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Abstract
This work presents an experimental study of the response of a liquid bridge formed between a sphere and a plane solid surface 
subjected to a vertical sinusoidal vibration. The amplitude and frequency of the oscillations can be varied. The successive 
movement of the particle along with the bridge deformation is registered to follow the dynamics of the system. The motiva-
tion is to figure out how capillary and viscosity forces can be modeled with the help of the experimental data obtained and to 
settle down a simplified theoretical approach capable of being implemented in the description of many phenomena involving 
wet granular grains. The results indicate that the viscosity effects can be neglected as soon as the amplitude of the move-
ment is not too small, still obtaining a reasonable description of the dynamical behavior of the sphere/liquid-bridge system.
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1  Introduction

The elementary scenario of a spherical particle deposited 
on a horizontal solid surface appears in a great number of 
physical and physicochemical problems. From the destabili-
zation of grains on a sand pile to the adhesion of a micro par-
ticle to a rough substrate, that schematic image has served 
as the starting point for the design of many models for those 
diverse phenomena. Although apparently simple, the inter-
action between a particle and a wall surface possesses a great 
deal of complexity.

For the case of macroscopic grains (order of millimeters), 
the development of contact laws for particle-particle and 
particle-wall interactions has helped to improve the theo-
retical and numerical descriptions of the collective motion 
of granular matter [1], in such a way that successful models 
are presently used for predicting the behavior of grains in 
many different problems. Examples of these laws are the 

well-known Hooke and Hertzian elastic models applied to 
granular matter [2, 3], the Cundall and Strack model for 
particle friction [4], the spring-dashpot model [5] or the de 
Gennes model for “soft crust” particles [2], to name just 
a few of them. These laws are mostly based on the elas-
tic behavior of dry solid bodies in touch, where linear or 
non-linear behavior can occur for the force-deformation 
response, depending on the particular materials involved.

Nevertheless, the presence of humidity in most real cases 
where particles and surfaces interact is unavoidable. Thus, 
the formation of capillary bridges is expected, adding a new 
component into the description of the forces involved.

The development of models including capillary effects 
has been successful in the last decades, helping to under-
stand and predict the behavior of wet granular matter with 
good results [6–10]. In this way, both contact and capillary 
forces can be included in the theoretical modeling of particu-
late matter for a better approach to real scenarios. Just as an 
example, the complexity of the discharge of wet grains from 
a silo has been well predicted through Discrete Elements 
Methods several years ago [11].

In most cases, capillary forces can be considered as 
the result of a short range interaction [3] and are capable 
of forming strong networks when close packing of grains 
is present but, these networks can significantly decrease 
their strength as the spacing between particles increases, 
i.e., when capillary bridges are subjected to considerable 
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deformation, especially in two-particle configurations [12]. 
Consequently, there are still many features present when 
manipulating wet granular matter that still have to be studied 
in detail. For instance, the idea to model the interaction of a 
particle over a horizontal plane surface by using an elastic 
deformation of a virtual spring representing the contact can 
be adequate for dry matter but not when a liquid bridge is 
present at the interface between the two bodies or where 
adhesion plays an important role due to the size or the hard-
ness of the particles involved [13, 14]. Needless to say when 
the volume of the liquid bridge is considerably higher and 
considerable stretching of it is expected. In that case, models 
have to be modified to account for the effect.

The study of the deformation of a liquid bridge under 
external excitations has been studied in the past motivated by 
the interest to grow crystals for semi-conductor applications 
and for the development of materials on board of space sta-
tions. Many researchers considered a mass of liquid (viscous 
or not) held by surface tension forces between two parallel, 
coaxial, solid disks and frequently under microgravity con-
ditions, aiming at measuring the bridge frequency response 
and resonance frequencies [15].

Valsamis and coworkers also studied the excitation of a 
liquid bridge between two parallel plates (one fixed, one 
mobile) subjected to small vertical periodic perturbations 
and motivated by the possible applications in the problem 
of micro-assembly and control of micro-joints [16]. They 
used a Kelvin–Voigt model with spring, damper and inertial 
parameters, respectively. They found that this model was 
able to reproduce quite well most of the results for the micro 
liquid bridges used in their work.

The same configuration of a liquid trapped between two 
parallel surfaces but subjected to a horizontal vibration with 
small amplitude was studied by Ichikawa et al. [17]. By esti-
mations of the intervening parameters, they were able to 
describe the experimental results using a fundamental mass-
spring-damper approach with a reasonable agreement. On 
the other hand, the possible existence of a complex flow 
structure (like transversal vortices) inside a liquid bridge 
subjected to various horizontal vibrations was revealed in 
the numerical investigation by Liang et al. [18]. Similarly, 
small amplitude and low period vertical vibrations of a liq-
uid bridge between two coaxial disks were presented in [19]. 
The author found analytically a criterion for the stability 
of the bridge, proving that the destabilizing role of gravity 
can be weakened or even eliminated by the effect of small 
vibrations. This finding was experimentally corroborated by 
Haynes and coworkers [20].

When the deformation of a liquid bridge is important 
and/or the velocity of that process is low, the viscous forces 
can be neglected [21–23]. Otherwise, viscosity has to be 
considered, increasing the complexity of the problem when 
variable velocities are present in the dynamics. A detailed 

study for the influence of viscosity forces in the strength of 
an oscillating pendular liquid bridge was studied by Ennis 
and co-worker three decades ago [24]. They assessed the 
relative contribution of static (capillary) and viscous forces 
for different capillary numbers (Ca) and concluded that, for 
Ca smaller than 10−3 , capillary effects prevails over liquid 
viscosity and relative particle motion but, for Ca greater 
than one, bridge strength is insensitive to surface tension 
and linearly related to Ca, resulting a function of viscosity 
at high Ca. Besides, discrepancies were found with theory 
when the bridge volume was small and the gap between the 
particles was large [22, 24].

Pitois et al. presented an extension of the classical formu-
lations for capillary forces in order to include the dynamic 
effects in the strength of a capillary bridge between two 
particles [21]. They performed experiments and applied the 
extended formulation to describe the results. For a small vol-
ume of the bridge, the earlier expression due to Maugis was 
able to adequately describe the force in the problem [21, 25]. 
When viscous effects are present, a rate dependent term has 
to be introduced. The authors proposed a modified analytical 
expression directly related to the bridge volume and found 
accordance of the experimental results over a large range of 
liquid viscosity and particle velocity.

Sudo et al. [26] performed an experimental study of the 
behavior of a liquid bridge (water) between a solid sphere 
and a flat solid plate subject to vertical vibration. In par-
ticular, the volume of the bridge was less but close to the 
volume of the sphere. The authors found that the vibration 
acceleration dominated the behavior. At lower excitation 
accelerations (of the order of gravity) the sphere oscillated 
harmonically with a stable liquid bridge deformation. For 
higher acceleration excitation, the solid sphere exhibited a 
complicated response and the liquid bridge exhibited chaotic 
behavior [26].

A recent work by Buck et al., presented a numerical study 
of the collision of a particle with a wet horizontal plate [27]. 
They were able to predict the restitution coefficient for the 
particles when impacting normally and obliquely on the 
wet plate. The validation of the model was also a goal of 
the paper which presented the influence of collision param-
eters such as the velocity rate and angle of impact, the liquid 
properties and the possibility of rotation of the particle [27]. 
Although oscillations were not studied, the work by Buck 
demonstrated that the properties of the liquid layer wetting 
the plate have a strong influence on the normal restitution 
coefficient but it is nearly negligible for the tangential one 
and for rotation.

In the present study, we focus on the direct observation of 
the deformation of a liquid bridge formed between a sphere 
and a solid plane surface which is subjected to a sinusoidal 
vertical oscillation. The aim is at determining the dynam-
ics of the bridge in such a complex scenario by following 
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the sphere’s and the excited surface’s movements. Different 
parameters are varied to assess the effects of the liquid vol-
ume and the frequency and amplitude of the excitation. Once 
the experimental data is recovered, a theoretical approach is 
developed in order to determine the role of the liquid bridge 
in the movement equation. An expression for the capillary 
force is proposed taking into account former models and 
evaluating the extent of the effects of the viscosity in the 
present scenario.

2 � Experimental set‑up and procedure

The experimental set-up shown in Fig. 1a is designed to 
study the liquid bridge dynamics. The device consists of 
a mechanical oscillator with an amplitude and frequency 
controlled externally by an electronic function generator. 

A horizontal plane surface made in aluminum is fixed to 
the axis of the oscillator. On this surface, a known volume 
of liquid V (ethylene glycol) is placed and, immediately, a 
spherical and non-deformable particle (an air gun plastic 
bullet) with a diameter of 6 mm, a mass of 11 g and a vol-
ume greater than the liquid volume (Vbullet = 0.11 ± 0.03 
cm3) is carefully placed on the middle of the liquid drop. 
The solid plane has a second smaller particle glued to it as 
a reference to follow the surface oscillation.

To follow the liquid bridge elongation two fast cameras 
are used depending on the needs: an IDS-UI3160CP for a 
preliminary study and a Photron Limited Mini UX100-Type 
800 K-C-8GB for a systematic study. The maximum veloci-
ties employed during the recording are 1400 fps in the first 
case and 2000 fps in the second case. A PC captures all the 
video streaming for post processing with Matlab©.

The procedure to measure the behavior of the liquid 
bridge between the sphere and the surface when subjected 
to a sinusoidal excitation is the following. The desired liq-
uid volume V of ethylene glycol is placed on the horizontal 
plate surface. This volume is controlled by first determining 
the weight of 10 ethylene glycol drops using a high preci-
sion balance. From an average over 10 separately equivalent 
determinations (93 ± 1 × 10− 3 g) and the ethylene glycol den-
sity � = 1.11 ± 0.01 g/cm3, the average volume for a drop 
results to be 84 ± 2 × 10− 3 cm3. Then, the spherical parti-
cle is deposited centered on the liquid volume. The desired 
frequency and amplitude A for the sinusoidal oscillation 
of the plate is chosen in the wave generator. The moving 
and reference spheres are filmed over a total of 20 oscil-
latory cycles. Once the recording is done, the oscillator is 
turned off. A new value for A and frequency are chosen and 
a new experiment is run by recording 20 cycles as before. 
The videos thus obtained are processed with Matlab©. The 
two different spheres are identified by the software through 
the entire movie and the stretching of the liquid bridge, D, 
is calculated from D = ys − yp , where ys is the coordinate 
of the base of the big sphere (considered as a rigid body) 
respect to the fixed laboratory frame and yp is determined 
through yp = yr − Rr , i.e., the difference between the mass 
center coordinate of the small reference sphere (respect to 
the fixed laboratory frame) and its radius, as they come from 
the imaging analysis. See Fig. 1b for definitions.

3 � Experimental results

3.1 � Preliminary tests

Before a systematic study, we perform several tests to find 
the optimal range of values to run the experiments avoiding 
the breaking of the liquid bridge and maximizing the acqui-
sition speed. This speed depends on the size of each image, 

Fig. 1   a Sketch of the experimental set-up developed to measure the 
liquid bridge deformation indicating the different components. The 
circle indicates the amplified zone in part b. b  Amplified sketch of 
the sphere indicating the main variables when the bridge is stretched. 
The bridge elongation is D = ys − yp , where yp is determined through 
yp = yr − Rr from the video processing. The contact angles �1 and 
�2 and the half filling angle � are indicated. The width of the bridge 
is W
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the illumination and the oscillation frequency. After several 
tests, the following results are obtained.

3.1.1 � Liquid volume

To select the parameter range for the experiments, it is inter-
esting to evaluate the bridge final elongation, Dmax , and final 
width, Wmax , before its breaking as a function of the liquid 
volume V. Figure 2 shows the results for a fixed value of 
the amplitude at 3.35 mm. Figure 2a shows the values for 
Dmax as a function of V1∕3 . The positive correlation is evident 
from the figure, in agreement with the observations of for-
mer works [21, 28]. In the same way, when Wmax is measured 
as a function of the volume of the liquid, the trend is also 
positive (Fig. 2b). The last point shows an important depar-
ture from the general trend. We attribute this difference to 
experimental problems in the image recording. On the other 
hand, the critical frequency for breaking increases linearly 
with the volume of the bridge, as shown in Fig. 2c. This is 
consistent with the expected increment of the capillary force 
as the volume of liquid increases [21, 28, 29].

3.1.2 � Oscillation amplitude

In this part of our preliminary study, we observe the inci-
dence of the amplitude of the sinusoidal oscillations, A, on 
the breaking of the liquid bridge. Experiments at different 
amplitudes (from 2.83 to 3.54 mm) are performed, and the 
results are shown in Fig. 3. The volume of the liquid bridge 
is fixed at 168 × 10−3 cm3. It is important to point out that 
to find the critical frequency for breaking at a given A, we 
start the sinusoidal excitation of the plate from a very low 
frequency and increase this frequency at a given constant 
rate until the critical frequency value for breaking is reached. 
We observe that bridge rupture does not depend on the fre-
quency rate of increment. Thus, to facilitate the processing 
time for the images, we chose for all the experimental runs 
a rate of 0.5 Hz/s, which is controlled automatically by the 
function generator.

Figure  3a shows the dependence between frequency 
and amplitude just before breaking. The curve indicates an 
exponential decay fitting to guide the eye. The behavior here 
resembles that found in [14] where a similar decaying trend 
was observed in the critical frequency-amplitude pairs for 
the detachment of dry particles at low humidity (less than 
55%). Although a liquid bridge was not present in those 
experiments, the assumption of the presence of adhesion 
and low capillary effects as a linking bridge with elastic 
properties was assumed to model the experimental behavior 
with good results. In the present case, the linking bridge is 
the liquid one. The results found in this sub-section allow 
determining an adequate working range for the input fre-
quencies to avoid the bridge breaking once the value for 

A is chosen. The gray rectangle indicates the range for the 
systematic studied presented below.

On the other hand, the final elongation and width of the 
liquid bridge before breaking are shown in Fig. 3b. Both 
quantities practically do not depend on the amplitude of the 
excitations. This means that the elastic limit of the liquid 
bridge is surpassed after a certain critical ratio height/width 
is reached.

Fig. 2   Dependence of the dimensions of the liquid bridge on the liq-
uid volume just before rupture happens for A = 3.35mm . a  Maxi-
mum elongation, Dmax , before breaking. The line indicates a linear fit 
to highlight the V1∕3 correlation as in [21]. b Maximum width, Wmax , 
before breaking. c Critical frequency just before rupture for the same 
system. The line is to guide the eye
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3.2 � Systematic study

After the preliminary study shown so far, we present the 
results corresponding to the deformation of the liquid 
bridge between the sphere and the plane surface (plate) 
when a series of harmonic oscillations excite the plane. To 
avoid the breaking of the bridge but to have a measurable 
deformation, the working region selected is the one indi-
cated in gray in Fig. 3a. In this study, all the experiments 
are performed at a fixed frequency of 20 Hz (125.66 s−1) 
and a given fixed value of the amplitude. A total of 20 
oscillatory cycles are recorded for a given A. Once the 
recording is done, the oscillator is turned off. A new value 
for A is chosen and a new experiment is run by recording 
20 cycles as before. The values selected for A range from 
1.34 to 2.03 mm.

Figure  4a shows an average over 20 cycles for 
A = 1.45 mm and a liquid volume of ethylene glycol equal to 
23 mm3. The time axis is set dimensionless by dividing the 
time by the oscillation period, T  . The successive positions 
for the plate and the sphere are indicated. The elongation 
of the bridge is evident when the curve corresponding to 
the sphere (upper one) separates from the one of the plate, 
as the starry curve indicates. Were the upper curve the one 
corresponding to the excitation of a dry sphere on a plane, 
its shape would fit a parabola. Nevertheless, in this case, a 
different behavior is expected. The results for only one typi-
cal cycle of excitation are shown in the inset of the figure 
to evidence the confidence of the results comparing to the 
averaged ones.

The difference between the two curves (base of the sphere 
and plate position) represents the height of the capillary 
bridge or bridge elongation and it is plotted in Fig. 4b for 
different amplitudes, as indicated. Each plot corresponds to 
an independent run and is also an average over 20 cycles 
with the same value for A. The small shoulders at the right 
of the curves correspond to a slight rebound of the sphere 
once it touches the plate.

As the amplitude increases, thus the acceleration of the 
plate, the elongation of the bridge increases. The inset in 
the figure shows the correlation between A and the highest 
elongation attained by the bridge. It is important to remem-
ber that, in this case, the bridge dynamics is far from the 
breaking point. Two different regimes can roughly be dis-
tinguished in the inset. At lower amplitudes, the bridge is 
more resistant to deformation than for higher amplitudes, 
as evidenced by the change of slope in the plot. This is also 
observed for a different bridge volume. We think that one of 
the reasons for this apparent change of rigidity of the bridge 
is the fact that viscous effects are a little stronger for smaller 
amplitudes, as seen later in this work.

Figure 5 shows the average over 20 cycles for the tra-
jectory followed by the sphere and the plate for the case 
A = 1.95mm . Besides, the height of the liquid bridge and 
the numerical derivatives corresponding to the velocities for 
both trajectories are also plotted. Let us observe what is hap-
pening during the complete cycle of the movement. Different 
stages can be distinguished.

•	 From t = 0 to, approximately, t = 0.2T  , the sphere is 
stuck to the plate. They have the same velocity and the 
bridge is not stretched.

•	 At t = 0.2T  the inertial force of the plate is enough to 
overcome the weight of the sphere and the capillary 
adhesion exerted by the liquid bridge.

•	 From t = 0.2T  to t = 0.7T  , the sphere separates from 
the plate and the stretching period of the bridge takes 
place. Inside this stage, three different sub-stages can 
be discriminated. (1) First, the sphere detaches from 

Fig. 3   a  Critical angular frequency for bridge breaking as a func-
tion of the amplitude of the oscillations in the preliminary study. The 
curve is an exponential fit to guide the eye. The gray rectangle indi-
cated the selected working zone for the systematic study at a fixed 
frequency of 20 Hz and variable amplitude. b Maximum height and 
width of the liquid bridge just before breaking and corresponding to 
the critical frequencies and amplitudes in part a 
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the surface with the same upward velocity of the plate. 
That velocity keeps greater than the upwards veloc-
ity of the plate because the deceleration of the plate 
is greater than that of the sphere. When the velocity 
of the plate is zero, it begins to increase downwards 
( t ≈ 0.25T  ) while the sphere is still moving upwards 
and decelerated. (2) The second sub-stage begins when 
the sphere stops and starts to fall down with down-
ward acceleration. Plate and sphere both go down with 
different velocities, the one of the plate being greater. 

After passing through its maximum value, the plate 
decelerates and the sphere's velocity equals that of 
the plate ( t ≈ 0.52T  ) and the stretching of the bridge 
becomes maximum. (3) The third sub-stage corre-
sponds to the contraction of the liquid bridge. This 
is due to the inversion of the difference between the 
velocities, the one of the sphere being greater in this 
case. The contraction lasts until the sphere touches the 
plate and sticks again to it, rapidly matching the plate 
velocity and position ( t ≈ 0.7T).

Fig. 4   a Average over 20 cycles 
for the bridge elongation (i.e. 
the difference between the posi-
tion of the base of the sphere 
and that of the plate) versus 
dimensionless time ( t∕T  ) where 
T  is the period of the oscil-
lations. Here, A = 1.45mm . 
The difference in positions is 
indicated. The inset shows the 
results for only one cycle to 
show the effect of the averag-
ing on the results. Note that the 
movement is very well repro-
duced in each individual cycle. 
b Liquid bridge elongation 
versus dimensionless time taken 
as the difference between the 
curves like in a. The inset shows 
the correlation with A for the 
maximum elongation attained 
by the bridge
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•	 For t > 0.7T  the system sphere/plate behaves again in 
cohesion until a new cycle begins.

It is also interesting to note in Fig. 5 the way in which the 
velocity increases when the sphere is falling (from approxi-
mately t = 0.26T  to t = 0.64T  ). Although it could appear as 
linear, the acceleration is not constant. This would indicate 
a change in the capillary adhesion of the liquid bridge as 
it is stretched. We will come to this point below, when the 
theoretical model is proposed.

From the observations so far, it is clear that the response 
of the sphere to the oscillatory movement is not simple and 
that a simplified model representing the liquid bridge as a 
spring-damper system is not straightforward because of the 
complex relative movement between the particle and the 
plane. We need to investigate if a linearly decreasing force 
model for capillary interaction (like those proposed in [7, 
21] or [29]) is still valid to describe the present scenario.

4 � Dynamical behavior analysis

Figure 6 shows a series of snapshots for a typical stretch-
ing cycle of the liquid bridge. Given that the sphere is con-
sidered as a rigid body without deformation, we chose the 
vertical coordinate for locating the sphere the one corre-
sponding to its base, ys(t) . The one for the plane surface 
is yp(t) = Asin

(
�t + �

)
 with � the oscillation angular 

frequency. Taking into account the forces acting on the par-
ticle, the following equation can be written:

where m is the sphere’s mass, g is gravity acceleration and 
Fc and Fv are the capillary and viscous forces, respectively.

To model the capillary force, we follow the expression 
given by Pitois et al. [21] and, more recently, also deduced 
by Butt and Kapple [29] and valid if the volume of the bridge 
is constant. In the present case, this assumption can be done 
because evaporation effects are negligible for ethylene glycol 
during the experiment duration [12]. In this way:

In Eq. (2), γ is the surface tension of the liquid inter-
face, Rs is the sphere’s radius, V  is the bridge volume, 
D = D(t) = ys(t) − yp(t) and B =

cos(�1+�)+cos�2
2

 . The angles 
�1, �2, are the solid/liquid contact angles and � is the half 
filling angle (Fig. 1b). Although all the angles are expected 
to vary during the deformation of the liquid bridge, a 
detailed observation of the behavior of the contact angles 
�1 and �2 during our experiments reveals that they are prac-
tically constant during all the deformation process. For 

(1)m
d2ys

dt2
= −Fc − Fv − mg

(2)Fc = 4��BRs

⎛⎜⎜⎜⎝
1 −

D�
V

�Rs

+ D2

⎞⎟⎟⎟⎠

Fig. 5   Average oscillation cycle 
for A = 1.95mm and 20 Hz. 
The position of the base of the 
sphere, ys , and that of the plate, 
yp , are plotted along with the 
bridge elongation D(t) (left 
vertical axis) as a function of 
time. The numerical derivatives 
corresponding to the velocities 
of the sphere and the plate are 
also plotted (right axis)

Fig. 6   Sequence of photographs 
for the stretching of the liquid 
bridge
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this reason, we cannot say that hysteresis is present up to 
the limit of our measurements precision. This is in coinci-
dence with the observations by Buck et al. for the case of 
the rebounding of wet particles where the contact angle 
was practically constant for most of the bridge lifetime, 
except during the first millisecond [27]. Besides, the vari-
ation of B with time is bounded by the limiting values of 
both cosine functions. For that reason, it is expected from 
Eq. (2) that the strength of the capillary force decreases as 
the bridge is elongated.

The viscous force, Fv , is dependent on the rate of defor-
mation dD

dt
 [21]. As explained in the Introduction, if the 

deformation velocity is low, viscous effects can be 
neglected. In the present case, the highest velocity corre-
sponds to the highest amplitude used in the experiments 
( A = 2.03 × 10

−3  m) and, thus, the capillary number 
Ca =

A��

�
 results to be almost of the order of 10−1 , where µ 

is the dynamical viscosity of the fluid. For the same 
extreme case, the Reynolds number, Re =

A�Rs�

�
 , attains a 

maximum value equal to 53. It is known from the literature 
that a capillary number of the order 100 differentiates the 
response of a liquid bridge from being dominated by vis-
cous forces ( Ca > 10

0 ) of by capillary forces ( Ca < 10
0 ) 

[21, 22, 24]. Here, the maximum values for Ca are close to 
one but they stay always less than the threshold value of 
100. Thus, we cannot assure (unless we assess the forces) 
whether viscosity will play a role or not in our present 
scenario [21, 24]. The values attained by Ca all over the 
cycle of bridge stretching, for three different amplitudes, 
are shown in Fig. 7.

To model the viscous force we follow here the approach 
presented by Pitois et al. [21, 22] and compare the values 

of the forces thus computed with those for capillary 
effects. For the case of a finite volume for the liquid 
bridge, the expression for Fv becomes [21, 30]:

In this way, Eq.  (1) results the following differential 
equation:

As shown in Fig. 5, the values for D(t) can be obtained from 
the experimental data. In order to elucidate whether the vis-
cous effect can be neglected or not, we compute the capillary 
and viscous forces using Eqs. (2) and (3), respectively, and the 
experimental values for D(t) . In Fig. 8 the results are shown for 
six different values of the amplitudes employed. A normalized 
time is used by dividing the time coordinate by the total defor-
mation time of the liquid bridge in each case. It is clear that 
the viscous force is most of the time smaller than the capillary 
one for all values of A. Nevertheless, for the smaller ampli-
tudes, the relative effect of the viscous forces during bridge 
deformation is more important than for greater amplitudes. 

(3)Fv =
3

2
��R2

s

1

D

dD

dt

⎛⎜⎜⎜⎝
1 −

D�
V

�Rs

+ D2

⎞⎟⎟⎟⎠

2

(4)

m
d2ys(t)
dt2

= −4��BRs

⎛

⎜

⎜

⎜

⎝

1 − D
√

V
�Rs

+ D2

⎞

⎟

⎟

⎟

⎠

− 3
2
��R2

s
1
D
dD
dt

⎛

⎜

⎜

⎜

⎝

1 − D
√

V
�Rs

+ D2

⎞

⎟

⎟

⎟

⎠

2

− mg

with D = D(t) = ys(t) − Asin
(
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Fig. 7   Calculation of the Capillary Number, Ca as a function of 
dimensionless time during the deformation period of the liquid 
bridge. The values for the amplitude are indicated

Fig. 8   Ratio Fv∕Fc  for three different values of A employed in the 
experiments as a function of the normalized time during one defor-
mation cycle
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In general, it is observed that for A ≥ 1.62 × 10
−3 m, viscos-

ity effects are only important during the first milliseconds of 
the bridge stretching and the last milliseconds of the bridge 
contraction, otherwise, the incidence of Fv could be neglected. 
Consequently, and as a first approach, we will ignore in what 
follows the viscosity effects, analyzing the consequences of 
this theoretical assumption on the model prediction capability.

To make the solution of Eq. (4) more tractable, we evaluate 
the behavior of the term D√

V

�Rs
+D2

 during a complete cycle of 

movement. Figure 9(a) shows the values of this term as a func-
tion of dimensionless time for the case of A = 1.95mm . The 
solid line corresponds to a fitting curve with the form D

�

√
V

�Rs

 , 

where � = 1.16 and V = 23mm3 . Coefficient α depends on the 
excitation amplitude, as illustrated in Fig. 9b. Figure 9c and d 
show the calculation of Fv with the fitting function. This 
approximation helps to simplify the resolution of the differen-
tial equation without losing the general trend of the reduction 
of the capillary force as the bridge is elongated. 

Defining F0 = 4��BRs and L =
√

V

�Rs

 , the simplified equa-
tion is now:

In defining F0 , we take into account the fact that the 
value of B in time is bounded. Thus, F0 holds in its value 
a time-average representative of the maximum capillary 
force involved in the whole dynamic process for a given 
value of A. Equation (5) can still be condensed further by 
defining G0 = F0

m
+ g and �2

0
=

F0

m�L
 , giving:

The integration of Eq. (6) gives:

For t = t0 , the height D of the bridge is zero. Thus, 
the acceleration of the plate and the sphere just before 
detaching (see Eq. (6)) is a0 = −A�2sin

(
�t0 + �

)
= −G0 . 

In the same way, the position of the base of the sphere 
is ys

(
t0
)
 = Asin

(
�t0 + �

)
=

G0

�2
 , and the velocity is 

(5)
d2ys(t)

dt2
−

F0ys(t)

�mL
+

F0Asin
(
�t + �

)
�mL

+
F0

m
+ g = 0

(6)
d2ys(t)

dt2
− �2

0
ys(t) + �2

0
Asin

(
�t + �

)
+ G0 = 0

(7)

ys(t) =
A�2

0
sin

(
�t + �

)

�2 + �2

0

+ C1e
�0(t−t0) + C2e

−�0(t−t0) +
G0

�2

0

Fig. 9   a Representation of the term D√
V

�Rs
+D2

 through the approximation D

�

√
V

�Rs

 for the case A = 1.95mm . b Dependence of α on A. Examples of 

the approximation of Fc for two different amplitudes, c A = 1.45mm and d A = 1.95mm . The corresponding values of α are indicated
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v0 = A�cos
�
�t0 + �

�
=

√
A2�4−G0

�
 . Taking into account 

these initial conditions, the integration constants C1 and 
C2 result to be:

5 � Discussion

In implementing the above dynamical analysis, it is worthy 
to note the choice for a fitting of the experimental data with 
the function obtained from the integration of Eq. (7). It is 
important to remark that a single free fitting parameter is 
left once all the relations between the different variables 
are evaluated. This choice is based on the experimental dif-
ficulty in determining the exact moment at which the sphere 
detaches from the plate for the first time ( t0 ), in other words, 
to determine the initial conditions for the solution.

Figure 10 presents the comparison of the experimen-
tal data with the best fitting obtained using the solution 
in Eq. (7) for three different values of A. The theoretical 
description of the dynamics of the sphere is in agreement 
with the experiments, although the viscous term has been 
neglected in Eq. (5). Indeed, when comparing Fig. 10a with 
Fig. 10b and c, a better theoretical description is obtained as 
the value of the amplitude increases. 

It is interesting to analyze the behavior of F0 obtained 
from the different fittings as the amplitude of the oscilla-
tions is varied. Figure 11 shows the values. As the amplitude 
increases, the representative maximum force for the bridge 
stretching increases. This is explained by taking into account 
that F0 is linearly related to B =

cos(�1+�)+cos�2
2

 , i.e., to the 
geometry of the liquid bridge and its deformation over the 
cycle. As stated above, the contact angles are practically 
constant in time. On the other hand, when tracking the val-
ues of β along the experiments’ videos, their variation is 
found to be more important as the amplitude increases. In 
other words, for low A, the value of beta is practically unaf-
fected by the oscillations but, as A increases and the bridge 
elongates even more, the values of β markedly decrease and 
its average value does too. Figure 12 illustrates the behavior 
of β. The effect of an increasing F0 with A should not be 
interpreted as an increment of the bridge strength. On the 
contrary, it is precisely the consequence of the weakening of 
the liquid bridge allowing a further deformation and, thus, a 
greater variation of the angle β.

The behavior of �0 against the amplitude is shown 
in Fig.  13. This quantity could be interpreted as a 

(8)

C1 =
�2(v0�0 − G0)

2�2

0
(�2 + �2

0
)

C2 =
−�2(v0�0 + G0)

2�2

0
(�2 + �2

0
)

characteristic frequency for the sphere/liquid-bridge 
system, related to the mass of the sphere and the liquid 
properties and geometry. At low amplitudes, it is observed 
that �0 increases with A but reaches a plateau when 

Fig. 10   Comparison between the theoretical prediction of Eq.  (7) 
and the experimental data for a  A = 1.45mm ; b  A = 1.68mm;  c 
A = 1.95mm . Note the enhancement of the fitting as the amplitude 
increases
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A ≥ 1.62 × 10
−3 m. It would be expected that �0 be inde-

pendent of the amplitude but, interestingly, the value for A 
where the change of behavior is observed coincides with 
that of the inset in Fig. 4b. We attribute this behavior to 
two possible reasons. On the one hand, this feature could 
be associated with a viscosity effect in the bridge. It should 
be noted again that the relative viscous/capillary effect 
for the case of smaller amplitudes is more important than 
for higher amplitudes (Fig. 8), affecting the liquid bridge 
response in a noticeably way in the first case. On the other 
hand, the theoretical prediction by Eq. (7) (Fig. 10) is less 
accurate for lower amplitudes.

Considering the vast knowledge regarding the modeling 
of dry granular systems when static or quasi-static condi-
tions apply, the description of the forces acting among parti-
cles is very well accomplished through elastic contact-force 
models plus viscosity terms. When humidity is also present 
in this scenario, the addition of a capillary term is neces-
sary, but the contact forces remain the same. Even more, if 
the relative movement among particles is performed at low 
velocities, the liquid viscosity term can be neglected. Nev-
ertheless, for the case of wet granular systems subjected to 
considerably movement, contact elastic forces may be absent 
much of the time and capillary and liquid viscous effects 
dominate. The results presented here demonstrate that an 
“anti” elastic capillary force (Eq. (2)) is able to describe 
the dynamics of the vibration of a particle, even neglecting 
viscous effects, given a solution quite different to that for an 
elastic bridge deformation. The consideration of the forces 
intervening in the dynamics given by Eq. (5) is appropriate 
as soon as the deformation of the bridge be high enough 
(order of 1.62 × 10

−3 and higher) and the rate of deformation 
be sufficiently low ( Ca < 10

−1).
Although evidence of the role of viscosity is appreciated 

from the present experiments, we can state that viscosity 
effects can be neglected when modeling the oscillations of a 
sphere-liquid bridge system at appreciable amplitudes.

6 � Conclusion

This work analyzed the dynamical behavior of a capillary 
bridge between a spherical particle and a plane surface sub-
jected to a vertical oscillatory motion. The influence of the 
amplitude and the oscillation frequency of the plane, as well 
as the volume of the capillary bridge at the moment of cap-
illary bridge rupture, were analyzed to set up the proper 
conditions for the experiments.

The rate of increase of the frequency was found to have 
little influence on the breakage of the capillary bridge, or its 
geometry just prior to breakage.

Fig. 11   Behavior of F0 as the amplitude of the oscillations increases

Fig. 12   Variation of angle β during a complete cycle of deformation 
of the liquid bridge, for two different amplitudes, as indicated. Note 
the different range of values taken in each case

Fig. 13   Characteristic frequency of the sphere/liquid bridge system as 
a function of the amplitude of the oscillations. The line is an average 
over the last seven points to indicate the trend
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As expected, the volume of the capillary bridge influ-
enced not only the static capillary force but also the dynami-
cal behavior of the bridge, giving a higher frequency for 
rupture as the liquid volume increased.

The amplitude of the oscillations, A, also played an 
important role. Although the geometrical parameters of the 
bridge before breaking shown to be independent of A, we 
found an inverse dependence between the frequency for rup-
ture and the amplitude.

The oscillation of the sphere/liquid-bridge system was 
systematically studied as a function of the amplitude and at a 
fixed frequency. From the set of data obtained, we were able 
to determine the deformation of the bridge and the dynamics 
of the sphere attached to it.

Two different regimes were found for the correlation 
between the maximum deformation of the bridge and the 
amplitude of the oscillations. For smaller A, the bridge 
resulted to be more resistant to deformation than for larger 
ones. This behavior was found consistent with the evaluation 
of the capillary and viscous forces involved in the problem, 
which demonstrated that viscous effects were important 
for A ≥ 1.62 × 10

−3 . For this range of amplitudes, it was 
observed that viscosity effects are only important during the 
first milliseconds of the bridge stretching and the last mil-
liseconds of the bridge contraction.

By neglecting the viscous effects and assuming that the 
angles involved in the bridge geometry were constant along 
the deformation period, a tractable differential equation 
could be derived and solved. This equation was able to cor-
rectly describe the experimental behavior at all amplitudes 
with only one free fitting parameter.

The analysis of the values attained by the parameters of 
the equation ( �0 , F0 , G0 ) related to the single free fitting 
parameter when the amplitude varied showed two impor-
tant aspects. In first place, F0 (and so G0 ), increased as A 
increased. This represented the effect of the weakening of 
the liquid bridge for greater amplitudes, allowing a further 
deformation of the bridge and, consequently, a smaller aver-
age value of the angle β formed between the center of the 
sphere and the inception of the liquid bridge. Secondly, 
it was observed that �0 (capable of being interpreted as a 
characteristic frequency of the system) reached a constant 
value when A ≥ 1.62 × 10

−3 m, when the viscous effects are 
expected to be negligible.

The theoretical description here proposed has demon-
strated to be useful to represent the dynamics of a liquid 
bridge for a particle subjected to an oscillatory movement 
as soon as the amplitude of those oscillations are greater 
enough to avoid viscous effects. This conclusion has impor-
tant consequences when modelling the manipulation of gran-
ular matter under the presence of humidity, i.e., when impor-
tant relative displacements between grains are expected and 
the static capillary models could be questionable.

Future efforts will be conducted to study in detail the 
behavior of the geometry of the bridge, represented here by 
� , as a function of the deformation in a first stage and, sec-
ondly, to change the viscous properties of the liquid in order 
to quantify even better the role of viscous forces during the 
bridge deformation run.
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