 1 Situation of housing 
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located in the bathroom and in the children’s room. Each 
room ejects 60 m3/h.  

The authors of the Annex 58 experiment equipped the 
rooms of the houses, except for the corridor, with fast- 
response electric heaters as a heating system. The baseboard 
heater model used was the Dimplex AKO K810/K811 with 
a radiative/convective split of 30%/70%.  

Numerous sensors and measuring systems were installed 
in the dwellings to collect data from the building envelope, 
the HVAC systems, ventilation, etc. For the realization of 
this study, it was very important to have reliable data on 
the interior temperature of the analyzed thermal zones, 
since the HybridModel:Zone object needs to be fed with 
them. Therefore, this experiment is appropriate for this 
research, because each room was equipped with an indoor 
temperature sensor which was carefully installed. All of 
them were placed at a height of 125 cm from the floor and 
were protected against radiation that could be caused by 
adjacent surfaces or systems. In the living room, two extra 
interior temperature sensors were placed 67 and 187 cm 
above the floor separately. As with the other temperature 
sensors, these were also protected from possible radiation.  

Table 1 makes a compilation of all of them showing the 
degree of precision.  

To determine the infiltration of the houses, a blower 
door test was made on the main floor of both homes. The 
result showed that dwelling N2 had an infiltration value of 
n50 of 1.62 ac/h, while for the O5 house the value of n50  

Table 1 Implemented sensors and their accuracy 
Sensor Accuracy 

Air temperature in all rooms at height of 125 cm ±0.12 K 

Air temperature in living room at height of 
67 cm and 187 cm  ±0.14 K 

Air temperature in the basement and attic  ±0.14 K 

Relative humidity in the living room  ±2.30 % 

Fresh, supply and exhaust air temp. measured in 
the cellar  ±0.04 K 

Heating power of the heated rooms  ±1.50 % 

Supply and exhaust fan power  ±1.50 % 

Ventilation flow rate  ±3.50 m3/h 

Heat flux at the west facade  ±0.65 W/m2

Interior 
sensors 

West wall temp.: internal, external and between 
layers  ±0.14 K 

Dry bulb temperature  ±0.10 K 
Ambient relative humidity  ±2.00 % 
Ground temp. depth of 200, 100, 50, 0 cm  ±0.10 K 
Wind speed at 10 m height  ±0.10 m/s 
Wind direction at 10 m height  ±1.00 
Global, diffuse and vertical solar radiation  ± 2.00 % 

Weather 
station 
sensors 

Long-wave radiation (horizontal, west vertical)  < 34.00 W/m2

was 1.54 ac/h. These values were entered into the base model 
using the EnergyPlus Design Flow Rate object.  

2.2 Development of the EnergyPlus model 

Once the public data available in the Annex 58 had been 
analysed, the energy models were generated (Figure 2). In 
these, the thermal zones that make up the buildings were 
introduced and the materials of the different constructions 
of the houses were detailed. All HVAC systems were 
introduced into the BEM so that the model would reflect 
reality as closely as possible.  

A weather station located nearby collected data on: dry 
bulb temperature; global and diffuse solar radiation; wind 
speed and direction and relative humidity. The data from 
these sensors was used to generate a valid weather file (.epw 
format) that could be entered into EnergyPlus.  

One of the main difficulties faced by modellers when 
generating detailed energy models are the uncertainties 
that can be found in the building, which are very difficult 
to quantify (Heo et al. 2012; Hong et al. 2015; Lee et al. 
2015a, b). If one refers to the physics of the building, there 
are many uncertainties such as: the physical characteristics 
of materials produced in-situ during the construction 
process; the characteristics and composition of the ground 
(Gutiérrez González et al. 2022) among others. Infiltration 
can be detected by means of a blower door, but this task, 
which is already costly in residential housing, is very difficult 
to manage in the case of tertiary buildings.  

Some of the parameters that are difficult to quantify  
in BEMs are also: internal mass, generated by interior 
furnishings, partitions, etc. Simulation tools usually collect 
the mass of the envelope (Wang and Xu 2006; Zeng et al. 
2011; Johra and Heiselberg 2017), but establishing the value 
of the internal mass of the building is a very complicated 
task and significantly affects the expected final result of an 
energy model.  

Reducing this type of uncertainty, knowing the real 
value of capacities or infiltrations, is an important issue in 
an energy model. Thus reflecting the reality of the building 
and therefore better serving its final objective: saving 
energy consumption or improving user comfort (Ramos 
Ruiz and Fernández Bandera 2017a,b).  

2.3 Experiment periods 

The original Annex 58 experiment was conducted between 
August 21, and September 30 of 2013. This time interval 
was divided into 5 periods in which the houses were 
subjected to different energy conditions (Table 2):  
 Period 1 (initialisation): During this three-day period, 

from 21 to 23 August, the houses were heated to a 
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constant temperature of 30 °C, and thus obtain initial 
conditions with the same characteristics in both houses.  

 Period 2 (set point 30 °C): This period goes from the 
23rd to the 30th of August. The houses are kept at a 
constant temperature of 30 °C. The indoor temperature 
data can be entered into the energy model, while the 
energy required to reach these temperatures will be 
requested. This energy will be compared with what the 
real building consumes and thus be able to see the degree 
of adjustment that the model has with respect to reality.  

 Period 3 (ROLBS): This period begins on 30 August and 
ends on 13 September. The heat input was introduced 
into the model by means of a randomly ordered logarithmic 
binary sequence (ROLBS). One of the objectives, when 
feeding the heat inputs through the ROLBS sequence,  
is to make sure that there is no relationship between  
the energy injections and the solar radiation. The energy 
contribution is the data provided to be entered into the 
model. The interior temperatures that the energy model 
was capable of producing with the given energy were 
requested to be contrasted with the real ones.  

 Period 4 (set point 25 °C): period from 14 September to 
19. It is a period very similar to the 2nd. But instead of 
heating the houses to 30 °C they are now warmed to 25 °C. 
The indoor temperature data is known and the energy 
that the BEM must consume to reach it is requested.  

 Period 5 (free oscillation): the duration of this period   

is 10 days, from 20 to 30 September. The buildings are 
left in free oscillation, they will not have any energy 
contribution, except for what can come from the solar 
gains. The energy models will be asked for the internal 
temperatures of the thermal areas analysed and compared 
with the real ones. This will show the degree of adjustment 
that the BEM has with respect to reality.  

The experiment was conducted between August and 
September when temperatures are not as extreme as in the 
winter period. To remedy this lack of a thermal gap between 
the indoor and outdoor temperatures in the houses, those 
responsible for the experiment in Annex 58 raised the 
thermostat setting of the heating systems to 25 and 30 °C in 
periods 2 and 4 respectively, well above the requirements of 
state regulations, which normally set it at 21 °C in the winter 
season. The aim is to simulate the possible temperature 
difference that could occur in the coldest months of the 
year.  

One of the key elements to obtain optimal results using 
the calibration methodology on which this new approach 
is based, is to have a temperature difference between the 
outside and the inside of the building. Therefore, the same 
calibration methodology can be applied in both the winter 
and summer periods, obtaining the same degree of 
adjustment, as shown by Pachano et al. (2022), where the 
model developed using the methodology on which this study 
is based, generated one that was calibrated in the summer 

 
Fig. 2 Schematic view of the energy models (house O5 and N2 respectively) generated with the Open Studio plug-in for SketchUp 

Table 2 Data periods, data provided and requested 

Period Date Configuration Data provided Data requested 

Period 1 2013/8/21 to 2013/8/23  Initialization (constant temperature)  Temperature and heat inputs  —   

Period 2 2013/8/23 to 2013/8/30  Constant temperature (nominal 30 °C)  Temperature and heat inputs  Heat outputs  

Period 3 2013/8/30 to 2013/9/14  ROLBS heat inputs in living room  Temperature and heat inputs  Temperature outputs 

Period 4 2013/9/14 to 2013/9/20  Re-initialization constant temp. (nominal 25 °C) Temperature and heat inputs Heat outputs   

Period 5 2013/9/20 to 2013/9/30  Free float  Temperature inputs  Temp. outputs  
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period and analyzed in the winter months and vice versa.  
In order to conduct this research, the HybridModel:Zone 

object was activated in periods 3 and 5, and thus be able to 
know the capacitances and infiltrations of the building. Once 
found, they will be introduced in the calibration process, 
generating the Calibrated Hybrid model. These models: 
Base, Calibrated and Calibrated Hybrid were tested in all the 
periods previously described.  

In the fixed set-point periods (2 and 4) the object can 
not be activated, as the internal temperatures are practically 
constant, so the temperature differential between adjacent 
periods, which acts as a quotient in Eq. (1) for the calculation 
of the capacitance value, will be very close to 0. And for the 
equation to be solved optimally, dt has to be greater than 
0.05 °C (US DOE 2020). This condition is necessary to 
avoid anomalies in the calculation of the internal mass of 
the thermal zone.  
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At the same time, following the recommendation given 
by Lee and Hong (2019), values of a thermal gap between 
the outside and inside temperature of a zone below 5 °C were 
discarded for the calculation of infiltration. To make the 
result more reliable.  

2.4 Evaluation criteria 

To check the degree of agreement obtained by the energy 
models, when comparing their data with the real ones, the 
same goodness-of-fit indices that were proposed by Annex 
58 study have been used to evaluate their results: main 
absolute error (MAE) and Sperman’s correlation coefficient 
(ρ) (Strachan et al. 2016). The MAE index will measure the 
magnitude of fit between the real data and those obtained 
by the simulated model and at the same time, the magnitude 
of fit of the shape will be dimensioned by the ρ index.  

It has also been decided to classify the results obtained 
following the same evaluation as the one performed in  
the Annex 58 for both temperature and energy values. The 
calibration quality level is summarised in Table 3. Models 

highlighted in green represent those that achieve an excellent 
fit with the real data; yellow: models with a moderate 
adjustment; orange: represents an insufficient match and a 
model marked in red is considered not to have a good fit 
with the data obtained from the real building.  

It is important to be able to define precisely which model 
most closely resembles the real data. For this reason, an 
evaluation criterion has been generated to show the degree 
of goodness of fit of the BEMs created. The uncertainty 
indices (MAE and ρ) obtained by all models and in all 
periods have been weighted equally, in order to compare 
them on equal terms. And thus, to find out which one fits 
best for the set of periods examined. Subsection 3.4 shows 
the results obtained.  

2.5 Flow chart: summary of the methodology 

The Figure 3 shows the flow chart followed in this study to 
achieve the results that will be discussed in Section 3. The 
research starts with the development of the Baseline model 
(1) using the Open Studio (Guglielmetti et al. 2011) plug-in 
for SkechUp (Ellis et al. 2008). The Open Studio software 
allows exporting the created energy model in .idf format, 
which is used by EnergyPlus. At the same time as the BEM 
is generated, the weather file (.epw) is created, consisting of 
the sensors that make up the meteorological station located 
next to the dwellings (2). With the BEM and the weather 
file created, the phases in which the experiment is to be 
carried out will be defined: Periods (3). 

The base model is not subjected to any calibration 
process and will be simulated in all periods, without altering 
its characteristics, to be able to compare the degrees of 
adjustment achieved with the new models generated.  

The proposed study tries to define the values of the 
capacitances and infiltrations of the buildings under con-
sideration, to be introduced into the model and thus reduce 
the number of parameters when executing its calibration 
process. So once the BEM, the meteorological file and the 
simulation periods have been defined, the Baseline Model 
will be executed with the EnergyPlus HybridModel:Zone 
object activated to find these values by thermal zone and 
simulation period (4).  

At the same time, the Baseline Model (1) will undergo 
an adjustment process following the methodology developed 
by the authors generating the Calibrated Model (5).  

Table 3 Calibration criteria of Annex 58 

Temp. magnitude fit < 1 °C 1–2 °C 2–4 °C > 4 °C 
MAE 

Heat input magnitude fit < 100 W 100–200 W 200–300 W > 300 W 

ρ Temp./ heat input magnitude fit > 90 % 80 %–90% 70 %–80% < 70 % 

 Calibration level Excellent Optimal Medium No calibrated  
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Finally, the results obtained of capacitances and 
infiltration by the execution of the object were introduced 
in the model that will be subjected to the calibration process, 
generating the Hybrid Calibrated Model (6).  

The three models created: Baseline Model (1), Calibrated 
Model (5) and Hybrid Calibrated Model (6) were run in all 
the periods proposed for the Annex 58 experiment in view 
of analysing the results and comparing their degree of fit 
with the real data (7).  

All these studies are conducted in an effort to reduce 
the adjustment times of the BEMs to reality and to increase 
the quality of the data entered into the model by obtaining 
values of capacitances and infiltrations through the 
EnergyPlus object.  

3 Analysis of the results 

3.1 Result of the capacitance and infiltration values 
obtained by the activation of the HybridModel:Zone 
object 

To perform this study, the HybridModel:Zone object was 
activated in periods 3 (ROLBS) and 5 (free oscillation), in 
order to know the values of capacitances and infiltration 
that the BEM will provide for these periods in each thermal 
zone.  

The obtained capacitance values (Table 4) were directly 
entered into the energy models.  

A remarkable fact is that, for each analysed period different 
capacitance values are obtained. The value calculated by 
the HybridModel:Zone object depends on the degree of 
uncertainty of the energy model. Even so, the nearer the base 
model and the real building are, the closer the capacitance 
value generated by the object for each period analysed.  

Analysing the capacitances found in the different 
thermal zones, it is observed that in all zones they are quite 
homogeneous. Their differences vary between 0.22 obtained 
in the kitchen of house O5 and 1.62 in the living room of 
house N2. The largest mismatch occurs in the bedroom of 
house N2 with 23% inequality.  

When the object is activated for the infiltration 
calculation, the result is a time-step by time-step infiltration 
value for each thermal zone analysed. These values are 
specific to the time period under study and can only be 
used for that time frame.  

In order to be able to use the infiltration values obtained 
in any time frame, a regression of the Design Flow Rate 
object of EnergyPlus was performed (Eq. (2)).  

( )( ) ( ) ( ) ( )[ ]2
design sch zone odbI I F A B T T C WS D WS+ - + +＝   

(2) 

This regression allows the generation of a linear model 
in which the value of the dependent variable (infiltration) is 
determined from a set of independent variables (coefficients: 
A, B, C and D). The newly calculated coefficients (Table 5)  

 
Fig. 3 Flowchart of the research performed 
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are fed into the energy model and can thus be used in any 
period.  

Looking at the results that the EnergyPlus object shows 
in infiltration, it can be stated that it introduces more 
infiltration in the N2 dwelling than in the O5, where it 
practically cancels them in the bedroom and the kitchen.  

The values of capacitances and infiltration shown in 
Tables 4 and 5 respectively were fed into the Baseline Models. 
This, in turn, was subjected to the calibration process 
developed by the authors of this study, resulting in the 
Hybrid Calibrated Model.  

3.2 Comparison, using MAE index, of the adjustment 
results obtained by the energy models 

Tables 6 and 7 present the results obtained in the checking 
periods 3 (ROLBS) and 5 (LOSC) for the models studied: 

Baseline, Hybrid Calibrated and Calibrated Model, using 
the MAE index by thermal zone. These tables compare the 
real temperature with that produced by the models, thus 
showing the degree of agreement.  

In turn, Tables 8 and 9 show the MAE index per thermal 
zone of the 3 energy models generated when are checked in 
periods 2 and 4. In these, the energy that the model needs 
to reach certain temperatures is compared with the energy 
that it really consumes to reach them. 

The first column of the tables indicates the dwelling 
in question: N2 or O5. The second represents the type of 
energy model. The third defines the training period, the 
period where the HybridModel:Zone object has been 
activated or the model has been calibrated, and the fourth 
shows the period where the results have been checked. The 
remaining columns show the MAE index values obtained 
by the different models in each thermal zone studied.  

Table 4 Result of the value of the capacitance for the two houses and in all the analysed periods. 
 

Living room Children room Bedroom Kitchen 
Period N2 O5 N2 O5 N2 O5 N2 O5 

ROLBS (Period 3) 11.21 10.12 4.89 3.93 5.41 6.05 13.95 5.23 
Free oscillation (Period 5) 9.59 11.43 4.49 4.38 4.15 5.78 13.12 5.45 

Table 5 Result of the values of the coefficients necessary for the calculation of the infiltration in the Design Flow Rate object of 
EnergyPlus 

 
Living room Children room Bedroom Kitchen 

Coefficients N2 O5 N2 O5 N2 O5 N2 O5 

A 0.001573  0.000221  0.000295  0.003200  0.000297  0.001194  0.000168  0.000464  
B  0  0.000136  0.000138  0  0.000068  0  0.000271  0   
C  0.000045  0.000357  0.000468  0.000250  0.000367  0.000078  0.000141  0.000041  
D  0  0  0  0  0  0  0.000012  0.000000  

A: constant term; B: temperature term (°C−1); C: velocity term (s/m); D: velocity squared term (s2/m2). 

Table 6 Result of the adjustment with the real data (in °C) produced by the energy models of both houses (N2 and O5) trained in period 3 
and checked in periods 3 and 5 (MAE index) 

House Model Training period Checking period Living room Children’s room Bedroom Kitchen 

Calibrated Period 3 Period 3 0.32 0.23 0.22 0.55 
Hybrid calibrated Period 3 Period 3 0.31 0.26 0.34 0.70 N2 

Baseline Period 3 Period 3 1.55 0.25 0.50 0.97 
Calibrated Period 3 Period 5 0.40 0.28 0.23 0.51 

Hybrid calibrated Period 3 Period 5 0.36 0.32 0.38 0.65 N2 
Baseline Period 3 Period 5 1.82 0.23 0.33 0.66 

Calibrated Period 3 Period 3 0.45 0.29 0.19 0.28 
Hybrid calibrated Period 3 Period 3 0.55 0.45 0.16 0.28 O5 

Baseline Period 3 Period 3 1.56 0.41 0.26 0.64 
Calibrated Period 3 Period 5 0.66 0.34 0.20 0.30 

Hybrid calibrated Period 3 Period 5 0.64 0.13 0.18 0.25 O5 
Baseline Period 3 Period 5 1.93 0.41 0.28 0.67 

    

Green < 1 °C Yellow 1–2 °C  Orange 2–4 °C Red > 4 °C 
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Table 7 Result of the adjustment with the real data (in °C) produced by the energy models of both houses (N2 and O5) trained in period 5 
and checked in periods 3 and 5 (MAE index) 

House Model Training period Checking period Living room Children’s room Bedroom Kitchen 

Calibrated Period 5 Period 3 0.36 0.27 0.34 0.59 
Hybrid calibrated Period 5 Period 3 0.41 0.25 0.33 0.69 N2 

Baseline Period 5 Period 3 1.55 0.25 0.50 0.97 
Calibrated Period 5 Period 5 0.34 0.22 0.21 0.51 

Hybrid calibrated Period 5 Period 5 0.30 0.27 0.34 0.65 N2 
Baseline Period 5 Period 5 1.82 0.23 0.33 0.66 

Calibrated Period 5 Period 3 0.46 0.53 0.30 0.47 
Hybrid Calibrated Period 5 Period 3 0.67 0.48 0.17 0.46 O5 

Baseline Period 5 Period 3 1.56 0.41 0.26 0.64 
Calibrated Period 5 Period 5 0.39 0.13 0.18 0.27 

Hybrid Calibrated Period 5 Period 5 0.44 0.12 0.19 0.28 O5 
Baseline Period 5 Period 5 1.93 0.41 0.28 0.67 

    

Green < 1 °C Yellow 1–2 °C  Orange 2–4 °C Red > 4 °C 

Table 8 Result of the adjustment with the real data (in W) produced by the energy models of both houses (N2 and O5) trained in 
period 3 and checked in periods 2 and 4 (MAE index) 

House Model Training period Checking period Living room Children’s room Bedroom Kitchen 

Calibrated Period 3 Period 2 153 140 33 74 
Hybrid calibrated Period 3 Period 2 142 129 62 51 N2 

Baseline Period 3 Period 2 76 175 85 46 

Calibrated Period 3 Period 4 318 153 46 80 

Hybrid calibrated Period 3 Period 4 314 150 64 44 N2 

Baseline Period 3 Period 4 102 188 81 63 

Calibrated Period 3 Period 2 197 122 63 66 

Hybrid calibrated Period 3 Period 2 190 98 63 64 O5 

Baseline Period 3 Period 2 170 149 73 65 

Calibrated Period 3 Period 4 128 70 52 42 

Hybrid calibrated Period 3 Period 4 209 90 37 39 O5 

Baseline Period 3 Period 4 129 145 49 54 
        

Green < 100 W Yellow 100–200 W Orange 200–300 W Red > 300 W 

Table 9 Result of the adjustment with the real data (in W) produced by the energy models of both houses (N2 and O5) trained in period 5 
and checked in periods 2 and 4 (MAE index) 

House Model Training period Checking period Living room Children’s room Bedroom Kitchen 

Calibrated Period 5 Period 2 85 132 22 81 
Hybrid calibrated Period 5 Period 2 71 120 55 51 N2 

Baseline Period 5 Period 2 76 175 85 46 
Calibrated Period 5 Period 4 242 152 42 81 

Hybrid calibrated Period 5 Period 4 214 141 59 45 N2 
Baseline Period 5 Period 4 102 188 81 63 

Calibrated Period 5 Period 2 219 87 29 59 
Hybrid calibrated Period 5 Period 2 231 89 50 32 O5 

Baseline Period 5 Period 2 170 149 73 65 
Calibrated Period 5 Period 4 457 76 43 126 

Hybrid calibrated Period 5 Period 4 311 89 24 59 O5 
Baseline Period 5 Period 4 129 145 49 54 

        

Green < 100 W Yellow 100–200 W Orange 200–300 W Red > 300 W 
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A closer look at the results obtained for the MAE index 

by the BEMs shows that there are two clearly differentiated 
blocks when the degree of adjustment achieved with 
respect to the real measurements is examined. The Baseline 
Model obtains a degree of adjustment clearly further from 
reality than the Calibrated Model and the Hybrid Calibrated 
Model.  

When the models are checked in periods 3 and 5 
(Tables 6 and 7), where the temperature of the thermal 
zones are compared with the real temperature, the 
Calibrated models clearly achieve the best results, especially 
the difference in the living room is striking. When looking 
at the results shown in tables 8 and 9, where the energy 
produced by the models is compared to the real data, the 
opposite is true. The Baseline models manage a slightly better 
fit, especially in the living room. This may be the result of a 
slight over-fitting occurred during the calibration process. 
Since periods 2 and 4 have not been part of the calibration 
process.  

3.3 Comparison, using ρ index, of the adjustment results 
obtained by the energy models 

The same analyses performed for the MAE index have been 
done for the ρ index indicating the equality of the shapes of 
two curves. In this case, the temperature and energy curves 
produced by the energy models are compared with the 
curves produced by the real measurements. Tables 10 and 
11 show the results derived from all the models analysed. 
As with the MAE index, the training periods are 3 and 5, 
periods in which the hybrid model has been activated. In 
turn, the models have been checked in all periods: periods 
2 and 4, where energy is evaluated and periods 3 and 5 
where temperature is checked.  

When analysing the ρ index obtained by the energy 
models, it can be seen that, in general, the results are quite 
good. There is very little difference between the fit that one 
or the other models achieve.  

But a closer examination of the results shows that the  

Table 10 Result of the adjustment with the real data produced by the energy models of N2 house, trained in periods 3 and 5 and checked 
in all of them (ρ index) 

House Model Training period Checking period Living room Children’s room Bedroom Kitchen 

Calibrated Period 3 Period 2 0.96 0.58 0.91 0.72 

Hybrid calibrated Period 3 Period 2 0.96 0.53 0.91 0.86 N2 

Baseline Period 3 Period 2 0.97 0.56 0.92 0.87 

Calibrated Period 3 Period 3 0.99 0.98 0.98 0.92 

Hybrid calibrated Period 3 Period 3 0.99 0.97 0.98 0.96 N2 

Baseline Period 3 Period 3 0.97 0.99 0.97 0.97 

Calibrated Period 3 Period 4 0.94 0.62 0.87 0.67 

Hybrid calibrated Period 3 Period 4 0.94 0.57 0.87 0.68 N2 

Baseline Period 3 Period 4 0.93 0.59 0.92 0.87 

Calibrated Period 3 Period 5 1.00 1.00 0.99 0.95 

Hybrid calibrated Period 3 Period 5 1.00 1.00 0.99 0.93 N2 

Baseline Period 3 Period 5 0.92 1.00 0.98 0.96 

Calibrated Period 5 Period 2 0.96 0.56 0.91 0.74 

Hybrid calibrated Period 5 Period 2 0.96 0.53 0.91 0.86 N2 

Baseline Period 5 Period 2 0.97 0.56 0.92 0.87 

Calibrated Period 5 Period 3 0.99 0.97 0.97 0.92 

Hybrid calibrated Period 5 Period 3 0.99 0.98 0.98 0.96 N2 

Baseline Period 5 Period 3 0.97 0.99 0.97 0.97 

Calibrated Period 5 Period 4 0.95 0.60 0.85 0.67 

Hybrid calibrated Period 5 Period 4 0.94 0.57 0.87 0.68 N2 

Baseline Period 5 Period 4 0.93 0.59 0.92 0.87 

Calibrated Period 5 Period 5 1.00 1.00 0.99 0.95 

Hybrid calibrated Period 5 Period 5 1.00 1.00 0.98 0.93 N2 

Baseline Period 5 Period 5 0.92 1.00 0.98 0.96 
        

Green >0.90 Yellow 0.80–0.90 Orange 0.70–0.80 Red < 0.70 
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children’s room for both houses is the one that achieves the 
worst adjustment in all the models and especially in the 
periods where energy is the data to be compared. This may 
be due to certain errors or uncertainties that might occur in 
the data provided or in the physics of the thermal zone. 
Since in the rest of the zones and thermal periods the 
degree of adjustment achieved by the new methodology is 
of great quality.  

3.4 Selection of the energy model with the best global 
adjustment to the real data 

Table 12 shows the sum of the weighted uncertainty indices 

obtained by the BEMs in all the periods and thermal zones 
analysed. In order to distinguish which model has the best 
overall performance with respect to reality. The model with 
the most similar behaviour to the physical building is the 
one that obtains the lowest value in the total weighted sum 
(highlighted in blue).  

When studying the results, the model that achieves the 
best similarity with the real data is the Hybrid Calibrated 
Model, improving this fit by 22.9% compared to that achieved 
by the base model. The Calibrated Model, obtained with 
the methodology on which the one developed in this paper 
is based, only manages to improve the degree of fit with 
respect to the Baseline model by 15.6%. The new technique 

Table 11 Result of the adjustment with the real data produced by the energy models of O5 house, trained in periods 3 and 5 and checked 
in all of them (ρ index) 

House Model Training period Checking period Living room Children’s room Bedroom Kitchen 

Calibrated Period 3 Period 2 0.84 0.79 0.75 0.83 

Hybrid 
calibrated Period 3 Period 2 0.84 0.79 0.75 0.83 O5 

Baseline Period 3 Period 2 0.90 0.75 0.78 0.82 

Calibrated Period 3 Period 3 0.99 0.99 0.99 0.99 

Hybrid 
calibrated Period 3 Period 3 0.98 0.98 0.99 0.98 O5 

Baseline Period 3 Period 3 0.99 0.99 0.99 0.99 

Calibrated Period 3 Period 4 0.96 0.29 0.97 0.95 

Hybrid 
calibrated Period 3 Period 4 0.95 0.42 0.95 0.93 O5 

Baseline Period 3 Period 4 0.96 0.42 0.96 0.93 

Calibrated Period 3 Period 5 0.98 1.00 0.99 0.99 

Hybrid 
calibrated Period 3 Period 5 0.97 1.00 0.99 0.99 O5 

Baseline Period 3 Period 5 0.98 1.00 0.98 0.98 

Calibrated Period 5 Period 2 0.89 0.76 0.84 0.87 

Hybrid 
calibrated Period 5 Period 2 0.90 0.91 0.87 0.91 O5 

Baseline Period 5 Period 2 0.90 0.75 0.78 0.82 

Calibrated Period 5 Period 3 0.99 0.99 0.98 0.96 

Hybrid 
calibrated Period 5 Period 3 0.98 0.99 0.99 0.96 O5 

Baseline Period 5 Period 3 0.99 0.99 0.99 0.99 

Calibrated Period 5 Period 4 0.96 0.37 0.82 0.91 

Hybrid 
calibrated Period 5 Period 4 0.96 0.41 0.96 0.95 O5 

Baseline Period 5 Period 4 0.96 0.42 0.96 0.93 

Calibrated Period 5 Period 5 0.98 1.00 0.99 0.99 

Hybrid 
calibrated Period 5 Period 5 0.98 1.00 0.99 0.98 O5 

Baseline Period 5 Period 5 0.98 1.00 0.98 0.98 
        

Green >0.90 Yellow 0.80–0.90 Orange 0.70–0.80 Red < 0.70 
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achieves a 7.3% improvement over its predecessor in terms 
of similarity to the real building.  

3.5 Comparison of the data obtained by the generated 
energy models against the real ones by means of a time 
sequence 

The following Figures 4 to 7 present the temperature and 
energy results obtained by the analyzed models in a time 
sequence. The results of the models: Baseline, Hybrid 
Calibrated and Calibrated are plotted together with the real 
data (dotted line) to see graphically how well they fit these 
data.  

As has been seen and commented when analysing the 
results in Tables 6 to 11, the Hybrid Calibrated Model is the 
one that achieves the best fit with respect to the real data  
in the set of periods analysed. Figures 4 and 5 illustrate   

this graphically. These, also clearly depict the two blocks 
mentioned above. On one hand we have the Calibrated and 
Hybrid Calibrated Models and on the other are the rest of 
the models. Figures 6 or 7 are a good example of this.  

The graphs corresponding to the rest of the periods 
analyzed can be found in the Appendix, which is available 
in the Electronic Supplementary Material (ESM) from the 
online version of this paper.  

4 Conclusions 

The main objective of this research has been the development 
and evaluation of a calibration methodology based on that 
conducted by the authors of this research. Introducing the 
novelty of the activation of the EnergyPlus HybridModel:Zone 
object in the process.  

At the same time, an empirical validation of the object  

Table 12 Ranking of the degree of fit of energy models by weighted MAE index 
 

N2 house O5 house 

Training: Period 3 Period 5 Period 3 Period 5 Total 

Model Checking: All periods All periods All periods All periods Sum % 

Calibrated  35.9 35.8 34.0 33.9 139.8 15.6 

Hybrid calibrated  34.5 32.4 31.4 29.3 127.6 22.9 

Baseline  38.9 40.1 45.8 40.7 165.6 0.0 

 

Fig. 4 Temperature (in °C) produced by the N2 house BEMs, trained in period 5 and checked in period 3 

Fig. 5 Energy (in Wh) produced by the O5 house BEMs, trained in period 5 and checked in period 2 
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has been performed, testing it with real data and in all time 
periods where it can be activated.  

To achieve these ends, the real data provided by Annex 58 
of dwellings N2 and O5 in the German town of Holzkirchen 
have been used. These are reliable and robust data, made 
available to researchers for use in their studies.  

The main objective achieved in this paper has been that 
the Hybrid Calibrated model, generated with the calibration 
methodology developed in this study, obtains the best degree 
of fit with respect to the real data than the rest of the models 
analysed. It improves by 22.9% that of the Base model, while 
the Calibrated model only does so by 15.6%.  

Another noteworthy result is that the Calibrated model 
created with the method developed by the authors managed 
to improve the results obtained by the participants of the 
Annex 58 by an average of more than 42% in the degree of 
adjustment. And that this outcome has been surpassed by 
7.2% by the proposed new model: Hybrid Calibrated.  

It is also worth noting that the Hybrid Calibrated model 
adapts better to the checking periods than the others, reducing 
the risk of over-fitting that can occur in the process.  

The results obtained are very encouraging because this 
calibration methodology is the one that provides the closest 
models to the real building. In future work it will be necessary 
to continue exploring this line of research in different 
types of buildings and locations, to consolidate the results 
obtained.  

 
Electronic Supplementary Material (ESM): Complementary 
data on the results obtained by the four energy models 
analysed in different time periods, shown in time sequence 
are available in the online version of this article at 
https://doi.org/10.1007/s12273-022-0900-5. 
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