Dadun/></a>
				</td>
				<td class= Dadun
   (New user)
Help  | Contact  |  Castellano English  
 

Dadun > Depósito Académico > Clínica Universidad de Navarra > Hematología y Hemoterapia > DA - CUN - Hematología y Hemoterapia - Artículos de revista >

Histological and ultrastructural comparison of cauterization and thrombosis stroke models in immune-deficient mice
Authors: Mora-Lee, S. (Silvia)
Sirerol-Piquer, M.S. (María Salomé)
Gutierrez-Perez, M. (María)
Lopez, T. (Tania)
Casado-Nieto, M. (Maite)
Jauquicoam, C. (Carlos)
Abizanda, G. (Gloria)
Romaguera-Ros, M. (Mirian)
Gomez-Pinedo, U. (Ulises)
Prosper, F. (Felipe)
Garcia-Verdugo, J.M. (José Manuel)
Keywords: Cerebral ischemia
Inflammation
Thrombosis
Issue Date: 2011
Publisher: BioMed Central
Publisher version: http://dx.doi.org/10.1186/1476-9255-8-28
ISSN: 1476-9255
Citation: Mora-Lee S, Sirerol-Piquer MS, Gutierrez-Perez M, Lopez T, Casado-Nieto M, Jauquicoam C, et al. Histological and ultrastructural comparison of cauterization and thrombosis stroke models in immune-deficient mice. J Inflamm (Lond) 2011 Oct 18;8(1):28.
Abstract
Background: Stroke models are essential tools in experimental stroke. Although several models of stroke have been developed in a variety of animals, with the development of transgenic mice there is the need to develop a reliable and reproducible stroke model in mice, which mimics as close as possible human stroke. Methods: BALB/Ca-RAG2-/-gc-/- mice were subjected to cauterization or thrombosis stroke model and sacrificed at different time points (48hr, 1wk, 2wk and 4wk) after stroke. Mice received BrdU to estimate activation of cell proliferation in the SVZ. Brains were processed for immunohistochemical and EM. Results: In both stroke models, after inflammation the same glial scar formation process and damage evolution takes place. After stroke, necrotic tissue is progressively removed, and healthy tissue is preserved from injury through the glial scar formation. Cauterization stroke model produced unspecific damage, was less efficient and the infarct was less homogeneous compared to thrombosis infarct. Finally, thrombosis stroke model produces activation of SVZ proliferation. Conclusions: Our results provide an exhaustive analysis of the histopathological changes (inflammation, necrosis, tissue remodeling, scarring...) that occur after stroke in the ischemic boundary zone, which are of key importance for the final stroke outcome. This analysis would allow evaluating how different therapies would affect wound and regeneration. Moreover, this stroke model in RAG 2-/- gC -/- allows cell transplant from different species, even human, to be analyzed.
Permanent link: http://hdl.handle.net/10171/22410
Appears in Collections:DA - CIMA - Oncología - Síndromes mieloproliferativos - Artículos de Revista
DA - CIMA - Oncología - Terapia celular - Artículos de Revista
DA - Medicina - Hematología - Artículos de revista
DA - CUN - Hematología y Hemoterapia - Artículos de revista

Files in This Item:
File:  J Inflamm 2011.28.pdf
Description: 
Size:  13,42 MB
Format:  Adobe PDF
 View / Open 

Items in Dadun are protected by copyright, with all rights reserved, unless otherwise indicated.