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1. Introduction 

The main purpose of this article is to examine if there are significant trends in the global 

and hemispheric temperature anomaly series. Denoting a time series for temperature 

anomalies by yt, the standard approach is to employ a simple linear regression model of 

form: 

,...,2,1, =++= tuty tt βα       (1) 

testing the significancy of the estimated slope coefficient for � in (1). It is not uncommon 

to find estimates of � based on Ordinary Least Squares (OLS). However, statistical 

inference based on standard t or F statistics is only valid here if (1) satisfies some 

restrictive conditions, which are rarely satisfied in temperature time series. Thus, for 

example, the error term in (1) should be uncorrelated. If there is some autocorrelation in 

(1), the autoregressive AR(1) process 

    ...,2,1,1 =+= − tvuu ttt ρ ,    (2) 

has been widely employed in the climatological community because of its relation with 

the stochastic first order differential equation. In this case, Generalized Least Squares 

(GLS) is usually adopted for the estimation of �.1 Nevertheless, in both cases (i.e., no 

autocorrelation and AR(1) ut) the series is supposed to be stationary I(0) once the time 

trend has been removed. If the detrended series is not I(0) the classic alternative is to 

assume that the series is nonstationarity or that it contains a unit root, also called 

integration of order 1 (I(1)), and ut in (1) is then described as:  

    ...,2,1t,vuu t1tt =+= −  ,            

where vt is supposed to be I(0). Thus, it is crucial to determine if the error term in (1) is 

stationary I(0) or nonstationary I(1).2, 3 
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 The most common used indicator of climate change is the surface air temperature 

and there is a vast amount of papers examining the trends in global and regional mean 

temperatures over time (Ghil and Vautard, 1991; Hasselmann, 1993; Schlesinger and 

Ramankutty, 1994; North and Kim, 1995; North et al., 1995) and in global patterns of 

temperature change (Santer et al., 1995; Hegerl et al., 1996, 1997; Jones and Hegerl, 

1998, etc.).  Most of these papers conclude that global mean annual surface temperatures 

have increased between 0.3ºC and 0.6ºC during the last 150 years (Hansen and Lebedeff, 

1987; Nicholls et al. 1996; Jones et al. 1997). In most of these articles, it is assumed I(0) 

stationarity for ut in (1), while unit roots are found in global surface temperature in Stern 

and Kaufmann (2000) and Kaufmann et al. (2005).  

In this article we extend the previous literature in two aspects. First, we consider 

fractional degrees of integration for the disturbance term ut in (1). This is clearly more 

general than the standard approaches based on I(0)/I(1) specifications, also including 

these two approaches as particular cases of interest. Moreover, we permit the existence of 

a structural break, which is endogenously determined by the model, and this allows us to 

consider the case of segmented trends in the temperature series. These two issues are 

relevant in the analysis of the warming effect. First, to correctly determine the degree of 

integration of the error term is crucial for the estimation of the time trend coefficients: 

misspecification of the degree of dependence leads to inconsistent estimates of these 

coefficients. On the other hand, it is plausible to assume that the degree of persistence of 

the series has changed across the years, leading also to different estimates of the time 

trend coefficients across subsamples. 

Fractionally integrated models have been employed to analyze temperature time 

series in previous research. Thus, for example, Gil-Alana (2005) examines the 
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temperatures in the northern hemisphere from a fractional viewpoint. He uses data from 

1854 to 1999. The present work goes beyond that paper in various aspects: first, it looks 

not only at the northern temperatures but also at global and southern hemisphere 

temperature anomalies, for a time period that goes from 1850 through 2006. Moreover, 

including a structural break, it allows us to consider the possibility of time-varying trend 

coefficients along with different degrees of persistence for each subsample. The 

remaining of the paper is structured as follows: Section 2 presents the model considered 

in the paper. Section 3 describes the time series data; Section 4 is devoted to the 

empirical work on the temperature anomaly series, while Section 5 concludes the paper. 

 

2. Fractional integration and segmented trends 

For the purpose of the present work we define an I(0) process as a covariance stationary 

process with spectral density that is positive and finite at the zero frequency. Thus, it may 

be a simple white noise process, but it may also include some type of weak dependence 

(e.g. AR) structure. When first differences are required to achieve I(0), the series is said 

to be I(1). However, the I(0) and the I(1) models are merely two particular cases of a 

much more general class of processes called fractionally integrated or I(d) processes, 

where d, (the number of differences required to get I(0)), may be a real value. In other 

words, we say that ut is I(d) if:  

  ...2,1,t,vuL)(1 tt
d ==−  ,           (3) 

with ut = 0, t � 0, where L is the lag-operator (i.e., Lut = ut-1), and vt is I(0).4 Note that the 

polynomial in the left-hand-side in (3) can be expressed in terms of its Binomial 

expansion, such that, for all real d, 
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and (3) can be written as: 

 .....
2

)1(
21 tttt vu

dd
udu ++−−= −−     

If d is an integer value, ut will be a function of a finite number of past 

observations, while if d is real, ut depends strongly upon values of the time series far 

away in the past. (See, e.g., Granger and Ding, 1996; Dueker and Asea, 1998). Moreover, 

higher the d is, the higher will be the level of association between the observations. 

Examples of this type of model in meteorological time series data are among others the 

papers of Bloomfield (1992); Smith (1993); Lewis and Ray (1997); Pethkar and Selvam 

(1997); Koscielny-Bunde et al. (1998); Pelletier and Turcotte (1999); Percival et al. 

(2004); Maraun et al. (2004) and Gil-Alana (2003, 2005). 

 In the first part of the empirical application carried out in the following section, we 

consider models of form as in (1) – (3), testing the significance of the slope coefficient in 

a model where the disturbance term may be fractionally integrated. In the second part, we 

extend the model to allow for a segmented trend. In particular, we consider models of 

form: 

btt
d

tt TtuxLxty ,...,1,)1(; 1
11 ==−++= βα   (5) 

,,...,1,)1(; 2
22 TTtuxLxty btt

d
tt +==−++= βα   (6) 

where the α's and the β's are the coefficients corresponding respectively to the intercepts 

and the linear trends; d1 and d2 may be real values, and they are the orders of integration 

for each subsample, ut is I(0) and Tb is the time of the break that is supposed to be 

unknown. Note that the model in equations (5) and (6) can also be written as: 
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,,...,1,)(~)(1
~

)1( 11111
btttt

d TtudtdyL =++=− βα               (7) 

       ,,...,1,)(~)(1
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)1( 2222
2 TTtudtdyL btttt

d +=++=− βα          (8) 

where ,1)1()(1
~ id

it Ld −=  and ,)1()(~ tLdt id
it −=  i = 1, 2.5 

 The method presented here is based on the least squares principle. First we choose 

a grid for the values of the fractionally differencing parameters d1 and d2, for example, dio 

= 0, 0.001, 0.002, …, 1, i = 1, 2. Then, for a given partition {Tb} and given d1, d2-values, 

),( 21 oo dd , we estimate the α's and the β's by minimizing the sum of squared residuals, 
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in case of uncorrelated disturbances or using other methods like Generalized Least 

Squares (GLS) with autocorrelated ut. 

Let ),;(ˆ )1(
2

)1(
1 oob ddTα  and ),;(ˆ )1(

2
)1(

1 oob ddTβ  denote the resulting estimates for 

partition {Tb} and initial values )1(
1od  and )1(

2od . Substituting these estimated values on the 

objective function, we have RSS(Tb; 
)1(

1od , )1(
2od ), and minimizing this expression across 

all values of d1o and d2o in the grid we obtain:  },{minarg)( jibTRSS =  

).,;( )(
2

)(
1

j
o

i
ob ddTRSS  Then, the estimated break date, kT̂ , is such that: 

)(minargˆ
...,,1 imik TRSST == , where the minimization is taken over all partitions T1, 

T2, …, Tm, such that Ti - Ti-1 ≥ |εT|. Then, the regression parameter estimates are the 

associated least-squares estimates of the estimated k-partition, i.e., }),ˆ({ˆˆ kii Tαα =  
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}),ˆ({ˆˆ
kii Tββ =  and their corresponding differencing parameters, }),ˆ({ˆˆ

kii Tdd =  for i = 

1 and 2. Several Monte Carlo results based on the model in (5) and (6) are provided in 

Gil-Alana (2007).  In that paper the author shows that the method performs relatively 

well even with small samples. 

The possibility of segmented trends in temperature time series has not been 

widely examined so far. In a recent paper, however, Wu and Zhao (2007) develop a 

procedure for breaks in trends in means nonstationary models, and apply it to the global 

monthly temperatures from 1856 to 2000. They conclude there are no jumps in linear 

trends and suggest that a quadratic trend could be more appropriate for this dataset. This 

result is also in line with Rust (2003), who fitted a quadratic trend for the same dataset. 

Nevertheless, these authors do not consider the possibility of fractional integration, and it 

is now a well-known stylized fact that fractional integration and structural breaks are 

issues which are intimately related. Moreover, it seems reasonable for historical data as 

those analysed in this paper to assume that the degree of persistence in the data (and thus, 

the estimation of the time trend coefficients) have changed across the years.6  

  

3. The temperature anomaly series 

The time series data analysed in this paper correspond to the global and hemispheric 

temperature anomaly series, obtained from the Climatic Research Unit (CRU) at the 

University of East Anglia, United Kingdom, and are available on line at the web-site: 

http://www. ru.uea.ac.uk/data/temperature. They are annual data from 1850 to 2006, and 

the anomalies are with respect to 1961-1990. These data are continually updated and 

expanded by P. Jones of the CRU with help from colleagues at the CRU and other 

institutions. Some of the earliest work in producing these series back to Jones et al. 
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(1986a,b,c), Jones (1988, 1994) and Jones and Briffa (1992). The data consist of surface 

air temperature data (land surface temperature) from over 3000 station records that have 

been corrected for non-climatic errors, such as station shifts and/or instrument changes 

(Jones, 1994). Coverage is denser over the more populated parts of the world, 

particularly United States, southern Canada, Europe and Japan, and is sparsest over the 

interior of the South American and African continents and over the Antartic. The number 

of available stations was small during the 1850s, but increases to over 3000 stations 

during the 1951-1990 period. A review of the methods employed and data available can 

be found in Jones, Parker, Osborn and Briffa (2006). 

Figure 1 displays the plots of the three series. The northern and southern 

temperature series show some general similarities, e.g., little sign of trends before 1900, a 

peak in the early 1940s, and the highest temperatures occurring after 1980. However, 

according to Jones et al. (2006): “there are several notable differences between the two 

series: a steady period of warming is seen for the northern hemisphere from about 1910 

through the mid-1940s. For the southern hemisphere there is less warming observed 

from 1910 through 1930, with sudden and rapid warming from 1930 through mid-1940s. 

The northern hemisphere records show gradual cooling from the mid-1940s through the 

mid-1970s, followed by rather steady temperature increases thereafter. The southern 

hemisphere shows an abrupt shift to cooler temperatures after 1945, quite variable 

temperatures until the mid-1960s, followed by a gradual increase over the remainder of 

the record.” 

 

[Insert Figure 1 about here] 
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 For the global temperatures it is observed stable temperatures from the beginning 

of the record through about 1910, with relatively rapid and steady warming through the 

early 1940s, followed by another period of relatively stable temperatures through the 

mid-1970s. From this point onward, another rapid rise was observed. 1998 was the 

warmest year to date, followed by 2005, and nine of the ten warmest years in the sample 

occurred in the last ten years (1995-2006). 

 Jones et al. (2006) estimated linear trends on these three series based on simple 

linear regression techniques, and the results showed a warming trend of about 0.69ºC for 

the global and northern hemisphere temperatures, and about 0.70ºC for the southern 

temperatures anomaly series. Other studies using these and other variables for shorter 

time periods found values for the warming effect slightly smaller than those reported in 

Jones et al. (2006). Thus, for example, Gil-Alana (2005) found an estimate of about 

0.48ºC for the northern hemisphere anomalies for the time period 1854-2001. Smith 

(1993) applied a long memory model to warming data over a variety of sites in central 

England and the continental United States, and estimated the temperature increases to be 

between 0.27 and 0.35ºC. Standard errors of these estimators ranged between 0.19 and 

0.31, however, suggesting a marginal, but not strongly significant increase in long-range 

temperatures. Using global temperature averages collected by Hansen and Lebedeff 

(1987), Smith and Chen (1996) proposed a joint estimation of the long memory 

parameter and the time trend, and found an estimate for the time trend of about 0.55ºC. 

 

4. Empirical results on the temperature anomaly series 

First we suppose that there are no breaks in the data and thus, we consider a model of 

form as in (1) and (3), testing the null hypothesis 
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Ho:   d  =  do,     (9) 

for any real value do. Thus, under Ho (9) the model becomes: 

,...,2,1, =++= tuty tt βα    (10) 

    ...2,1,t,vuL)(1 tt
od ==− ,   (11) 

and we test Ho (9) for do-values from 0 to 1 with 0.001 increments, using Robinson’s 

(1994) parametric approach. Robinson’s (1994) method does not require preliminary 

differencing; it allows us to test any real value d encompassing stationary and 

nonstationary hypotheses. Since this method is parametric, we need to specify a 

functional form for the disturbance term vt, and first we suppose vt is white noise. Then, 

an AR(1) structure is considered. In both cases we first suppose that � = � = 0 (i.e., we do 

not consider deterministic terms in the undifferenced regression (10); then, an intercept is 

included (i.e., � unknown and � = 0 a priori), and finally, we include an intercept and a 

linear time trend (i.e., � and � unknown). 

 

[Insert Table 1 about here] 

 

Table 1 shows the test results; the numbers in bold are the maximum likelihood 

estimates of d obtained with the Whittle function. Table 1 also shows the 95% 

confidence bands for the non-rejections of do using Robinson’s (1994) parametric 

approach. The first noticeable feature observed in this table is that the I(0) hypothesis 

(i.e., d = 0) and the unit root model (i.e., d = 1) are both decisively rejected across all 

cases. Thus, we find strong evidence of fractional integration for the three series. Starting 

with the case of a white noise model for the disturbance term, we observe that the 
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estimates of d lie between 0.367 and 0.449 for the northern hemisphere; they are between 

0.418 and 0.480 for the southern temperatures, and range between 0.452 and 0.516 for 

the global temperatures. Thus, the values lie in all cases close to the borderline between 

stationary and nonstationary processes (d = 0.5). Also, if a linear trend is included, the 

orders of integration are substantially smaller for the three series considered. If we permit 

I(0) autocorrelation for the error term, the values are generally higher. The estimates are 

above 0.5 (i.e., in the nonstationary region) for the northern and global temperatures, 

while they are below 0.5 (and thus stationary) for the southern hemisphere. 

 

[Insert Table 2 about here] 

 

 Table 2 displays for each series and each model the estimates of the coefficients 

associated to the time trend, along with the estimated value of d, and the AR coefficient. 

We observe that the coefficients for the time trend are all statistically significant. Thus, 

the warming trend coefficients are 0.60ºC and 0.54ºC for the northern hemisphere 

respectively for the cases of white noise and AR(1) disturbances; they are 0.38ºC for the 

two cases in the southern hemisphere, and they are 0.47ºC and 0.44ºC for the global 

temperatures. These values are smaller than those reported in Jones et al. (2006) where 

the disturbance term was supposed to be I(0). They are also slightly smaller than those 

given by Fomby and Vogelsang (2002). These authors proposed a test that is valid under 

wide distributional assumptions for the error term, including the two standard cases of 

I(0) and I(1) disturbances. According to these authors, temperatures have increased about 

0.5ºC/100 yr., though they remark that if the analysis is restricted to the twentieth century 

data, many of the point trend-estimates are closer to 0.6ºC. 
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[Insert Figure 2 about here] 

 

 Figure 2 displays the estimated trends for the three series. It is observed that the 

largest trend corresponds to the northern hemisphere temperatures, and for the three 

series the results are fairly similar independently of the way of modelling the disturbance 

term. 

The results presented so far imply that the time trend has remained fixed across 

the sample period. This assumption may be unrealistic, especially taking into account 

that the balance between the greenhouse gases and the sulphur emissions has not 

remained stable across the years, and this has clearly an effect on the discontinuous 

changes observed in temperature time series. Thus, in what follows we consider the 

possibility of segmented trends and include one structural break at an unknown point in 

time, using for the estimation the procedure described in Section 2. The results, for the 

two cases of white noise and AR(1) disturbances, are displayed in Table 3. 

 

[Insert Table 3 about here] 

 

 Starting with the white noise specification we observe that the break date takes 

place at 1964 for the northern hemisphere, the two time trends are statistically 

significant, and the orders of integration are 0.348 and 0.479 for the first and second sub-

samples respectively. For the southern and global temperatures, the breaks occur in the 

earlier part of the sample (1891 for the southern hemisphere and 1884 for the global 
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temperatures) and the time trends are not significant for the first subsamples. In both 

series the orders of integration are smaller in the second sub-samples. 

 If we permit an AR(1) process for the disturbance term, the results are displayed in 

the lower part of Table 3. For the hemispheric temperatures the breaks take place at 

approximately the same dates as in the white noise case, however, for the global 

temperatures, the break occurs now at 1973. The time trend coefficients are significant in 

practically all cases, the only exception being the southern temperatures during the first 

subsample, and the estimated values of d are smaller than 0.5 and thus stationary in all 

cases. In fact, for two cases (southern temperatures in the first subsample, and global 

temperatures during the second subsample) the estimated value of d is precisely 0, 

implying lack of long memory behaviour in these two cases.7 

 

[Insert Figures 3 and 4 about here] 

 

 Figures 3 and 4 reproduce the segmented trends for the three series using white 

noise and AR(1) errors. Starting with the white noise case, (in Figure 3 and Table 4), we 

observe that for the northern temperatures, the warming effect changes from 0.54ºC 

before 1964 to 1.75ºC after that date; for the southern and global temperatures the 

warming effect is insignificant during the first subsamples, and is about 0.81ºC (after 

1891) for the southern temperatures, and about 0.75ºC (after 1884) for the global 

temperatures. 

 Assuming that the disturbances follow an AR(1) process, (Figure 4 and Table 4), 

the change in the warming effect is even more significant: for the northern temperatures, 

it changes from 0.37ºC (before 1963) to 2.84ºC after the break; it is 0.74ºC from 1891 for 
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the southern hemisphere, and the values are 0.19ºC (before 1973) and 2.61ºC (after 1973) 

for the global temperatures. 

 

5. Conclusions 

In this article we have examined the existence of significant trends in the global and 

hemispheric temperature anomaly series, annually, for the time period 1850-2006. 

However, instead of imposing a priori that the residuals from the estimated trends are 

stationary I(0), we test this hypothesis by using fractional integration. The results 

strongly support the view that the northern, southern, and global temperatures are I(d) 

with d constrained between 0 and 1. Moreover, the existence of a structural break at an 

unknown point in time is also taken into account, examining the implications that this has 

on the orders of integration and the coefficients associated to the time trends. 

 

[Insert Table 4 about here] 

 

 Table 4 summarizes the results in terms of the warming effects depending on the 

assumption made on the disturbance term. As expected, the results substantially differ 

from one model to another. Generally, the values are smaller if fractional orders of 

integration are taken into account. This is consistent with other empirical works that 

assume I(0) specifications for the error term, also suggesting that the results based on 

stationary I(0) are upward biased since this hypothesis is strongly rejected when 

fractional values are taken into account. If segmented trends are permitted, the values are 

higher during the second subsamples implying stronger warming effects during the latter 

parts of the samples. 
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The results presented in this paper indicate that the temperature anomaly time 

series are fractionally integrated, implying a strong degree of association between the 

observations widely separated in time. Nevertheless, the fact that in all cases the 

fractional differencing parameters are found to be strictly smaller than one also implies 

that the series are mean-reverting. Thus, in the event of an exogenous shock caused, for 

example, by exogenous forces, there is no strong need of policy actions since the series 

will return to their original trends sometime in the future. Another implication of these 

results is that the underlying trends have substantially increased in recent years, and 

which are the causes of such increase is an issue that will be examined in future papers. 

 This article can be extended in several other directions. Firstly, the model can be 

extended to more than a single break, allowing then for the existence of more than two 

segmented trends in the data. However, for the validity of the type of long-memory 

(fractional integration) model we use in this application it is necessary that the data span 

a sufficiently long period of time to detect the dependence across time of the 

observations; given the sample size of the series employed here, the inclusion of two or 

more breaks would result in relatively short subsamples, therefore invalidating the 

analysis based on fractional integration. Secondly, other forms of fractional integration 

can also be examined. For instance, the detrended series may be I(d) with a pole or 

singularity in the spectrum occurring at a frequency away from zero.  Non-linear trends 

can also be considered. Work in these directions is now under progress. 
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Endnotes 

1. In the context of autocorrelated disturbances, we can use the Prais-Winsten (1954) 

transformation, in order to obtain a t-statistic, which converges in distribution to a N(0,1) 

random variable. However, as noted by Park and Mitchell (1980) and Woodward and 

Gray (1993), significant size distortions appear in the test statistic when the coefficient is 

close to 1. Canjels and Watson (1997) have proposed a conservative approach that 

controls these size distortions. 

2. McKitrick (2001) states the importance of analyzing the time series properties of 

the surface temperatures when testing for trends. He showed that inference based on 

naïve modelling strategies can lead to unreliable conclusions about the warming effect. 

See, also Zheng and Basher (1999). 

3. An I(0) process is defined here as a covariance stationary process with spectral 

density function that is positive and finite at the zero frequency. It thus includes the 

standard white noise case, but also stationary AR, MA, stationary ARMA, etc. 

4. The condition ut = 0, t � 0 is required for the Type II definition of fractional 

integration. For an alternative definition (Type I) see Marinucci and Robinson (1999).  

5. Robinson and Iacome (2005) examine the interaction of long memory with 

deterministic trends. 

6. Diebold and Inoue (2001), Granger and Hyung (2004) and others have shown that 

fractional integration and structural break models can be easily confused. 

7. Note that the lack of long memory behaviour in these two cases may be partly due 

to the competition between the fractional differencing parameter and the AR coefficient 

in describing the time dependence. 
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Figure captions list: 

 

Figure 1: Original time series. The series are anomalies with respect to 1961-1990. 

 

Figure 2: Original series and linear fitted trends. 

 

Figure 3: Original series and segmented trends in case of white noise disturbances. 

 

Figure 4: Original series and segmented trends in case of AR(1) disturbances. 
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 Figure 1: Original time series.  The series are anomalies with respect to 1961-1990. 
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 Figure 2: Original series and the fitted linear trends 
 
 
 

  
 
 
 



 

 26

 
 
 

Northern Hemisphere Temperatures 

-1,5

-1

-0,5

0

0,5

1

1,5

1850 1964 2006
 

Southern Hemisphere Temperatures 

-1,5

-1

-0,5

0

0,5

1

1,5

1850 1891 2006
 

Global Temperatures 

-1,5

-1

-0,5

0

0,5

1

1,5

1850 1884 2006
 

 Figure 3: Original series and segmented trends in case of white noise disturbances 
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 Figure 4: Original series and segmented trends in case of AR(1) disturbances 
 
 
 



 

 28

 
 
 
 
 

 
Table 1: Estimates of d and (95%-) confidence bands for the three series. In bold, the    estimated values 
of d based on the Whittle function. 

i) White noise disturbances 

 No det. Terms An intercept A linear trend 

Northern H. [0.397 (0.449) 0.517] [0.381 (0.430) 0.495] [0.299 (0.367) 0.455] 

Southern H. [0.416 (0.480) 0.569] [0.405 (0.466) 0.556] [0.338 (0.418) 0.529] 

Global T. [0.459 (0.516) 0.593] [0.442 (0.497) 0.575] [0.379 (0.452) 0.549] 

ii) AR(1) disturbances         

 No det. Terms An intercept A linear trend 

Northern H. [0.498 (0.580) 0.685] [0.480 (0.559) 0.668] [0.427 (0.526) 0.653] 

Southern H. [0.408 (0.493) 0.595] [0.397 (0.474) 0.572] [0.299 (0.403) 0.530] 

Global T. [0.497 (0.582) 0.688] [0.481 (0.560) 0.664] [0.413 (0.516) 0.641] 
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Table 2: Estimates of the coefficients associated to the time trend for each series. t-values in parenthesis. 
In bold, significant coefficients at the 5% level. 

i) White noise disturbances 

 Intercept Time Trend Estimated d AR coefficient 

Nothern H. -0.54327 
(-4.860) 

0.00600 
(4.853) 0.367 ----- 

Southern H. -0.33328 
(-3.155) 

0.00380 
(3.106) 0.418 ----- 

Global T. -0.42778 
(-4.138) 

0.00470 
(3.767) 0.452 ----- 

ii) AR(1) disturbances 

 Intercept Time Trend Estimated d AR coefficient 

Nothern H. -0.51509 
(-3.200) 

0.00541 
(2.455) 0.526 -0.276 

Southern H. -0.33628 
(-3.296) 

0.00384 
(3.301) 0.403 0.025  

Global T. -0.41471 
(-3.529) 

0.00448 
(2.840) 0.516 -0.111 
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Table 3: Estimates based on fractional integration with a structural break. t-values in parenthesis. In bold, 
significant coefficients at the 5% level. 

i) White noise disturbances 

  First sub-sample Second sub-sample 

 Break Int. L.Trend d AR  Int. L.Trend d AR cf. 

North  1964 -0.36874 
(-3.357) 

0.00545 
(3.316) 

0.348 ----- -2.45729 
(-2.719) 

0.01750 
(2.495) 

0.479 ----- 

South  1891 -0.12881 
(-0.793) 

0.00473 
(0.665) 

0.437 ----- -0.90066 
(-8.290) 

0.00816 
(7.631) 

0.322 ----- 

Global  1884 -0.24101 
(-1.583) 

0.00107 
(1.308) 

0.469 ----- -0.80591 
(-7.004) 

0.00750 
(6.178) 

0.392 ----- 

ii) AR(1) disturbances 

  First sub-sample Second sub-sample 

 Break Int. L.Trend d AR  Int. L.Trend d AR cf. 

North  1963 -0.45158 
(-5.750) 

0.00373 
(3.353) 

0.257 -0.147 -3.64315 
(-11.63) 

0.02848 
(12.430) 

0.032 -0.011 

South  1891 -0.19745 
(-2.253) 

-0.00208 
(-0.572) 

0.000 0.214 -0.86801 
(-11.36) 

0.00744 
(10.403) 

0.072 0.277 

Global  1973 -0.35264 
(-4.445) 

0.00191 
(1.875) 

0.283 0.075 -3.42123 
(-10.44) 

0.02619 
(11.294) 

0.000 -0.087 
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Table 4: Warming effect coefficients according to the different models. In bold, significant coefficients 
at the 5% level. 

Fractional d + Segmented trends 
d  =  0 Fractional d 

1st sub-sample 2nd  sub-sample 

 

W.N. AR(1) W.N. AR(1) W.N AR(1) W.N. AR(1) 

NORTH 0.60ºC 0.69ºC 0.60ºC 0.54ºC 0.54ºC 0.37ºC 1.75ºC 2.84ºC 

SOUTH 0.39ºC 0.70ºC 0.38ºC 0.38ºC 0.47ºC -0.20ºC 0.81ºC 0.74ºC 

GLOBAL 0.48ºC 0.69ºC 0.47ºC 0.44ºC 0.10ºC 0.19ºC 0.75ºC 2.61ºC 

 
 

 


