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1. Introduction

Ever since the energy crises of the 1970s, many governments started to promote the use of renewable
energies as desirable substitutes for traditional fossil fuels. Climate change concerns and fluctuating
oil prices are factors behind the increase in the share of renewable energy relative to the world energy
consumption. In this setting, the increasing demand for electricity, the strict environmental policies and
the potential future gains from access to renewable energy markets have stimulated the private sector’s
interest in developing more innovations in these alternative energies. However, the most important
barrier limiting the expansion of renewable energies is related to the high capital costs needed for their
development. At the firm level, several R&D activities have been carried out in order to reduce costs
and accelerate the expansion of renewable energy innovations. While private R&D expenses and factors
such as fossil fuels price increases or growing energy demand are expected to stimulate renewable energy
innovations, how effective these factors are in the generation of new technologies in these specific areas
has yet to be proved empirically.

The purpose of this paper is twofold. First, we inquire into the main determinants of the evolution of
R&D activities related to renewable energy. Second, we estimate the impact of renewable energy R&D
intensity on firm performance using recently developed dynamic panel data techniques. Specifically, we
will estimate panel data models that are specific to count data, as well as a panel vector auto-regression
model. We analyze a panel of European firms, spanning over a 21-year period between 1987 and 2007,
for 19 European countries. We find statistically significant effects of R&D expenditures on patenting
activitites, and of patenting on firm performance.

During the 1971-2004 period, the total renewable energy supply experienced an annual growth
rate of 2.3 percent. Particularly, wind, solar and geothermal experienced an increase of 48 percent,
28 percent and 7.5 percent during the same time-period, respectively (IEA, 2007). More recent data
show that, in 2008, global energy coming from renewable sources increased 75 percent comparing to
2004. Specifically, in the same time-period, solar photovoltaic (PV) capacity and biodiesel production
increased six fold, ethanol production and solar heating capacity doubled, while wind capacity increased
250 percent. Germany and Spain overcame the other of European countries in total renewable power,
wind power and solar PV capacities as for end-2008 (Renewables: Global Status Report, 2009).

The state of the art in renewable energies varies depending on the specific source of energy. For
instance, recently, innovations in solar PV industry have largely exceeded other technological innova-
tions innovations in renewable energy fields. In fact, the International Energy Agency (IEA) classifies
renewable energy technologies into three main categories according to the novelty of their development.
For instance, it sets First-generation technologies as those that emerged at the end of the nineteenth
century such as hydropower, biomass combustion, and geothermal power and heat, some of which
are still in widespread use. Second-generation technologies, generally, reflect revolutionary advance-
ments. They include solar heating and cooling, wind power modern forms of bio-energy, and solar
PV, whereas the Third-generation category of renewable energy technologies include innovations under
development such as in concentrating solar power, ocean energy, geothermal energy, and integrated

bio-energy systems.



In order to study the technological innovations, researchers have debated on what was the appro-
priate measure to use in order to quantify firms’ level of innovation. One of the widely used measures
are basically inputs of the innovative activity i.e. R&D expenditures, R&D intensity, etc. However,
since this type of measures show a relatively weak power to evaluate the real innovation activity of
firms, many studies considered that the best proxies for technological innovations are patents.

In this paper, we employ patent data based measures of firms’ R&D intensity. During the past
two decades, innovations protected by patents have played a key role in business strategies. This fact
motivated several studies of the determinants of patents and the impact of patents on innovation and
competitive advantage. Patents help sustaining competitive advantages by increasing the production
cost of competitors, by signaling a better quality of products and by serving as barriers to entry.
Griliches (1990) states that the main advantages of patent data are the followings: (a) by definition
patents are closely related to inventive activity; (b) patent documents are objective because they are
produced by an independent patent office and their standards change slowly over time; and (c) patent
data are widely available in several countries, over long periods of time, and cover almost every field
of innovation.

Actually, patents, as an output measure, provide relevant information about the nature of the
inventions, their application dates, the identity and the home country of the applicant, the detailed
description of the invention and even the citation to previous patents related to the current innovation.
Moreover, patent data allow for an examination of the different levels of innovative activities across
countries and permit to classify patents according to their area of application following the International
Patent Classification (IPC) codes developed at the World Intellectual Property Organization. The
IPC codes are particularly preferable in the renewable energy innovations to the conventional sectoral
classification as they allow distinguishing between the relevant technological classes of a particular
section.

Regarding firm performance, innovation activity exists because it has a positive impact on future
profits of a company, which motivates owners to promote innovative activity within their firm. Indeed,
the R&D intensity of private firms is an important source of wealth in developed countries. Since
profits on R&D are usually realized during several years in the future, current accounting-based net
profit is a very noisy measure of R&D benefits. Therefore, in the economics literature, several papers
have decided to investigate the impact of R&D on stock market price, which avoids the problem of
timing differential of R&D expenses and associated future profits by a forward-looking perspective.

The remainder of the paper is organized as follows. Section 2 reviews the literature directly related
to the topics addressed in this paper. Section 3 presents and discusses the dataset used in this paper.
In Section 4, we present the panel data models to be estimated; a number of technical details have
been relegated to the appendix. Section 5 discusses the estimation results, and finally, we present a

number of concluding remarks in Section 6.
2. Literature review

In the existing literature a number of empirical analyses have investigated the determinants of renew-

able energy innovations, mainly due to the difficulty in obtaining this kind of data. The majority of



studies provide evidence on factors influencing environmental innovations rather than renewable energy
innovations. In the present section we summarize the most important empirical contributions that have
been developed in this area.

The panel framework of Johnstone et al. (2008) applied to 25 OECD countries over the 1978-2003
period examine the determinants, particularly environmental policies, of the technological innovations
in the area of renewable energy. The authors use patent counts as proxy for innovation activities and
find that renewable R&D public spending and public policy are both significant factors influencing
patent activity in renewable energy. They also consider that growing electricity consumption is likely
to increase incentives to innovate in renewable energy technologies.

Sagar (2000) argues that, unlike in sectors such as pharmaceuticals, where returns to R&D can be
very high, in the energy sector R&D mainly serves to lower capital expenditures of energy conversion
plans or the substitution of fuel based technologies.

Using German panel data applied to firms in the environmental sectors, Horbach (2008) studies
factors that determine environmental technological innovations. He finds that R&D activities encour-
age environmental innovation. Also, Margolis and Kammen (1999) show that R&D investments are
positively correlated with the total number of patents granted in energy sector in the US.

In their study applied to 15 EU-Member States, Ragwitz and Miola (2005) confirm that in R&D
intensive renewable energy technologies, such as the photovoltaic sector, R&D spending constitute a
major factor influencing the generation of international patents. The authors state that in this kind of
technologies the role of research activities is the most relevant driver to the development of innovating
activities. However, they find that in sectors such as wind energy, other factors play a more important
role in the development of the technological innovations since in this kind of technologies the practical
experience will have the dominant impact.

Popp (2002) considers that energy prices have a strong positive impact on patenting activity for
various environmentally-friendly technologies. Indeed, he sustains that energy prices tend to generate
more environmental regulations, such as taxes and abatement policies that encourage the development
of new energy technologies. He also finds that prices of fossil fuels are likely to stimulate the development
of these types of research in relatively small period of time (five-year period has been experienced for
one-half of the effects of energy price increase on R&D). Moreover, focusing on a particular energy
technology, his findings show that energy crisis en 1972 have immediately contributed to big jumps in
patenting activity in solar technology.

In a theoretical study applied to use of patents in environmental innovations, Popp (2003) considers
that patent counts are a good measure of innovative output of the firm and that they indicate the
corporate level of innovative activity. Moreover, Dernis and Guellec (2001) justify the increasing use
of patent data in empirical studies on determinants of innovative activities of firms by the extensively
recognized relationship between patents and innovative output and also by the interesting information
contained in patents. The authors also consider that among the few indicators of technology output
patent-based indicators are particularly useful for comparing innovative trends across countries.

Regarding the econometric techniques used in this paper, in a similar way as several past stud-

ies, which used patent data to measure the inventive activity of firms, the present paper employs a



Poisson-type patent count model. By patent counts we mean the number of successful patent appli-
cations assigned to firms during a given year.! Common characteristic of these models is that patent
counts are treated as discrete-valued random variables and are analyzed by a count data model. In
these models it is assumed that: (1) the arrival rate (or conditional intensity) of patents has some
parametric functional form, and (2) the arrival rate is constant over a period of time. The consequence
of the second assumption is that the statistical inference of the model can be done based on the number
of patent applications during each period and the exact time of the innovation is irrelevant. Although
in recent patent databases the application date of patents is available with daily precision, this in-
formation is a noisy measure of the time of innovations. Therefore, following Hausman et al. (1984)
most authors aggregate patent data over the year. Thus, the patent counts are assumed to follow a
Poisson distribution. Fortunately, Wooldridge (2002) notes that the Poisson distribution has a very
nice robustness property: whether or not the Poisson distribution holds, we still get consistent, asymp-
totically normal estimators of the parameters given that the conditional mean is correctly specified and
the regularity conditions hold (see Wooldridge, 1997 and 2002).

Finally, several papers have investigated the impact of R&D activity on the stock market value
of firms. Pakes (1985) focuses on the dynamic relationships among the number of successful patent
applications of firms, a measure of the firm’s investment in inventive activity (its R&D expenditures),
and an indicator of its inventive out (the stock market value of the firm). Pakes concludes that
the events that lead the market to reevaluate the firm are significantly correlated with unpredictable
changes in both the R&D and the patents of the firm. Hall (1993) shows that the stock market
overvalues R&D. Nevertheless, Hall et al. (2006) shows that the valuation on R&D has been relatively
low during the past decade. On the other hand, a number of studies have shown the correlation of
R&D activity with contemporaneous and future market value (see Lev and Sougiannis, 1996 and Lev
et al., 2005). Chan et al. (2001) show a positive relationship between R&D intensity as measured by
R&D to market value and abnormal future returns. This association of R&D activity and future excess
stock returns could be due to delayed reaction by the stock market or inadequate adjustment for risk
(Chambers et al., 2002). Moreover, Chan et al. (2001) also show that the future excess returns for
R&D intensive firms are driven by lower stock price valuation in the current year due to R&D firm’s
earnings being depressed. Recently, Lev et al., (2006) show that R&D leaders earn significant future
excess returns, while R&D followers only earn average returns. Lev et al. (2006) find that R&D leaders
show higher future profitability and lower risk than followers, but the investors’ reaction seems to be
delayed. They conclude that investors probably do not get information in a timely fashion leading to
a delayed reaction. We model R&D intensity and stock market value in dynamic setup and to use a

multivariate model to identify R&D leader and follower companies.
3. The data

We provide a general discussion of the data set employed, which comes from different sources. First, we

describe the characteristics of our patent data, then data on firm characteristics, and finally macroe-

!See Hausman et al. (1984), Pakes (1985), Lanjouw et al. (1998) or Trajtenberg (2002).



conomic data.

Patent data. Our sample of patents in renewable energy includes 15 EU countries: (1) Austria, (2)
Belgium, (3) Denmark, (4) Finland, (5) France, (6) Germany, (7) Greece, (8) Ireland, (9) Italy, (10)
Luxembourg, (11) Netherlands, (12) Portugal, (13) Spain, (14) Sweden, (15) United Kingdom and four
EFTA : (1) Iceland, (2) Liechtenstein, (3) Norway and (4) Switzerland. The patent data set used in
this paper is the PATSTAT database, acquired from the European Patent Office (EPO) for the period
1960-2007. We have collected a sample of 141,276 patent applications over the period 1960-2007 for the
19 countries in the sample. For each patent, we have obtained the following information: (1) patent
ID number, (2) application date, (3) publication date, (4) IPC code, (5) assignee name (firm name),
(6) number of citations received from future patents and (7) country name.

Patents are classified into seven main renewable energy categories: (1) biomass, (2) geothermal, (3)
hydro, (4) solar, (5) waste, (6) wave/tide and (7) wind. In order to identify these patents, we used the
specific International Patent Classification (IPC) codes related to renewable energy patents in these
areas as proposed by Johnstone et al. (2008, see Table 4). The IPC codes referring to Hydro Energy
were collected from the World Intellectual Property Organization (WIPO) web page. We show the
evolution of different types of renewable R&D during 1960-2007 in Tables 1A, 1B and Figures 4, 5. We
can observe the next ranking of renewable energy types according to patent counts over 1960-2007: (1)
waste, (2) wind, (3) solar, (4) biomass, (5) geothermal, (6) hydro and (7) wave/tide.

We aggregated the patent information over each year for each firm to get a panel data set. This
way we created the following two variables: (1) number of patent applications, (2) sum of the number
of patent applications and the number of citations received from future patents.? The rapid growth of
these variables over 1960-2007 can be observed on Figures 1-5.

The patent data set contains the application date and issue (publication) date for each patent.
As proposed by Hall et al. (2001) we use the application date in order to determine the time of an
innovation because inventors have incentive to apply for patent as soon as possible after completing the
innovation. The patent database contains patents published until the end of the observation period.
This means that the data set excludes patents, which were submitted to the EPO before that date
but were not published before the end of our sample. It order to investigate the impact of the sample
truncation, we analyze the distribution of the application-grant-lag (i.e., time elapsed between the
publication date and the application date of a patent) in our sample (see Figure 6). We can see on
the graph that the last five years of the sample (i.e. 2003-2007) are affected by the truncation bias.
Therefore, in the empirical part we need to control for these years due to missing data. The observations
for the 1960-2002 period are not affected, thus, we observe all patents of the corresponding period.

Regarding the quality of knowledge embodied in each patent, we compute a measure of patent
quality based on the number of citations received for each patent. We measure the quality of knowledge
represented by a patent by computing the number of citations the patent receives from future patents
(see also Hall et al., 2001). Nevertheless, the number of citations a patent receives from future patents

is subject to sample truncation bias because the sample excludes future patents, which may potentially

2These two variables we use alternatively as patent counts in our empirical application.



cite the observed patents. This is a limitation of this patent quality measure. However, it may be
advantageous to employ citations weighted patent counts than to use simple patent counts because
the information on the number of citations received allow for distinction among patents quality. This
motivates us to compute two alternative measures of patent counts: (1) number of patent applications

and (2) number of patent applications plus number of citations received from future patents.

Firm data. The accounting, R&D expenditure and market value data of firms have been gathered
from the Compustat Global database, a broad database containing financial statements and market
data of more than 6,200 companies from European countries. Industry classification is made using the
modified SIC codes of Hall and Mairesse (1996) that is (1) paper and printing, (2) chemicals, (3) rubber
and plastics, (4) wood and misc., (5) primary metals, (6) fabricated metals, (7) machinery, (8) electrical
machinery, (9) autos, (10) aircrafts and other trans., (11) textiles and leather, (12) pharmaceuticals,
(13) food, (14) computers and inst., (15) oil, (16) nonmanufacturing.

More specifically, we use the following firm specific variables: (1) R&D expenditure, (2) R&D
expenses of competitors in the industry, (3) R&D expenses of other industries, (3) number of employees,
(4) country name, (5) Standard Industry Classification (SIC) code, (6) return on assets (ROA) and (7)
stock return. We use the ROA and stock return variables as alternative measures of firm performance.
We account for R&D spillovers effects by computing the total R&D expenditure of competitors’ in the
same industry and also the total R&D expenses of other industries for each company and each year. As
the R&D spillover process is dynamic, in our application we shall consider several lags of these R&D

variables. Data coverage in the Compustat database ranges from 1987 to 2007.

Macroeconomic data. We also include macroeconomic data collected from EcoWin Energy database
in order to control for the economic factors related to traditional and renewable energy that could
influence the patenting activity of firms in renewable energy area.

These data refer to (1) oil price (USD), (2) electricity production (TWh), (3) hydro electricity
consumption (TWh), (4) nuclear energy consumption (TWh) and (5) primary energy consumption
(tonnes of oil equivalents, toe) in each country of our sample. In our application, the oil price quoted
in USD is changed to EUR price using exchange rate data obtained from Reutres. The data period
of these variables is 1960-2007. We present the evolution of oil price in USD during 1960-2007 on
Figure 2. We show the total electricity production (TWh) of the EU and Europe during 1990-2007 on
Figure 7. Finally, the total hydroelectricity (TWh), nuclear energy (TWh) and primary energy (toe)
consumption of the EU during 1965-2007 is presented on Figure 8.

After matching the three databases, our final data set consists of a panel of 154 firms from 14 Eu-
ropean countries that applied patents in the EPO over the period 1987-2007. The final panel used
in our calculations includes 8,404 patent applications in the renewable energy field and 18,233 patent
applications plus number of citations received to account for renewable energy patent quality. Notice
that the number of patents and firms included in the matched panel data set is significantly lower than
these numbers in the separate PATSTAT and Compustat databases. This is a limitation of our data

set used in the estimation procedure. However, we think that we used the two most complete data sets



available for European renewable patents and EU-EFTA company specific information and great care

has been taken in constructing our final panel data set to exploit the available information efficiently.?
4. The model

As it was stated in the introduction, the purpose of this paper is to inquire into the determinants of R&D
intensity, as well as to estimate the impact on performance of firms’ innovative activities. This section
describes the econometric procedures that will be used to carry out these estimations, specifically panel
count data models that will be used to identify firms’ renewable energy R&D intensity, and other panel
data specifications required in order to measure the impact of innovative activity in renewable energy
on various measures of firm performance. The purpose of this section is to present the econometric
specifications. Technical details on the likelihood functions and on how inference is carried out are

relegated to the Appendix section.
4.1 Patent count data models

Our dataset consists on a panel of ¢ = 1,..., N firms over the t = 1,...,T period. Depending on the
specification, n;; denotes either the number of patent applications or the sum of the number of patent
applications and number of citations received from future patents of the i-th firm at the ¢-th year.?
Denote a set of exogenous explanatory variables associated to the i-th firm at period ¢ by Z;;. The Z;
may include: (1) firm specific variables, (2) energy specific variables, (3) dummy variables controlling
time, country and industry effects.’?

Suppose that the conditional distribution of n; given all previous observable information Fj; =
ol(ni, Zi1)s -« -y (Nit—1, Zit—1), Zit] available at time ¢ is ng|Fy ~ Poisson(M\;). In what follows, we
shall parameterize the \;; intensity parameter of this distribution.

We are going to consider count panel data models that may or may not include an unobservable
heterogeneity term. We will also consider models that introudce an AR(1) component. First, we
shall specify the Basic Poisson model that excludes unobserved heterogeneity. In these models, we
control for heterogeneity of individuals by including firm and country specific constant variables into
the specification for example industry and country dummies. Next, we also consider models with fized
effects specifications for the unobservable heterogeneity term w; (see in the Appendix). In the models
that do not include the unobserved heterogeneity component, we replace w; by a constant parameter

denoted w.

Basic Poisson model. In the basic Poisson model, we specify the \;; > 0 parameter of the patent

count distribution as follows:

In it = w+ 07 (1)

3An extension of the present work could be the application of a more complete firm specific data set, which would
result a more complete panel after matching firm data with the PATSTAT database.

1We have two alternative choices for the endogenous variable in the patent count data model. We shall estimate two
alternative specifications for each count data model. (See the Data and the Empirical application section.)

5We shall be more precise regarding the Z;; term in the empirical applications section.



In this and all the following specifications all parameters are real numbers because we specify the

logarithm of the intensity parameter.

Basic Poisson-AR(1) model. In the AR(1) specification, we also include a first-order term of In A

as follows:
InAt =w+BlnXy_1+07Z; (2)
where In \jy = & is a parameter controlling for the initial conditions and |3| < 1is the AR(1) coefficient.

Fixed effects Poisson model. In the Poisson model with fixed effects, we specify the \;; parameter

of the patent count distribution by replacing w by the unobservable heterogeneity term:

In Ait = w; + QZZt (3)

Fixed effects-AR(1) Poisson model. In this specification, we also include an AR(1) term of In A;:

In it = w; + BInNjy—1 + 02y (4)
where In \jo = & is a parameter controlling for the initial conditions and || < 1 is the AR(1) coefficient.
4.2 Firm performance panel data models

In this set of regressions, we use the same panel of i = 1,..., N firms over the ¢t = 1,...,7T period.
We use the R&D intensity estimates obtained in the count data model to characterize R&D activity.
Denote the log R&D intensity of the i-th firm at the ¢-th year by log A;z. Let y;; denote the performance
of the i-th firm in period t.7 In the following part of this subsection, we present two alternative panel
data models that evaluate the impact of R&D activity on firm performance. These panel data models

account for unobserved heterogeneity among firms that we denote by w; in the equations.

Basic panel data regression. In this model, we parameterize firm performance y;; as follows:
Yit = wi + G log Air + €t (5)

where w; is a company specific fixed effect, ( measure the contemporaneous impact of log patent activity
on firm performance and €; ~ N(0, 062) is the error term. In this model, we assume that log \;; is an

exogenous variable.

Panel vectorautoregression (PVAR). In the previous panel data regression, we assumed the ex-

ogeneity of log A\;; and we only measured the contemporaneous impact of R&D on firm performance.

SWe control for initial conditions because we are in a short-panel setup in this paper. An alternative formulation
of the AR(1) Poisson models of this paper would be the dynamic Poisson specification proposed by Wooldridge (2005):
In it = w+ kN1 + Bnir—1 + 0Z;.. We estimated this specification as well and found similar results to our specification.
Therefore, in the empirical application section we only report the results corresponding to our specification in equations
(2) and (4).

"We shall be more specific regarding the firm performance variable in our empirical application section.



However, patent intensity is endogenous as firm performance impacts R&D activity and the relation-
ship between R&D and firm performance is dynamic over several years. Therefore, we also estimate
a panel data model where both variables are endogenous in the dynamic PVAR setup suggested by
Binder et al. (2005).

Define a 2 x 1 vector of endogenous variables for the i-th firm at period ¢ by Xt = (yit, In Ait)’.
Then, formulate the PVAR(1) model as follows:

Xit =wi + 6 + C(Xir—1 — 0r—1) + €, € ~ N(0,8). (6)

where w; = (w13, ws;)" is a 2 x 1 vector of firm specific random effects with covariance matrix €, and
8t = (014, 02t) is a 2 x 1 vector of time effects. The ( is a 2 x 2 matrix capturing the lagged impact of the
first lag of firm performance and log patent intensity on current firm performance and R&D activity.
We control for the initial conditions Xio by introducing the €2y covariance matrix of Xio because in
this paper we are in a short-panel setup. Moreover, ¢; ~ N(0,€) is a vector of error terms where
Q. is a 2 x 2 covariance matrix of the error terms capturing the contemporaneous interaction of R&D
and stock returns. Elements of the €;; vector of error terms may be contemporaneously correlated with
each other (through €.) but are uncorrelated with their own lagged values and uncorrelated with all

the right-hand side variables of the regression equation.
5. Empirical results

In this section, we discuss the empirical results obtained by the estimation of the panel data models
described in Section 4. First, we begin by reporting our count data model results on the determinants
of the R&D intensity of renewable energy patents. Then, we report the estimation results of several

panel data models that measure the effects of renewable R&D activity on firm performance.
5.1 Patent intensity

Tables 4A and 4B display estimated coefficients in the following specifications: (1) Basic Poisson, (2)
Basic Poisson-AR(1), (3) Fixed effect Poisson and (4) Fixed effects-AR(1) Poisson models. In all cases,
the dependent variable of the count data model is the patent applications count. In addition, we present
the estimation results of these four models when the dependent variable considered is the sum of patent
application and citations received counts in Tables 5A and 5B. In order to present more clearly the
country, industry and time effects estimates of Tables 4B and 5B, we also present the parameters values
on Figures 9, 10 and 11. The results obtained are robust across the different models and across the two
dependent variables: (1) patent applications counts and (2) patent applications counts plus citations
received counts.

Regarding the R&D expenses variable, we evidence that lagged values of R&D expenditure have
significant negative impact on patent applications counts. We find that contemporaneous R&D has
positive impact on applications counts in case of the fized effects Poisson models, while it has non-
significant effect for the Basic Poisson specifications (see Table 4A). When applications counts plus

citations counts are considered as endogenous in the count data model, we find similar results. For
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the fized effects specifications, we find significant positive contemporaneous effects while for the Basic
Poisson model the estimates are positive but not always significant. Lagged R&D has typically negative
impact on applications plus citations counts (see Table 5A). The positive contemporaneous impact of
R&D expenses can be explained by the fact that renewable energy R&D should be protected by patents
before the competitors imitate them. The significant negative parameters of past own R&D expenses
mean that firms do not benefit from previous investments in renewable R&D, therefore, they are
motivated to patent them as soon as possible. Indeed, as has been argued by Sagar (2000), firms in
energy sectors do not necessary benefit from the performed R&D activities to enhance their innovations
since these activities serve mainly to reduce capital cost expenditures necessary to the development of
these kind of innovations.?

The contemporaneous and lagged intra-industry and inter-industry R&D expenses variables affect
negatively both dependent variables. An exception can be noticed for the third lag of competitors’ R&D
expenses as it is shown to affect positively own patent applications and citations received intensity.
Therefore, it is less likely that firms performing renewable energy R&D benefit from knowledge spillovers
from competitors and even less likely that R&D spillover occurs among firms from different sectors.
Firms in the currently forming renewable energy sector compete by innovations and they are motivated
to protect their R&D investments using patents. Therefore, the negative impact of other firms’ R&D
on own patent activity can be explained by the fact that competitors and firms from other industries
capture certain techonological fields by means of their patent publications.

The size of the firm, measured by the number of its employees, has a positive and significant impact
in all the estimated models, suggesting that larger firms have more propensities to generate renewable
energy patents. Larger firms tend to have a broader array of research projects, whcih are carried out
simultaneously, and this is more likely to generate patents.

Regarding the macroeconomic variables used in the count data models, it can be noticed that oil
price in EUR has significant positive impact on patent counts when we consider contemporaneous and
fourth and fifth lagged variables.” The oil price variable has the expected lagged positive impact on
the number of patents applied in renewable energy, suggesting that the increase in the oil price is an
important motivation behind the expansion of renewable energy innovations and that actual fossil fuel
prices are affecting the future innovations aimed at reducing the dependence on these limited sources
of energy. (See also Figure 2.)

The electricity production variable has a significant and positive effect in the four models estimated,
when we consider the applications counts dependent variable. Alternatively, when we use the patent
applications and citations counts variable, electricity production shows an unexpected negative impact
on patent counts. However, the parameters estimates in this second case are not very significant. (See
also Figure 7.)

We evidence that nuclear energy consumption affects negatively the renewable energy innovations

in all the estimated models. This is mainly due to the fact that nuclear energy can be seen as an

8For example in solar energy sector where the cost of developing performing photocells is particularly high.
9We exchange oil prices to EUR as our sample includes companies from the EU and EFTA that account their costs in
EUR.
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alternative of renewable energy. The governments of several countries support nuclear energy as well
as renewable energy (see for instance The Economist, 2009b on renewable energy versus nuclear power
in the United Kingdom, or The Economist, 2009a, on the future perspectives of nuclear energy in the
US and EU). The Economist (2009a) cites the example of Sweden, where some politicians think that
nuclear energy can be a real alternative of renewable energy sources. We find similar negative impact of
hydro electricity consumption on renewable patent counts which is intuitive because hydro electricity
is an alternative of other renewable energy sources like solar or wind energy represented in our patent
count variables.

Furthermore, it can be observed that when primary energy consumption is high in a country, this
affects positively the patenting activity of firms. This indicates that in countries where fossil fuel
consumption and therefore carbon dioxide (COz) emissions are high, firms are more likely to develop
more innovations in renewable energy which enhances the patenting activity in these areas. This finding
is motivated by the existing and regulated European market for CO2 quotes on which firms may buy
or sell these quotes internationally. Thus, when a firm emits a large amount of greenhouse gases then it
has to spend money on buying additional quotes of CO3. Therefore, a country in which firms in general
need to buy additional quotes of greenhouse gases is motivated in developing the renewable electricity
production capacities. (The nuclear energy, hydro electricity and primary energy total consumption of
the EU is presented on Figure 8.)

We observe that the initial condition and lagged dependent variable coefficients used in our autore-
gressive models are significant. The autorregressive process is also found to be stationary. This is seen
in the 3 coefficient, which is smaller than one in absolute value.

We find that country effects have almost the same influence on the two dependent variables consid-
ered. We evidence the following ranking of countries in renewable energy patent activity of a company:
(1) Norway, (2) Switzerland, (3) Sweden, (4) Denmark, (5) Austria, (6) Finland, (7) France, (8) Spain,
(9) Belgium, (10) Netherlands, (11) Luxembourg, (12) Italy, (13) United Kingdom and (14) Germany.
Thus, we find that companies from smaller — usually Scandinavian — countries dominate the renewable
energy R&D intensity of Europe. (See Tables 4B, 5B and Figure 9.) However, notice that when we
consider the overall number of renewable energy patents applications per country then obviously we
find that the largest European countries, i.e. (1) Germany, (2) United Kingdom and (3) France produce
the most renewable patents (see Tables 1A, 1B, 2 and Figure 3).

As far as industry effects are concerned, our results are similar among the two alternative dependent
variables specifications. We observe significant differences amoung industries, with some positive and
some other negative coefficients on industry dummies, most of them being statistically significant. The
ranking of industries with respect to industry effects is the following: (1) paper and printing, (2) primary
metals, (3) aircrafts, (4) machinery, (5) chemicals, (6) autos, (7) food, (8) oil, (9) textiles, (10) rubber
and plastics, (11) electrical machinery, (12) non-manufacturing, (13) computers, (14) pharmaceuticals,
(15) fabricated metals and (16) wood.

During the last years, the number of patents applied in renewable energy has increased progressively.
Figures 1-5 show an exponentially increasing trend of the number of renewable energy patents in Europe

over the 1960-2007 period. However, on these figures it can be seen that during the last 5 years of our
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sample period the number of observed patents decreases significantly. This can be explained by looking
at Figure 6 where the empirical distribution of the application-grant lag is presented. On this figure
we can see that more than 95 percent of the patents have been published during the 1960-2002 time
period. As in our sample we only observe published patents, therefore, the last years of our sample
excludes patents that have been submitted to EPO but they have not been published before the end
of 2007. These missing data motivate us to apply time effects for the last five years of our sample
in the count data models. Estimates of the time effects can be seen in Tables 4B, 5B and Figure 11.
As predicted by this eyeball examination of the graphs, time dummies for 2004-07 are negative and

statistically significant.
5.2 Firm performance

We report our estimation results for the basic panel data regression and the PVAR(1) models in Tables
6A and 6B, respectively. In the first row of these tables, the firm performance measure employed is
presented. We estimate the models for two alternative measures of firm performance: (1) ROA and
(2) stock return. In the second row of Tables 6A and 6B, we show the count data model used to derive
the log \;; values for the firm performance panel data model. For all count data models of this table,
we use the patent applications count dependent variable, i.e. not the patent applications counts plus
citations received counts variable. We justify this choice by the fact that the count of citations received
from future patents are not available for investors as it is a future information. Moreover, we apply
the log \;; estimates obtained by the AR(1) Poisson specifications as they are more general than the
static Poisson models.

For the Basic panel data regression model, we present the impact of log A;; on ROA and stock
return. We find significant positive coefficients for the ROA performance measure. However, for the
stock return we do not obtain significant parameters (see Table 6A).

Next, we present the probably more realistic, PVAR(1) model estimates in Table 6B. We evidence
significant positive lagged impact of log renewable energy patent intensity on contemporaneous firm
performance, (12 > 0 for both measures (i.e., ROA and stock return) for the fized effects specification.
When we consider both the basic Poisson model and the fized effects Poisson model, we find significant
positive impact of lagged firm performance on contemporaneous log A;; that is {37 > 0. Moreover,
we also present the estimates of the covariance of contemporaneous log patent intensity and firm
performance, 2,,. We find significant positive interaction for all models and variables presented,
ie. Q, > 0. Finally, we find significant correlation between the random effects variables, while the

interaction between the initial conditions is non-significant.
6. Conclusions

In this paper, we have addressed the question of firms’ renewable energy innovations of in 19 European
countries using patent data for the 1987-2007 period. We are particularly interested in two issues: The
factors influencing the development of firms’ renewable energy innovations, and the impact of firms’

renewable energy R&D intensity on their performance. These research objectives are investigated by
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using two types of models. To answer the first question, we specified four alternative count data
specifications designed for dynamic panel data. Then, to study the second objective, we used a recent
panel vectorautoregression framework.

Our results show that contemporaneous R&D expenses have positive impact on renewable innova-
tion activity. However, we find that renewable energy innovators do not benefit from either competitors’
or other industries’ R&D expenses. Our results also support the hypotheses that increasing oil prices,
especially of their fourth and fifth lags, motivate the development of renewable energy patents. We also
find that alternatives of renewable energy R&D such as nuclear energy tend to compete with patents
in renewable energy. Moreover, hydro energy which is a specific form of renewable energy also is found
to be a competitor of renewable energy patent intensity. Furthermore, primary energy consumption
affects positively the patenting activity of firms. This indicates that in countries where CO9 emissions
are high, firms develop more patents in renewable energy. Finally, the dynamic count data models
of the paper also evidence that firms’ past renewable R&D intensity has a significant positive impact
on their contemporaneous performance. These findings exhibit important implications that may be
interesting for both researchers and policy makers.

This study provided interesting evidence on the renewable energy patenting activity of firms in
several European countries. Although corporate data available on firms in this sector are limited for
researchers, the present study can be considered as a first step on the analyses of renewable innovative

activity.
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Appendix A. Log-likelihood functions and statistical inference

In this appendix, we discuss some details of the statistical inference procedure for the models presented
in Section 4. All models presented before are estimated by maximum likelihood method. First, we
show the log-likelihood function of the Poisson count data model without unobserved heterogeneity.
Second, we present the log-likelihood of the Possion count data models with fized effects. Finally, we

review the maximum likelihood estimation of the PVAR model.

Al. Basic Poisson model
All count data models presented in the previous section are estimated by maximum likelihood method.
The log likelihood of the basic Poisson model is given by (Gouriéroux, 1984, Chapter XI):

T N
InL = Z Z nit In Ng — In(nge!) — At (A1)

t=1 i=1

The estimates of w, 8 and 6 are obtained by maximizing this log-likelihood function with respect to

the parameters.

A2. Poisson model with fized effects

As we have seen in the previous section, the Poisson model with fixed effects has the following form:

)\it = exp(wi + QZit). (A2)

Substituting this equation into (A1) we obtain the log-likelihood of the fixed effects model:

T N
L= ni(wi+0Zz) —In(ni!) — exp(wi + 0Z). (A3)
t=1 =1

Solving the first-order condition d1ln £/0w; = 0 for w; we get:

ZtT:I Tt ) (A4)
Z;rzl exp(0Zit)

explwi) =

Substituting this equation into (A3) and introducing the notation p; = exp(0Z;;)/ Estl exp(0Z;)
we get the log likelihood of the Poisson model with fixed effects:

T N T T
Inl = Z Z n; In [pit nw] — In(ni!) — pir Z Nis. (A5)
s=1 s=1

t=1 i=1

The estimates of G and # are obtained by maximizing this log-likelihood function with respect to the

parameters.
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Hausman et al. (1984) and Greene (2001) point out that this likelihood is conditional on the sum of
the number of patents in the sample, 23:1 n;s. An alternative approach would be to estimate directly
the w; parameters by (A3). This would not require conditioning on ZST:1 njs, but for our data set this
is computationally not feasible because the number of parameters would be higher than the number of

individuals in the sample.
A83. The PVAR model

In this section, we present the statistical method used to estimate the PVAR(1) model presented in
Section 4.2. We use the maximum likelihood method suggested by Binder et al. (2005). First, recall
the PVAR model to be estimated:

Xit = wi + 0 + ((Xir—1 — 04—1) + €, €ir ~ N(0,8). (A6)

Definitions of parameters in this equation have been presented in Section 4.2. We impose the next
assumption about random effects to reduce the number of parameters in the numerical maximization

procedure of the log-likelihood function.

Assumption 1 (Random effects). The random effect w; is uncorrelated with the error term e; and
uncorrelated with the initial condition of the observable variables Xy, i.e. Cov(wj,€;) = 02 and

Qow = Cov(Xjp,w;) = 02 are 2 X 2 matrices of zeros.

In order to ensure the positive semi-definiteness and symmetry of the variance-covariance matrices of
error terms {2, initial conditions Qy and random effects €,,, we characterize these matrices by their
corresponding lower triangular Cholesky matrices: v, vQo and vQ,,. In addition, to identify the

covariance parameters in these matrices we need to impose the next assumption:

Assumption 2 (Diagonals of covariance matrices). The diagonals of the Q, Qg and €, matrices are

restricted to ones:
1 0 1 0 1 0
\% QE = V Qo = V Qw - (A?)
Q621 1 Q021 1 szl 1

where the parameters of the Cholesky matrices are real numbers. To interpret the contempora-

neous interaction among the endogenous variables, we need to compute the covariance matrix as

0. = A1y0, 10

The inference of the PVAR model is done in two stages. In the first stage, we estimate the time effects

as a cross-sectional average of the endogenous variables:

5 = 1§:X~ (A8)
t — N P 1t

10We employ the same strategy for the parameterization of the covariance matrices of random effects Q. and initial
conditions {2y in order to get the desired properties of these matrices. Thus, in the numerical maximization procedure of
the likelihood function we do not need to impose any restriction on the parameters. The identification strategy used in
this paper is similar to Blanchard and Quah (1989) and Gil-Alana and Moreno (2009).

16



Then, in the second stage we substitute the obtained time effects estimates into the following random

effects maximum likelihood function and maximize it with respect to the parameters (, ., Qo and €2:
N N
InL = —NTn(2r) - 7 In %] - Etr(Z;(lSX) (A9)
where

Q I QL
s,=( T (A10)
tr @ Qo I ® Qe + Lty & Q,

with 7 being a T' X 1 vector of ones, I being a T' x T identity matrix and
Sx =y Sty XX, (A11)

where X; = [(X;1 — 51)’, ey (X — ST)’]’ is a 2T x 1 vector. Finally, E)_Cl matrix of 27 x 2T is defined

as

I2 02 02
S :
5S¢ =R, RN with R=1| o, . - - (A12)
02
O ... 0o —C I
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Table 1A: Total number of patent applications by renewable energy category of 15 EU and 4 EFTA
countries over 1960-2007

Biomass Geothermal Hydro Solar  Waste Wave/Tide Wind | TOTAL
Austria 174 386 294 657 890 87 614 3,102
Belgium 116 40 25 308 328 23 504 1,344
Switzerland 228 550 590 1,103 1,812 20 668 4971
Germany 6,275 2,899 1,004 11,635 26,766 528 18,684 | 67,791
Denmark 122 126 67 156 1,229 25 4,493 | 6,218
Spain 95 90 218 938 479 221 2,732 | 4,773
Finland 258 134 122 505 1,566 37 789 3,411
France 1,705 749 667 2,688 3,151 244 4,210 | 13,414
UK 4,591 320 424 1,081 4,739 222 3,738 | 15,115
Greece 5 2 1 41 82 0 212 343
Ireland 38 0 14 53 21 4 87 217
Island 0 0 0 4 0 0 48 52
Italy 588 182 97 960 1,597 73 1,307 | 4,804
Liechtenstein | 1 48 25 49 123 8 26 280
Luxembourg | 14 10 32 97 84 0 30 267
Netherlands | 763 125 131 693 2,927 132 1,723 | 6,494
Norway 73 94 372 251 464 265 1,154 | 2,673
Portugal 0 4 3 71 16 13 292 399
Sweden 332 781 350 610 1,068 153 2,314 | 5,608
TOTAL 15,378 6,540 4,436 21,900 47,342 2,055 43,625 | 141,276
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Table 1B: Total number of patent applications plus number of citations received by renewable energy
category of 15 EU and 4 EFTA countries over 1960-2007

Biomass Geothermal Hydro Solar  Waste  Wave/Tide Wind | TOTAL
Austria 296 554 400 909 1,286 131 1,077 | 4,653
Belgium 220 48 40 609 542 26 1,122 | 2,607
Switzerland | 335 787 874 2,718 4,376 73 1,434 | 10,597
Germany 12,162 7,081 1,648 26,647 69,743 1,183 42,084 | 160,448
Denmark 185 178 71 272 2,351 25 9,109 | 12,191
Spain 113 112 264 1,272 672 267 4,340 | 7,040
Finland 277 154 134 1,155 2,122 37 1,142 | 5,021
France 3,208 1,845 998 6,312 5,942 491 10,387 | 29,183
UK 10,569 799 774 2,302 13,104 396 7,836 | 35,780
Greece 5 2 1 59 192 0 678 937
Ireland 44 0 15 103 27 4 293 486
Island 0 0 0 4 0 0 244 248
Italy 798 204 132 1,396 3,605 143 2,313 | 8,591
Liechtenstein | 7 60 58 103 223 11 50 012
Luxembourg | 29 18 44 168 91 0 42 392
Netherlands | 1,339 223 194 1,267 5,800 244 4,157 | 13,224
Norway 89 140 441 332 698 352 1,740 | 3,792
Portugal 0 4 3 85 16 17 432 557
Sweden 490 1,317 525 1,433 1,861 317 4,482 | 10,425
TOTAL 30,166 13,526 6,516 47,146 112,651 3,717 92,962 | 306,684
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Table 2: Number of renewable energy patent applications for each country (15 EU and 4 EFTA) over
1960-2007

AT BE CH DE DK ES FI FR GB GR 1IE 1S 1T LI LU NL NO PT SE
1960 2 0 25 0 0 4 0 10 10 0 0 0 0 0 0 1 0 0 0
1961 0 0 24 7 0 0 0 0 9 0 0 0 2 0 0 0 0 0 0
1962 0 0 27 15 0 0 0 10 6 0 0 0 0 0 0 0 0 0 0
1963 2 0 73 42 0 2 0 0 8 0 0 0 0 0 0 0 0 0 2
1964 10 0 43 12 2 0 0 7 2 0 0 0 0 0 0 0 2 0 1
1965 2 0 32 28 2 2 0 9 7 0 0 0 0 0 0 7 0 0 3
1966 3 0 49 28 0 0 0 5 18 0 0 0 0 0 0 22 0 0 19
1967 15 1 38 65 0 0 0 0 4 0 0 0 0 0 0 6 0 0 12
1968 5 4 35 76 0 0 0 61 11 0 0 0 0 0 0 44 0 0 5
1969 0 1 45 21 0 0 0 30 20 0 0 0 0 0 0 4 0 0 31
1970 0 1 7 16 0 0 0 39 18 0 0 0 0 0 0 18 0 0 7
1971 2 2 1 11 0 0 0 20 13 0 0 0 1 0 0 34 0 0 0
1972 3 12 13 40 0 0 2 54 13 0 0 0 3 0 0 10 0 0 2
1973 1 0 20 115 0 0 0 57 23 0 0 0 0 0 0 4 2 0 34
1974 25 0 53 52 7 0 0 433 14 0 0 0 1 0 0 1 0 0 56
1975 15 3 114 72 49 0 6 394 53 0 0 0 19 0 8 10 0 0 42
1976 26 1 140 319 34 6 2 287 137 0 0 0 76 4 13 33 3 14 87
1977 50 4 99 332 18 22 6 388 7 0 6 0 76 8 7 82 18 4 50
1978 69 24 229 428 62 9 17 249 106 0 0 4 192 8 9 60 92 12 83
1979 26 4 131 618 0 60 6 437 59 0 0 0 131 0 12 43 9 24 154
1980 53 14 101 1526 20 94 38 606 78 5 10 0 201 3 12 110 29 12 174
1981 65 32 111 1421 23 173 9 640 167 2 8 0 104 2 2 s 21 22 229
1982 26 40 223 1115 27 72 38 544 200 2 0 0 132 10 8 73 23 4 236
1983 48 74 62 750 30 46 22 378 110 0 0 0 138 4 13 110 30 10 272
1984 40 16 74 668 57 62 52 283 45 14 0 0 21 0 0 35 4 10 199
1985 32 70 70 580 49 58 40 202 368 0 2 0 24 2 6 20 24 5 145
1986 16 66 14 779 60 41 63 236 233 0 0 0 24 24 5 113 0 21 142
1987 24 6 108 575 25 46 109 137 340 0 0 0 23 0 0 52 4 64 130
1988 61 3 88 1052 52 28 46 173 421 12 0 0 163 0 3 45 12 28 164
1989 36 6 21 952 66 34 130 354 206 4 2 0 275 0 38 176 22 0 57
1990 11 10 119 1236 144 106 127 189 220 4 7 0 85 15 5 272 11 6 28
1991 51 66 141 1141 82 75 25 227 395 29 3 0 85 27 2 253 16 8 83
1992 103 11 117 1652 147 55 72 186 530 134 0 0 124 11 1 24 44 34 63
1993 45 22 169 1601 50 87 264 252 801 5 0 0 24 3 65 73 4 54
1994 119 70 143 2249 84 131 260 208 482 10 3 0 107 5 2 159 111 20 81
1995 166 110 93 2403 144 160 326 164 943 0 0 36 264 0 12 80 81 10 107
1996 69 18 184 2550 261 115 202 388 567 0 21 0 72 1 2 244 118 8 131
1997 259 116 218 2863 101 138 115 631 661 7 36 0 183 66 0 198 210 2 243
1998 122 59 117 3519 240 62 214 618 493 3 0 12 339 0 1 465 231 14 218
1999 132 54 176 4350 513 170 371 493 716 64 7 0 134 13 14 602 173 13 430
2000 160 120 232 5427 525 494 160 644 690 8 16 0 176 10 13 690 330 4 482
2001 187 115 292 6484 378 338 154 580 798 1 31 0 137 13 7 702 231 19 428
2002 156 35 291 5902 592 364 93 747 1085 7 26 0 251 32 20 424 154 10 343
2003 293 27 223 4523 709 302 188 566 997 7 5 0 510 8 21 378 194 0 153
2004 228 49 212 3443 622 291 87 615 1312 5 1 0 133 1 6 319 141 0 151
2005 149 44 98 3063 627 478 93 567 816 0 4 0 340 1 6 292 157 4 208
2006 131 28 52 2674 241 475 44 225 510 7 22 0 146 8 8 71 95 8 53
2007 64 6 24 996 175 173 30 71 323 13 7 0 88 2 8 66 8 5 16

Notes: The following 15 EU and 4 EFTA countries are included in the table: AT=Austria, BE=Belgium, CH=Switzerland,
DE=Germany, DK=Denmark, ES=Spain, FI=Finland, FR=France, GB=United Kingdom, GR=Greece, [E=Ireland,
IS=Island, IT=Italy, LI=Liechtenstein, LU=Luxembourg, NL=Netherlands, NO=Norway, PT=Portugal, SE=Sweden.
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Table 3A: Biomass

IPC code IPC name World EU-EFTA
C10L 5/42 Solid fuels essentially based on materials of non-mineral origin 196
C10L 5/44 Solid fuels essentially based on materials of non-mineral origin 3,121
F02B 43/08 Plants characterized by the engines using gaseous fuel generated in the plant from solid fuel 0
B01J 41/16 Anion exchange; Use of materials, cellulose or wood 0
C10L 1/14 Liquid carbonaceous fuels - organic compounds 11,657
TOTAL 14,974 11,405

Table 3B: Geothermal

IPC code IPC name ‘World EU-EFTA
F24J 3/00 Other production or use of heat, not derived from combustion 15,520
F24J 3/02 Other production or use of heat, not derived from combustion 0
F24J 3/04 Other production or use of heat, not derived from combustion 0
F24J 3/06 Other production or use of heat, not derived from combustion - using natural heat 454
F24J 3/08 Other production or use of heat, not derived from combustion 2,272
F03G 4/00 Devices for producing mechanical power from geothermal energy 2,147
F03G 4/02 Devices for producing mechanical power from geothermal energy- with direct fluid contact 163
F03G 4/04 Devices for producing mechanical power from geothermal energy- with deep-well turbo-pump 74
F03G 4/06 Devices for producing mechanical power from geothermal energy- with fluid flashing 239
HO02N 10/00 Electric motors using thermal effects 0
TOTAL 20,869 4,934

Table 3C: Hydro

IPC code IPC name ‘World EU-EFTA
F03B 3/04 Machines or engines of reaction type; Parts or details - substantially axial flow throughout rotors 773
F03B 3/10 Machines or engines of reaction type - functioning alternatively as pumps or turbines 1,082
F03B 3/12 Machines or engines of reaction type; Parts or details - Blades; Blade-carrying rotors 2,018
F03B 3/18 Machines or engines of reaction type; Parts or details 2,081
F03B 11/02 Machines or engines for liquids - Parts or details - Casings Adaptations of machines or engines 0
F03B 13/06 Stations or aggregates of water-storage type 0
F03B 13/08 Machine or engine aggregates in dams 0
F03B 13/10 Submerged units incorporating electric generators or motors 0
F03B 15/04 Machines or engines for liquids - Controlling 0
F03B 15/08 Machines or engines for liquids - Controlling 0
F03B 17/00 Machines or engines for liquids - Other machines or engines 0
F03B 17/06 Machines or engines for liquids - Other machines or engines 0
E02B 9/00 ‘Water-power plants; Layout, construction or equipment 8,465
E02B 9/02 Water-power plants; Layout, construction or equipment 943
TOTAL 15,362 3,599
Table 3D: Solar
IPC code IPC name ‘World EU-EFTA
F03G 6/00 Devices for producing mechanical power from solar energy 4,965
F03G 6/02 Devices for producing mechanical power from solar energy - using a single state working fluid 48
F03G 6/06 Devices for producing mechanical power from solar energy - with solar energy concentrating 1,036
F03G 6/08 Devices for producing mechanical power from solar energy - Devices 0
F24J 2/00 Use of solar heat 22,474
F25B 27/00 Machines, plant, or systems, using particular sources of energy - sun 0
F26B 3/28 Drying solid materials or objects by processes involving the application of heat by radiation 3,122
HO2N 6/00 Generators in which light radiation is directly converted into electrical energy 3,277
E04D 13/18 Roof covering aspects of energy collecting devices 0
B60OL 8/00 Electric propulsion with power supply from force of nature, e.g. sun, wind 1,790
TOTAL 36,712 16,828
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Table 3E: Waste

IPC code IPC name ‘World EU-EFTA
C10L 5/46 Solid fuels essentially based on materials of non-mineral origin 1,533
C10L 5/48 Solid fuels essentially based on materials of non-mineral origin 1,642
F25B 27/02 Machines, plant, or systems, using particular sources of energy using waste heat 0
F02G 5/00 Hot gas or combustion - Profiting from waste heat of combustion engines 7,869
F02G 5/02 Hot gas or combustion - Profiting from waste heat of exhaust gases 2,656
F02G 5/04 Hot gas or combustion - Profiting from waste heat of exhaust gases 2,350
F23G 5/46 Incineration of waste - recuperation of heat 9,551
FO1K 25/14 Plants or engines characterized by use of industrial and other waste gases 0
C10J 3/86 Production of combustible gases containing carbon monoxide from solid carbonaceous fuels 622
F23G 7/10 Incinerators or other apparatus specially adapted for consuming field or garden waste 1,712
HO1M 8/06 Manufacture of fuel cells - Combination of fuel cell with means for production of reactants 42,525
TOTAL 70,460 35,727

Table 3F:

Wave/Tide

IPC code IPC name ‘World EU-EFTA
F03B 13/12 Machines or engines characterized by using wave or tide energy 0
F03G 7/04 Mechanical-power-producing mechanisms using pressure differences or thermal differences 1,949
F03G 7/05 Mechanical-power-producing mechanisms using ocean thermal energy conversion 555
F03B 7/00 Water wheels 2,688
F03B 13/12 Machines or engines using wave or tide energy 0
F03B 13/14 Machines or engines characterized by using wave or tide energy 0
F03B 13/16 Machines or engines using the relative movement between a wave-operated and another member 0
F03B 13/18 Machines or engines using wave or tide energy wherein the other member is fixed 0
F03B 13/20 Machines or engines using wave or tide energy wherein both members are movable 0
F03B 13/22 Machines or engines using wave or tide energy using the flow of water 0
F03B 13/26 Machines or engines using tide energy 0
E02B 9/08 Tide or wave power plants 919

TOTAL

Table 3G: Wind

6,111 1,608

IPC code IPC name ‘World EU-EFTA
F03D 1/00 Wind motors with r.a.s. in wind direction 9,286
F03D 1/02 ‘Wind motors with r.a.s. in wind direction having a plurality of rotors 962
F03D 1/04 Wind motors with r.a.s. in wind direction having stationary wind-guiding means 1,669
F03D 1/06 Wind motors with r.a.s. in wind direction - Rotors 3,455
F03D 3/00 ‘Wind motors with r.a.s. at right angle to wind direction 9,614
F03D 3/02 ‘Wind motors with r.a.s. at right angle to wind direction - having a plurality of rotors 1,166
F03D 3/04 ‘Wind motors with r.a.s. at right angle to wind direction - having stationary wind-guiding means 2,073
F03D 3/06 ‘Wind motors with r.a.s. at right angle to wind direction - Rotors 3,746
F03D 5/00 Other wind motors 1,814
F03D 5/02 Other wind motors - the wind-engaging parts being attached to endless chains 306
F03D 5/04 Other wind motors - the wind-engaging parts being attached to carriages running on tracks 184
F03D 5/06 Other wind motors - the wind-engaging parts swinging to-and-fro and not rotating 305
F03D 7/00 Controlling wind motors 7,676
F03D 7/02 Controlling wind motors - the wind motors having r.a.s. in wind direction 3,655
F03D 7/04 Controlling wind motors - Regulation 2,595
F03D 7/06 Controlling wind motors - the wind motors havingr.a.s. at right angle to wind direction 1,247
F03D 9/00 Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven 14,219
F03D 9/02 Adaptations of wind motors for special use - the apparatus storing power 1,300
F03D 11/00 Details, component parts, or accessories not provided 0
F03D 11/02 Details, component parts, or accessories 0
F03D 11/04 Details, component parts, or accessories 0
B60L 8/00 Electric propulsion with power supply from force of nature, e.g. sun, wind 1,790
B63H 13/00 Effecting propulsion by wind motors driving water-engaging propulsive elements 0

TOTAL
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Table 4A: Count data results — dependent variable: Applications count

Variable Basic Poisson Basic Poisson-AR(1) Fixed effects Fixed effects-AR(1)
Constant: w 0.03(0.116) 0.45(0.192) — —

Initial cond: £ | — 0.72***(0.174) — —0.09""*(0.026)
AR(1) coeff: 8 | — 0.18"%(0.023) - 0.14***(0.012)
Exog vars: 0

R&D: —0.20(0.215) —0.21(0.180) 0.447(0.237) 0.42***(0.078)
R&D;_, —0.77"*%(0.166)  —0.72***(0.163) —0.67"*(0.175)  —0.60***(0.048)
R&D;_2 —1.4477%(0.260)  —1.50"**(0.267) —1.22777(0.261)  —1.247**(0.072)
R&D;_3 —1.977(0.314)  —1.87"**(0.317) —1.827%(0.323) —1.69"**(0.121)
R&D; 4 —0.31"*(0.140)  —0.07(0.146) —0.24(0.155) 0.00(0.041)
R&D; 5 —0.21(0.144) —0.27%%(0.135) —0.16(0.151) —0.097%(0.043)
R&D o —3.2077(0.782)  —3.26"(0.847) —3.037(0.800) —3.59"*(0.167)
R&Duwi—1 ~3.017%(0.541)  —2.34%**(0.616) —3.387(0.647)  —2.86"*(0.190)
R&D ot 2 —2.57(0.283)  —1.93"**(0.413) —2.717**(0.461)  —2.19°**(0.175)
R&Dui_s —0.18(0.129) 0.24(0.153) —0.37"**(0.137)  0.01(0.084)
R&Dut4 —0.80*(0.164)  —0.78"*(0.152) —1.08"*(0.163)  —1.02"**(0.079)
R&Dui—s 0.02(0.136) 0.22°%(0.112) —0.23%(0.126)  —0.02(0.090)
R&Dy: —0.62°°%(0.184) —0.60"**(0.111) —0.28(0.182) —0.37"*%(0.101)
R&Dyi_1 —1.50"*(0.100)  —1.28"**(0.101) —1.597"(0.106)  —1.42"**(0.046)
R&Dyr_» ~1.23°(0.090)  —0.99"**(0.093) ~1.217°(0.093)  —1.03"*(0.038)
R&Dyr_3 —1.017(0.080)  —0.87"**(0.080) —1.087(0.084)  —0.95"*(0.048)
R&Di_4 —0.79"*(0.077)  —0.67"**(0.072) ~1.017(0.079)  —0.86"*(0.056)
R&Dps—5 —1.33**(0.101)  —1.34"**(0.079) —1.52"%%(0.100)  —1.47***(0.059)
Employees 4.82°°(0.059)  4.07**(0.106) 6.207(0.183)  5.777*(0.087)
P(Oil), 0.647*(0.177)  0.37°*(0.180) 0.03(0.198) —0.197(0.071)
P(Oil),_, —1.3277%(0.220)  —1.15""*(0.219) —1.507(0.222)  —1.23"**(0.101)
P(0il),_, 0.46*(0.274) 0.39%(0.227) —0.23(0.274) ~0.16(0.107)
P(Oil),_, —0.06(0.166) —0.26(0.256) —0.16(0.206) —0.26"**(0.061)
P(0il),_, 3.10°°%(0.453)  3.117**(0.272) 1.887*(0.478)  2.15"**(0.265)
P(Oil), . 4.06™(0.535)  3.23°"%(0.229) 5.807*(0.554)  4.817°*(0.347)
Electr prod 5.687(0.360)  4.95"*(0.367) 6.74(0.496)  6.19"*(0.304)
Hydro cons —5.08"%(0.323)  —5.09"**(0.394) —5.16™%(0.443)  —5.15"**(0.073)
Nuclear cons —4.80""7(0.413) —4.51"""(0.429) —6.78""7(0.502) —6.39"""(0.179)
Primary cons | 5.557*(0.651)  5.00"**(0.480) 4.147(0.731)  3.547(0.114)
Mean LL —525.90 —524.64 —328.68 —327.65

Notes: Standard errors are reported in parentheses. The *** ** and * denote parameter significant at the 1%, 5% and

10% level, respectively. The — denotes parameter not identified. The Mean LL denotes mean log-likelihood. The following

specifications are presented in the table:

Basic Poisson:
Init =w + 07

Basic Poisson-AR(1):
InAit =w+ BlnAiz—1 + 0Z;¢

Fixed effects:
In\it = w; +0Z;
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Table 4B: Country, time

Country effects:

Basic Poisson

and industry effects — dependent

Basic Poisson-AR(1)

Fixed effects

variable: Applications count

Fixed effects-AR(1)

D(AT) | —0.89"*(0.127) —0.96"**(0.126) — -
D(BE) | —2.83"*%(0.196) —2.83***(0.203) - -
D(CH) | 0.65*(0.122)  0.35"*(0.156) - -
D(DE) | —8.46™*(0.611) —7.67"**(0.516) - -
D(DK) | —0.34"(0.160)  —0.72"**(0.238) - -
D(ES) | —2.07"*%(0.201)  —2.03***(0.194) - -
D(FI) | —1.43"%(0.126) —1.53***(0.153) - -
D(FR) | —2.147(0.262) —1.74***(0.227) - -
D(GB) | —5.61""*(0.426) —5.29"**(0.389) - -
D(IT) | —4.23"*(0.292) —3.89"**(0.243) - -
D(LU) | —3.16"*(0.428) —3.04"**(0.359) - -
D(NL) | —3.26"%(0.221) —3.21***(0.210) - -
D(NO) | 2.43*%(0.215)  2.24"**(0.173) - -
D(SE) | — — - -
Time effects:
Basic Poisson Basic Poisson-AR(1)  Fixed effects Fixed effects-AR(1)
Digsr<t<2002 | — - - _
Di—2003 0.27°**(0.095)  0.24***(0.070) 0.56**%(0.092)  0.46***(0.059)
Di=2004 —0.717(0.136)  —0.68"*(0.065) ~0.26"(0.131)  —0.34"*(0.073)
Di—2005 —1.517(0.084)  —1.277*(0.082) —1.257(0.084)  —1.08"*(0.036)
Dy—2006 —2.06™%(0.118)  —1.81***(0.095) —1.70"**(0.114)  —1.57"**(0.052)
Di—2007 —2.82°°%(0.174)  —2.42°**(0.134) —2.16™(0.176)  —1.93***(0.080)

Industry effects:

Basic Poisson

Basic Poisson-AR(1)

Fixed effects

D(1-paper and printing)
D(2-chemicals)
D(3-rubber and plastics)

D(4-wood and misc.)

)

5-primary metals)

D(6-fabricated metals)

-

7-machinery)

-

8-electrical machinery)

(
(
(
(
(
(
(
(
(9-autos)
(
(
(
(
(
(
(

=)

D(10-aircrafts and other trans.)
D(11-textiles and leather)
12-pharmaceuticals)
D(13-food)

D(14-computers and inst.)
D(15-0il)

D(16-non-manufacturing)

-

0.66"**(0.092)
0.50"**(0.057)
—0.04(0.130)
—1.01***(0.132)
0.59***(0.071)
—0.86"**(0.129)
0.65"**(0.069)
—0.04(0.033)
—0.11%**(0.036)
0.35"**(0.052)
—0.36"**(0.071)
—0.01(0.136)
—0.26***(0.051)
0.28"**(0.043)
—0.31"**(0.044)

0.58"**(0.074)
0.45"**(0.045)
—0.01(0.087)
—0.81***(0.115)
0.52***(0.057)
—0.68"**(0.114)
0.58"**(0.056)
0.00(0.026)
—0.08***(0.034)
0.33"**(0.042)
—0.27"**(0.064)
0.03(0.128)
—0.18"**(0.046)
0.26***(0.035)
—0.26"**(0.042)

Fixed effects-AR(1)

Notes: Standard errors are reported in parentheses. The *** ** and * denote parameter significant at the 1%, 5% and

10% level, respectively. The — denotes parameter not identified. The country names see in Table 2.
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Table 5A: Count data results — dependent variable: Applications count + Citations count

Variable Basic Poisson Basic Poisson-AR(1) Fixed effects Fixed effects-AR(1)
Constant: w —0.17(0.173) 0.17(0.168) — —

Initial cond: K — 0.39"**(0.089) — —0.01(0.018)
AR(1) coeff: 8 - 0.17°**(0.012) - 0.10***(0.014)
Exog vars: 0

R&D; 0.36"*(0.148) 0.17(0.161) 0.75""*(0.139) 0.62"**(0.145)
R&Dy_; —1.127(0.111)  —1.13"**(0.116) —1.02°(0.113)  —1.02"**(0.116)
R&D;_» 0.04(0.076) 0.06(0.079) 0.17**(0.080) 0.20***(0.080)
R&D;_3 —1.747*(0.173)  —1.87"**(0.183) —1.70"*(0.167)  —1.74***(0.171)
R&D;_4 ~0.39"*%(0.093)  —0.19**(0.096) ~0.38"%(0.098)  —0.20**(0.100)
R&D;_5 ~0.12(0.088) —0.13(0.093) ~0.10(0.090) ~0.04(0.089)
R&D oyt —32.17"*%(1.938) —35.91"*"(2.424) —29.07"*%(2.195)  —32.17"**(2.417)
R&Dui 1 —5.517(1.452)  —0.96(2.550) ~7.927%(2.126)  —6.76"*(2.537)
R&Dyt—2 —11.31**%(1.309) —3.96"**(1.224) —12.08"*%(1.399) —6.92"**(1.561)
R&D i3 0.39"**(0.093) 1.25"%%(0.199) 0.12(0.093) 0.92"*(0.178)
R&Dyt—4a —0.24*7(0.108) —0.26""*(0.108) —0.57""*(0.110) —0.55""*(0.113)
R&Dus_s ~0.05(0.097) 0.13(0.105) ~0.34°%(0.104)  —0.19*(0.104)
R&Dy, —0.04(0.138) —0.18(0.153) 0.11(0.133) —0.03(0.137)
R&Dpe—1 ~1.20"*(0.068)  —1.10"*(0.067) ~1.317%(0.067)  —1.19"*(0.069)
R&Dyr_» —0.84"*%(0.059)  —0.67"**(0.059) —0.83"%(0.058)  —0.73"**(0.060)
R&Dyr_3 ~0.4177%(0.049)  —0.33"**(0.045) —0.46"%(0.048)  —0.40***(0.049)
R&Di_4 ~0.07(0.052) ~0.02(0.048) —0.18"%(0.049)  —0.12**(0.050)
R&Dy:—5 —1.23"%(0.069)  —1.27°**(0.075) —1.317(0.067)  —1.29""*(0.067)
Employees 5.30"*%(0.045) 4.59*"*(0.069) 5.36"**(0.101) 5.08"**(0.111)
P(Oil), 1.547%(0.141) 1.35"7%(0.141) 1.08"**(0.143) 0.97""*(0.139)
P(Oil),_, —1.46%(0.209)  —1.48"**(0.208) —1.4477%(0.206)  —1.35"**(0.205)
P(0il),_, ~0.09(0.199) 0.10(0.225) —0.57%(0.209)  —0.39*(0.220)
P(0il),_, 0.25(0.194) ~0.07(0.176) 0.24(0.200) 0.10(0.197)
P(Oil),_, 0.96"(0.388) 1.40"**(0.436) 0.37(0.377) 0.77"(0.391)
P(0il), . 4.917*(0.432) 3.817(0.485) 5.90"*(0.417) 5.017**(0.435)
Electr prod —1.96"(1.089) —1.85(1.027) —0.827(0.457) —0.76"(0.422)
Hydro electr cons —3.66""7(0.362) —3.85""7(0.349) —3.83""%(0.356) —3.82"7%(0.347)
Nuclear energ cons | —3.56**(0.380) —3.58"**(0.353) —4.21*77(0.390) —4.14**(0.365)
Primary energ cons | 12.87**(0.507)  11.88"**(0.486) 11.65°(0.509)  11.03***(0.493)
Mean LL —-971.50 —-968.11 —669.25 —668.16

Notes: Standard errors are reported in parentheses. The *** ** and * denote parameter significant at the 1%, 5% and
10% level, respectively. The — denotes parameter not identified. The Mean LL denotes mean log-likelihood. The following
specifications are presented in the table:

Basic Poisson-AR(1):

InAit =w+ BlnAiz—1 + 0Z;¢

Fixed effects:
In\it = w; +0Z;

Fixed effects-AR(1):
InAit =wi + BIn g1 + 073

Basic Poisson:
InXit =w+0Z;
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Table 5B: Country, time and industry effects — dependent variable: Applications + Citations count

Country effects:

Basic Poisson Basic Poisson-AR(1) Fixed effects Fixed effects-AR(1)
D(AT) | —1.14"%(0.136) —1.20"**(0.129) - —
D(BE) | —2.52"*%(0.197) —2.60***(0.189) - -
D(CH) | 1.16"*(0.145)  0.92***(0.144) - -
D(DU) | —8.75"*(0.457)  —8.10***(0.442) - -
D(DK) | 0.57***(0.219)  0.24(0.216) - -
D(ES) | —1.92"*%(0.163) —1.93***(0.161) - -
D(FI) | —1.23"*%(0.153) —1.35"**(0.146) - -
D(FR) | —2.20""*(0.259) —1.80***(0.230) - -
D(GB) | —5.47"%(0.324)  —5.24***(0.319) - -
D(IT) | —4.85"%(0.216) —4.60***(0.213) - -
D(LU) | —3.80"*(0.714) —3.76"**(0.632) - -
D(NL) | —3.62"**(0.203) —3.61***(0.197) - -
D(NO) | 2.55"(0.162)  2.47°**(0.161) - -
D(SE) | — — - -
Time effects:
Basic Poisson Basic Poisson-AR(1)  Fixed effects Fixed effects-AR(1)
Digsr<t<2002 | — - - _
Di—=2003 0.34***(0.079) 0.26***(0.078) 0.46"**(0.075) 0.37"**(0.073)
Di—2004 —0.26**(0.107)  —0.30***(0.115) —0.03(0.100) —0.11(0.101)
Di—2005 —1.70*(0.063)  —1.51"**(0.063) —1.56™*(0.061)  —1.46"*"(0.062)
Di=2006 —2.27"*%(0.098)  —2.03"**(0.099) —2.09""*(0.091) —1.99"**(0.094)
Di—2007 —3.07°%(0.141)  —2.73***(0.146) —2.677%(0.135)  —2.53"**(0.137)

Industry effects:

Basic Poisson

Basic Poisson-AR(1)

Fixed effects

D(1-paper and printing)
D(2-chemicals)
D(3-rubber and plastics)

D(4-wood and misc.)

)

5-primary metals)

D(6-fabricated metals)

-

7-machinery)

-

8-electrical machinery)

(
(
(
(
(
(
(
(
(9-autos)
(
(
(
(
(
(
(

=)

D(10-aircrafts and other trans.)
D(11-textiles and leather)
12-pharmaceuticals)
D(13-food)

D(14-computers and inst.)
D(15-0il)

D(16-non-manufacturing)

-

0.91***(0.078)
0.57"**(0.040)
—0.11(0.125)
—1.57***(0.123)
0.93"**(0.062)
—1.49***(0.129)
0.64***(0.042)
—0.16"*(0.032)
0.42"**(0.040)
0.72***(0.050)
—0.75"**(0.069)
0.40***(0.127)
—0.43***(0.047)
0.14***(0.032)
—0.39***(0.037)

0.86"**(0.076)
0.55"**(0.038)
—0.09(0.120)
—1.41***(0.120)
0.88***(0.060)
—1.33"**(0.125)
0.62"**(0.042)
—0.12***(0.030)
0.38"**(0.039)
0.69***(0.048)
—0.66"**(0.068)
0.39***(0.119)
—0.36***(0.045)
0.14***(0.029)
—0.38"**(0.035)

Fixed effects-AR(1)

Notes: Standard errors are reported in parentheses. The *** ** and * denote parameter significant at the 1%, 5% and

10% level, respectively. The — denotes parameter not identified. The country names see in Table 2.
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Table 6A: Basic panel data regression results

Firm perform.

ROA

Stock return

Count model

Basic Poisson-AR(1)

Fixed effects-AR(1)

Basic Poisson-AR(1)

Fixed effects-AR(1)

Parameter

estim(st.dev)

estim(st.dev)

estim(st.dev)

estim(st.dev)

¢

0.001**(0.0005)

0.001**(0.0004)

0.002(0.003)

0.0004(0.002)

Table 6B: PVAR(1) estimation results

Firm perform.

ROA

Stock return

Count model

Basic Poisson-AR(1)

Fixed effects-AR(1)

Basic Poisson-AR(1)

Fixed effects-AR(1)

Parameter estim(st.dev) estim(st.dev) estim(st.dev) estim(st.dev)
(i1 0.07(0.046) 0.01*"*(0.002) 0.09"*(0.009) 0.08"(0.022)
Ci 0.00(0.005) 0.11***(0.002) ~0.01(0.005) 0.11**(0.002)
Con 0.81*(0.039) 0.10"**(0.002) 0.09"**(0.019) 0.05"(0.024)
Co 0.15***(0.010) 0.80***(0.003) 0.15***(0.005) 0.65"**(0.005)
Qo) 1.87%*%(0.117) 1.58"**(0.025) 0.12°**(0.011) 0.19"**(0.024)
Qo,, 0.00(0.002) 0.00(0.002) 0.00(0.002) 0.000.002)

Qs 1.89***(0.131) —1.02°*%(0.022) 0.20***(0.061) —2.34*(0.050)

Notes: Standard errors are reported in parentheses. The *** ** and * denote parameter significant at the 1%, 5% and

10% level, respectively. In the first row of the table, the firm performance measure is presented. Consecutively, in the

second row, we show the count data model used to derive the log A;; values for the firm performance model. For all count

data models of this table, we use the patent applications count variable (i.e. not the applications + citations counts!).

The following specifications are presented in the table:

Basic panel data regression:

Yit = wi + Clog Aix + €it, €t ~ N(O,a?)
PVAR(1) model:
Xit = wi + 0t + ((Xit—1 — 0¢—1) + €,

Xit = (yie,log Nie)', € ~ N(0,9Q)
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Figure 1. (1) Number of renewable energy patent applications and (2) number of renewable energy

patent applications plus number of citations received of 15 EU and 4 EFTA countries over 1960-2007

Applications counts
H Applications counts + Citations counts : B

x 10%
1.8 2.0

1.6

1.2

1.0

0.0 0.2 04 06 038

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
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Notes: The sharp decrease in counts during the last years of the sample is due to the sample truncation

bias. (See the Data section and Figure 6.)
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Figure 2. (1) Total number of renewable energy patent applications of 15 EU and 4 EFTA countries
and (2) Oil price USD over 1960-2007.
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Notes: Notice that we rescaled both time series presented in the figure in order to observe better the
comovements. The sharp decrease in patent application counts during the last years of the sample is

due to the sample truncation bias. (See the Data section and Figure 6.)
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Figure 3. Number of patent applications for the largest countries and the rest of Europe (EU-15 and
EFTA-4) over 1960-2007.
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Notes: The sharp decrease in patent application counts during the last years of the sample is due to

the sample truncation bias. (See the Data section and Figure 6.)
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Figure 4. Total number of patent applications by renewable energy category over 1960-2007 of the
EU-15 and EFTA-4 countries.
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Notes: The sharp decrease in patent application counts during the last years of the sample is due to

the sample truncation bias. (See the Data section and Figure 6.)
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Figure 5. Total number of patent applications plus total number of citations received by renewable
energy category over 1960-2007 of the EU-15 and EFTA-4 countries.
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Notes: The sharp decrease in counts during the last years of the sample is due to the sample truncation

bias. (See the Data section and Figure 6.)
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Figure 6. (Publication date)-(Application date) duration empirical distribution
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Notes: The figure shows the time duration between the application date and publication date of
patents. Notice that the majority of patents are published in 5 years after submission to the EPO.
This, motivates us to include time effects for the last 5 years of our sample: 2003-2007 and a constant

for the years before 2003 in our patent count model. (See also Figure 11.)
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Figure 7. Electricity production in TWh of the EU and Europe during 1990-2007.
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Figure 8. Hydroelectricity (TWh), nuclear energy (TWh) and primary energy (tonnes of oil equivalents,
toe) consumption in the EU during 1965-2007.
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Figure 9. Country effects for the patent activity of firm .
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Notes: The following countries are included in the figure: 1-Austria, 2-Belgium, 3-Switzerland, 4-
Germany, 5-Denmark, 6-Spain, 7-Finland, 8-France, 9-United Kingdom, 10-Italy, 11-Luxembourg, 12-

Netherlands, 13-Norway and 14-Sweden. The parameter values presented in this figure can be also
seen in Tables 4B and 5B.
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Figure 10. Industry effects for the patent activity of firm .
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Notes: The following industries are included in the figure: 1-paper and printing, 2-chemicals, 3-rubber
and plastics, 4-wood and misc., 5-primary metals, 6-fabricated metals, 7-machinery, 8-electrical ma-
chinery, 9-autos, 10-aircrafts and other trans., 11-textiles and leather, 12-pharmaceuticals, 13-food,
14-computers and inst., 15-0il and 16-non-manufacturing. The parameter values presented in this

figure can be also seen in Tables 4B and 5B.
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Figure 11. Time effects for the patent activity during the last five years of the sample.
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Notes: The parameter values presented in this figure can be also seen in Tables 4B and 5B. The choice

of five time effects for the last 5 years of the sample is motivated by Figure 6.
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